|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.ObjectFacemorph.Stats.ImagePLS
public class ImagePLS
Implements an iterative version of PLS based on the method by Milidi and Reteria, "DPLS and PPLS: two PLS algorithms got large data sets." Computation Statisitics and Data Analysis vol.48 pp125-138 (2005)
| Nested Class Summary |
|---|
| Nested classes/interfaces inherited from interface Facemorph.Stats.DataReducer |
|---|
DataReducer.DataReducerInformation |
| Nested classes/interfaces inherited from interface Facemorph.Stats.Regressor |
|---|
Regressor.RegressorException |
| Field Summary | |
|---|---|
protected FloatImage |
averageImage
Store the average of the input images for ZScoring |
protected Batch |
imageFiles
A set of image files to process. |
protected FloatImage |
stdevImage
Store the standard deviation for ZScoring |
protected double[] |
varX
records the variance of the dependent explained by each vector of the PLS |
protected double[] |
varY
records the variance of the dependent explained by each vector of the PLS |
protected BigMat |
Y
Set of independent values to decompose against |
| Constructor Summary | |
|---|---|
ImagePLS()
|
|
| Method Summary | |
|---|---|
BigMat |
apply(BigMat in)
Apply the statistical model on the input data supplied in Matrix form |
protected static void |
buildTestSet(java.lang.String directory)
|
double |
getEpsilon()
Get epsilon, the very small error margin used the determine if the function has finished minimising. |
int |
getInputDimensions()
|
void |
getModelInformation(ModelInformation mi)
Queries the statistical model about its abilities. |
void |
getModelInformation(ModelResults result)
Query the (previously built) model for information about the model's components |
int |
getOutputDimensions()
|
double |
getSumSquaredResiduals()
|
double |
getTargetDependentVariance()
|
double |
getTargetIndpendentVariance()
|
static void |
main(java.lang.String[] args)
|
java.lang.StringBuffer |
outputStatistics()
|
boolean |
outputStatistics(java.io.File statsFile)
|
double[] |
predict(BigMat values)
Predict using the model the values of the dependent from a set of independents |
boolean |
read(java.io.File f)
|
boolean |
read(iniFile file)
Read from the current position in an iniFile. |
BigMat |
reconstructDependent(BigMat in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
double[] |
reconstructDependent(double[] in)
|
FloatImage[] |
reconstructImage(double[] in)
Reconstruct an image from a set of parameters |
BigMat |
reconstructIndependent(BigMat in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
double[] |
reconstructIndependent(double[] in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
double[] |
reduce(FloatImage r,
FloatImage g,
FloatImage b)
Reduce an image to a (much) lower dimensional form |
BigMat |
reduceDependent(BigMat in)
Perform dimensionality reduction on the BigMat |
double[] |
reduceDependent(double[] in)
|
BigMat |
reduceIndependent(BigMat in)
Perform dimensionality reduction on the BigMat |
double[] |
reduceIndependent(double[] in)
Perform dimensionality reduction on a single sample of variables |
void |
setDependentData(BigMat data)
The dependent part of the regression |
void |
setDependentData(double[] data)
The dependent part of the regression |
void |
setEpsilon(double e)
Set epsilon, the very small error margin used the determine if the function has finished minimising. |
void |
setIndependentData(Batch images)
Supply a set of images to use as the dependent variables of the PLS decomposition |
void |
setIndependentData(BigMat data)
The independent part of the regression |
void |
setOutputDimensions(int d)
Set the maximum number of output dimensions in the model (pre-build, undefined if set after building some classes will alter the dimensionality of the reduction others will not) If d is greater than the number input variables, the model will truncate at the maximum number of variables. |
void |
setTargetDependentVariance(double var)
Stop calculating components when the variance explained in the dependent variable is greater than var |
void |
setTargetIndependentVariance(double var)
Stop calculating components when the variance explained in the independent variable is greater than var |
void |
setTargetKaiserGuttman()
|
boolean |
train(boolean stats)
Perform multi-linear regression using the Ordinary Least Squares method. |
boolean |
write(java.io.File s)
Writes to the file specified |
boolean |
write(iniFile file,
java.lang.String name)
Writes this Template to file (via a PrintStream) |
boolean |
write(java.io.PrintStream out)
Writes this Template to file (via a PrintStream) |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
|---|
protected Batch imageFiles
protected BigMat Y
protected FloatImage averageImage
protected FloatImage stdevImage
protected double[] varX
protected double[] varY
| Constructor Detail |
|---|
public ImagePLS()
| Method Detail |
|---|
public void setIndependentData(Batch images)
setIndependentData in interface ImageDataHandlerimages - a batch file containing the image file namespublic void setIndependentData(BigMat data)
StatisticalModel
setIndependentData in interface StatisticalModelpublic void setDependentData(BigMat data)
StatisticalModel
setDependentData in interface StatisticalModelpublic boolean train(boolean stats)
StatisticalModel
train in interface StatisticalModelstats - calculate values for statistical analysis
public void setOutputDimensions(int d)
DataReducer
setOutputDimensions in interface DataReducerd - target number of dimensions.public int getOutputDimensions()
getOutputDimensions in interface StatisticalModelpublic boolean read(iniFile file)
IniHandler
read in interface IniHandlerpublic void setTargetDependentVariance(double var)
DataReducer
setTargetDependentVariance in interface DataReducervar - variance to explainpublic double getTargetDependentVariance()
getTargetDependentVariance in interface DataReducerpublic void setTargetIndependentVariance(double var)
DataReducer
setTargetIndependentVariance in interface DataReducervar - variance to explainpublic double getTargetIndpendentVariance()
getTargetIndpendentVariance in interface DataReducerpublic void setEpsilon(double e)
DataReducer
setEpsilon in interface DataReducere - error valuepublic double getEpsilon()
DataReducer
getEpsilon in interface DataReducerpublic double[] predict(BigMat values)
Regressor
predict in interface Regressorvalues - the independent values
public void setDependentData(double[] data)
StatisticalModel
setDependentData in interface StatisticalModelpublic double getSumSquaredResiduals()
getSumSquaredResiduals in interface Regressorpublic boolean outputStatistics(java.io.File statsFile)
outputStatistics in interface StatisticalModelpublic java.lang.StringBuffer outputStatistics()
outputStatistics in interface StatisticalModel
public boolean read(java.io.File f)
throws java.io.FileNotFoundException
read in interface Regressorjava.io.FileNotFoundExceptionpublic boolean write(java.io.File s)
Regressor
write in interface Regressors - the name of the file to write to
public boolean write(java.io.PrintStream out)
Regressor
write in interface Regressorout - The output PrintStream
public double[] reduce(FloatImage r,
FloatImage g,
FloatImage b)
ImageDataHandler
reduce in interface ImageDataHandlerr - the red part of the imageg - the green part of the imageb - the blue part of the iamge
public FloatImage[] reconstructImage(double[] in)
ImageDataHandler
reconstructImage in interface ImageDataHandlerin - a vector of reconstuction parameters
protected static void buildTestSet(java.lang.String directory)
throws java.io.IOException
java.io.IOException
public static void main(java.lang.String[] args)
throws java.io.IOException
java.io.IOException
public boolean write(iniFile file,
java.lang.String name)
IniHandler
write in interface IniHandlerfile - The output ini file to fill with class data
public double[] reduceIndependent(double[] in)
DataReducer
reduceIndependent in interface DataReducerin - vector to reduce
public double[] reconstructIndependent(double[] in)
DataReducer
reconstructIndependent in interface DataReducerin - low dimensional vector
public double[] reduceDependent(double[] in)
reduceDependent in interface DataReducerpublic double[] reconstructDependent(double[] in)
reconstructDependent in interface DataReducerpublic BigMat reduceIndependent(BigMat in)
DataReducer
reduceIndependent in interface DataReducerin - BigMat to reduce
public BigMat reconstructIndependent(BigMat in)
DataReducer
reconstructIndependent in interface DataReducerin - low dimensional matrix
public BigMat reduceDependent(BigMat in)
DataReducer
reduceDependent in interface DataReducerin - BigMat to reduce
public BigMat reconstructDependent(BigMat in)
DataReducer
reconstructDependent in interface DataReducerin - low dimensional matrix
public int getInputDimensions()
getInputDimensions in interface StatisticalModelpublic void getModelInformation(ModelInformation mi)
StatisticalModel
getModelInformation in interface StatisticalModelpublic BigMat apply(BigMat in)
StatisticalModel
apply in interface StatisticalModelin - matrix containing values for modeling
public void setTargetKaiserGuttman()
setTargetKaiserGuttman in interface DataReducerpublic void getModelInformation(ModelResults result)
StatisticalModel
getModelInformation in interface StatisticalModelresult - ModelResults object to fill with appropriate information
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||