|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.ObjectFacemorph.Stats.ICA
public class ICA
Independent Component Analysis
| Nested Class Summary | |
|---|---|
class |
ICA.ICAException
|
| Nested classes/interfaces inherited from interface Facemorph.Stats.DataReducer |
|---|
DataReducer.DataReducerInformation |
| Constructor Summary | |
|---|---|
ICA()
|
|
| Method Summary | |
|---|---|
BigMat |
apply(BigMat in)
Apply the statistical model on the input data supplied in Matrix form |
BigMat |
getBasisMatrix()
Outputs the basis matrix that is the result of PCA analysis |
double |
getEpsilon()
Get epsilon, the very small error margin used the determine if the function has finished minimising. |
int |
getInputDimensions()
|
void |
getModelInformation(ModelInformation mi)
Queries the statistical model about its abilities. |
void |
getModelInformation(ModelResults result)
Query the (previously built) model for information about the model's components |
int |
getOutputDimensions()
|
double |
getTargetDependentVariance()
|
double |
getTargetIndpendentVariance()
|
static void |
main(java.lang.String[] args)
|
java.lang.StringBuffer |
outputStatistics()
|
boolean |
outputStatistics(java.io.File statsFile)
|
boolean |
read(iniFile in)
Read from the current position in an iniFile. |
BigMat |
reconstructDependent(BigMat in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
double[] |
reconstructDependent(double[] in)
|
BigMat |
reconstructIndependent(BigMat in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
double[] |
reconstructIndependent(double[] in)
Reconstruct (approximately) a high dimensional input given the low dimensional output |
BigMat |
reduceDependent(BigMat in)
Perform dimensionality reduction on the BigMat |
double[] |
reduceDependent(double[] in)
|
BigMat |
reduceIndependent(BigMat in)
Perform dimensionality reduction on the BigMat |
double[] |
reduceIndependent(double[] in)
Perform dimensionality reduction on a single sample of variables |
void |
setDependentData(BigMat data)
The dependent part of the regression |
void |
setDependentData(double[] data)
The dependent part of the regression |
void |
setEpsilon(double e)
Set epsilon, the very small error margin used the determine if the function has finished minimising. |
void |
setIndependentData(BigMat data)
The independent part of the regression |
void |
setOutputDimensions(int d)
Set the maximum number of output dimensions in the model (pre-build, undefined if set after building some classes will alter the dimensionality of the reduction others will not) If d is greater than the number input variables, the model will truncate at the maximum number of variables. |
void |
setTargetDependentVariance(double var)
Stop calculating components when the variance explained in the dependent variable is greater than var |
void |
setTargetIndependentVariance(double var)
Stop calculating components when the variance explained in the independent variable is greater than var |
void |
setTargetKaiserGuttman()
|
boolean |
train(boolean stats)
Perform multi-linear regression using the Ordinary Least Squares method. |
boolean |
write(iniFile file,
java.lang.String name)
Writes this Template to file (via a PrintStream) |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public ICA()
| Method Detail |
|---|
public void setIndependentData(BigMat data)
StatisticalModel
setIndependentData in interface StatisticalModelpublic void setDependentData(BigMat data)
StatisticalModel
setDependentData in interface StatisticalModelpublic boolean train(boolean stats)
StatisticalModel
train in interface StatisticalModelstats - calculate values for statistical analysis
public BigMat getBasisMatrix()
public double[] reduceIndependent(double[] in)
DataReducer
reduceIndependent in interface DataReducerin - vector to reduce
public double[] reconstructIndependent(double[] in)
DataReducer
reconstructIndependent in interface DataReducerin - low dimensional vector
public double[] reduceDependent(double[] in)
reduceDependent in interface DataReducerpublic double[] reconstructDependent(double[] in)
reconstructDependent in interface DataReducerpublic BigMat reduceIndependent(BigMat in)
DataReducer
reduceIndependent in interface DataReducerin - BigMat to reduce
public BigMat reconstructIndependent(BigMat in)
DataReducer
reconstructIndependent in interface DataReducerin - low dimensional matrix
public BigMat reduceDependent(BigMat in)
DataReducer
reduceDependent in interface DataReducerin - BigMat to reduce
public BigMat reconstructDependent(BigMat in)
DataReducer
reconstructDependent in interface DataReducerin - low dimensional matrix
public void setOutputDimensions(int d)
DataReducer
setOutputDimensions in interface DataReducerd - target number of dimensions.public int getInputDimensions()
getInputDimensions in interface StatisticalModelpublic int getOutputDimensions()
getOutputDimensions in interface StatisticalModelpublic void setTargetDependentVariance(double var)
DataReducer
setTargetDependentVariance in interface DataReducervar - variance to explainpublic double getTargetDependentVariance()
getTargetDependentVariance in interface DataReducerpublic void setTargetIndependentVariance(double var)
DataReducer
setTargetIndependentVariance in interface DataReducervar - variance to explainpublic double getTargetIndpendentVariance()
getTargetIndpendentVariance in interface DataReducerpublic void setEpsilon(double e)
DataReducer
setEpsilon in interface DataReducere - error valuepublic double getEpsilon()
DataReducer
getEpsilon in interface DataReducerpublic boolean outputStatistics(java.io.File statsFile)
outputStatistics in interface StatisticalModelpublic java.lang.StringBuffer outputStatistics()
outputStatistics in interface StatisticalModelpublic boolean read(iniFile in)
IniHandler
read in interface IniHandler
public boolean write(iniFile file,
java.lang.String name)
IniHandler
write in interface IniHandlerfile - The output ini file to fill with class data
public void setDependentData(double[] data)
StatisticalModel
setDependentData in interface StatisticalModelpublic void getModelInformation(ModelInformation mi)
StatisticalModel
getModelInformation in interface StatisticalModelpublic BigMat apply(BigMat in)
StatisticalModel
apply in interface StatisticalModelin - matrix containing values for modeling
public void setTargetKaiserGuttman()
setTargetKaiserGuttman in interface DataReducerpublic void getModelInformation(ModelResults result)
StatisticalModel
getModelInformation in interface StatisticalModelresult - ModelResults object to fill with appropriate informationpublic static void main(java.lang.String[] args)
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||