|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.ObjectFacemorph.Stats.ICA
public class ICA
Independent Component Analysis
Nested Class Summary | |
---|---|
class |
ICA.ICAException
|
Nested classes/interfaces inherited from interface Facemorph.Stats.DataReducer |
---|
DataReducer.DataReducerInformation |
Constructor Summary | |
---|---|
ICA()
|
Method Summary | |
---|---|
BigMat |
apply(BigMat in)
Apply the statistical model on the input data supplied in Matrix form |
BigMat |
getBasisMatrix()
Outputs the basis matrix that is the result of PCA analysis |
double |
getEpsilon()
Get epsilon, the very small error margin used the determine if the function has finished minimising. |
int |
getInputDimensions()
|
void |
getModelInformation(ModelInformation mi)
Queries the statistical model about its abilities. |
void |
getModelInformation(ModelResults result)
Query the (previously built) model for information about the model's components |
int |
getOutputDimensions()
|
double |
getTargetDependentVariance()
|
double |
getTargetIndpendentVariance()
|
static void |
main(java.lang.String[] args)
|
java.lang.StringBuffer |
outputStatistics()
|
boolean |
outputStatistics(java.io.File statsFile)
|
boolean |
read(iniFile in)
Read from the current position in an iniFile. |
BigMat |
reconstructDependent(BigMat in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
double[] |
reconstructDependent(double[] in)
|
BigMat |
reconstructIndependent(BigMat in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
double[] |
reconstructIndependent(double[] in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
BigMat |
reduceDependent(BigMat in)
Perform dimensionality reduction on the BigMat |
double[] |
reduceDependent(double[] in)
|
BigMat |
reduceIndependent(BigMat in)
Perform dimensionality reduction on the BigMat |
double[] |
reduceIndependent(double[] in)
Perform dimensionality reduction on a single sample of variables |
void |
setDependentData(BigMat data)
The dependent part of the regression |
void |
setDependentData(double[] data)
The dependent part of the regression |
void |
setEpsilon(double e)
Set epsilon, the very small error margin used the determine if the function has finished minimising. |
void |
setIndependentData(BigMat data)
The independent part of the regression |
void |
setOutputDimensions(int d)
Set the maximum number of output dimensions in the model (pre-build, undefined if set after building some classes will alter the dimensionality of the reduction others will not) If d is greater than the number input variables, the model will truncate at the maximum number of variables. |
void |
setTargetDependentVariance(double var)
Stop calculating components when the variance explained in the dependent variable is greater than var |
void |
setTargetIndependentVariance(double var)
Stop calculating components when the variance explained in the independent variable is greater than var |
void |
setTargetKaiserGuttman()
|
boolean |
train(boolean stats)
Perform multi-linear regression using the Ordinary Least Squares method. |
boolean |
write(iniFile file,
java.lang.String name)
Writes this Template to file (via a PrintStream) |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public ICA()
Method Detail |
---|
public void setIndependentData(BigMat data)
StatisticalModel
setIndependentData
in interface StatisticalModel
public void setDependentData(BigMat data)
StatisticalModel
setDependentData
in interface StatisticalModel
public boolean train(boolean stats)
StatisticalModel
train
in interface StatisticalModel
stats
- calculate values for statistical analysis
public BigMat getBasisMatrix()
public double[] reduceIndependent(double[] in)
DataReducer
reduceIndependent
in interface DataReducer
in
- vector to reduce
public double[] reconstructIndependent(double[] in)
DataReducer
reconstructIndependent
in interface DataReducer
in
- low dimensional vector
public double[] reduceDependent(double[] in)
reduceDependent
in interface DataReducer
public double[] reconstructDependent(double[] in)
reconstructDependent
in interface DataReducer
public BigMat reduceIndependent(BigMat in)
DataReducer
reduceIndependent
in interface DataReducer
in
- BigMat to reduce
public BigMat reconstructIndependent(BigMat in)
DataReducer
reconstructIndependent
in interface DataReducer
in
- low dimensional matrix
public BigMat reduceDependent(BigMat in)
DataReducer
reduceDependent
in interface DataReducer
in
- BigMat to reduce
public BigMat reconstructDependent(BigMat in)
DataReducer
reconstructDependent
in interface DataReducer
in
- low dimensional matrix
public void setOutputDimensions(int d)
DataReducer
setOutputDimensions
in interface DataReducer
d
- target number of dimensions.public int getInputDimensions()
getInputDimensions
in interface StatisticalModel
public int getOutputDimensions()
getOutputDimensions
in interface StatisticalModel
public void setTargetDependentVariance(double var)
DataReducer
setTargetDependentVariance
in interface DataReducer
var
- variance to explainpublic double getTargetDependentVariance()
getTargetDependentVariance
in interface DataReducer
public void setTargetIndependentVariance(double var)
DataReducer
setTargetIndependentVariance
in interface DataReducer
var
- variance to explainpublic double getTargetIndpendentVariance()
getTargetIndpendentVariance
in interface DataReducer
public void setEpsilon(double e)
DataReducer
setEpsilon
in interface DataReducer
e
- error valuepublic double getEpsilon()
DataReducer
getEpsilon
in interface DataReducer
public boolean outputStatistics(java.io.File statsFile)
outputStatistics
in interface StatisticalModel
public java.lang.StringBuffer outputStatistics()
outputStatistics
in interface StatisticalModel
public boolean read(iniFile in)
IniHandler
read
in interface IniHandler
public boolean write(iniFile file, java.lang.String name)
IniHandler
write
in interface IniHandler
file
- The output ini file to fill with class data
public void setDependentData(double[] data)
StatisticalModel
setDependentData
in interface StatisticalModel
public void getModelInformation(ModelInformation mi)
StatisticalModel
getModelInformation
in interface StatisticalModel
public BigMat apply(BigMat in)
StatisticalModel
apply
in interface StatisticalModel
in
- matrix containing values for modeling
public void setTargetKaiserGuttman()
setTargetKaiserGuttman
in interface DataReducer
public void getModelInformation(ModelResults result)
StatisticalModel
getModelInformation
in interface StatisticalModel
result
- ModelResults object to fill with appropriate informationpublic static void main(java.lang.String[] args)
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |