|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use PCA | |
---|---|
Facemorph | |
Facemorph.aam |
Uses of PCA in Facemorph |
---|
Methods in Facemorph that return PCA | |
---|---|
PCA |
ASM.getPCA()
Return the PCA data currently being used |
PCA |
PCA.getReduced(int max)
Gets a copy of this PCA with fewer components |
Methods in Facemorph with parameters of type PCA | |
---|---|
static void |
PCA.addToAverage(Template average1,
PCA pca1,
Template currentAverage,
int n,
int start,
BigMat data)
Incrementally updates the data matrix and currentAverage by adding the PCA data to them |
static Template |
Template.autoDelineate(java.awt.Image subjectImage,
java.awt.Image averageImage,
Template averageTemplate,
java.awt.geom.Point2D.Float leftEye,
java.awt.geom.Point2D.Float rightEye,
java.awt.geom.Point2D.Float mouth,
int leftIndex,
int rightIndex,
int mouthIndex,
java.awt.image.ImageObserver ob,
PCA pca)
Automatically delineates the image given returning a Template outlining the facial features |
Template |
PCA.combine(PCA pca1,
Template average1,
PCA pca2,
Template average2)
Combine two PCA models into a single one. |
Template |
PCA.combine2(PCA pca1,
Template average1,
PCA pca2,
Template average2)
Combine two PCA models into a single one. |
void |
Template.fitAAM(int warpType,
java.awt.Image subject,
java.awt.Image average,
Mask mask,
PCA pca,
PCI pci)
Fits a Template to this FloatImage using a multiscale method |
void |
Template.fitAAMappearance(int warpType,
java.awt.Image subject,
java.awt.Image averageImg,
Mask mask,
PCA pca,
PCI pci,
float scale)
Attempt at fitting an AAM to an image using efficient reverse method, includes colour information |
void |
Template.fitAAMbayesian(int warpType,
java.awt.Image subject,
java.awt.Image averageImg,
Mask mask,
PCA pca,
PCI pci,
float scale)
Attempt at fitting an AAM to an image using efficient reverse method, includes colour information |
void |
Template.fitAAMforward(java.awt.Image subjectImg,
java.awt.Image averageImg,
Mask mask,
PCA pca,
PCI pci,
float scale)
Attempt at fitting an AAM to an image using inefficient, but more reliable forward method, includes colour information |
void |
Template.fitAAMshape(int warpType,
FloatImage average,
FloatImage subject,
Template avrg,
Mask mask,
PCA pca,
float scale)
First attempt at fitting an AAM to an image, does not include colour information, not recommended to use! |
int |
Template.fitAAMspan(int warpType,
java.awt.Image subject,
java.awt.Image averageImg,
Mask mask,
PCA pca,
PCI pci,
FloatImage[] smallPCIcomps,
float scale,
int counter)
Attempt at fitting an AAM to an image using efficient reverse method, colour information is projected out |
int |
Template.fitAAMspanLM(int warpType,
java.awt.Image subject,
java.awt.Image averageImg,
Mask mask,
PCA pca,
PCI pci,
float scale,
int counter)
Attempt at fitting an AAM to an image using efficient reverse method, includes colour information |
void |
Template.fitPCA(FloatImage average,
FloatImage subject,
Template avrg,
PCA pca,
int leftIndex,
int rightIndex,
int mouthIndex)
Fits a Template to this FloatImage |
boolean |
Template.fitPCA(java.awt.Image subjectImage,
java.awt.Image averageImage,
Template averageTemplate,
java.awt.geom.Point2D.Float leftEye,
java.awt.geom.Point2D.Float rightEye,
int leftIndex,
int rightIndex,
java.awt.image.ImageObserver ob,
PCA pca)
Automatically delineates the image given using this Template to outline the facial features |
boolean |
Template.fitPCA(java.awt.Image subjectImage,
java.awt.Image averageImage,
Template averageTemplate,
java.awt.geom.Point2D.Float leftEye,
java.awt.geom.Point2D.Float rightEye,
java.awt.geom.Point2D.Float mouth,
int leftIndex,
int rightIndex,
int mouthIndex,
java.awt.image.ImageObserver ob,
PCA pca)
Automatically delineates the image given using this Template to outline the facial features |
boolean |
Template.fitPCAColourSegment(java.awt.Image subjectImage,
java.awt.Image averageImage,
Template averageTemplate,
java.awt.geom.Point2D.Float leftEye,
java.awt.geom.Point2D.Float rightEye,
java.awt.geom.Point2D.Float mouth,
int leftIndex,
int rightIndex,
int mouthIndex,
java.awt.image.ImageObserver ob,
PCA pca,
Mask mask)
Automatically delineates the image given using this Template to outline the facial features Tries to segment out the face from the background using colour to help |
Template[] |
PCA.getIntersection(Template average1,
Template average2,
PCA pca,
double alpha,
double beta)
Find the least squares intersection between the two PCA models |
float[] |
Template.getPCAandNormParameters(PCA pca,
Template average,
int normalisation,
int[] normPoints)
Gets the pca and normalisation parameters in a single vector |
float[] |
Template.getPCAandRBparameters(PCA pca,
Template average)
Analyses this Template using a set of principal components |
float[] |
Template.getPCAparameters(PCA pca,
Template average,
int leftIndex,
int rightIndex,
int mouthIndex)
Analyses this Template using a set of principal components |
boolean |
Template.readPCA(java.io.DataInputStream in,
Template average,
PCA pca,
int le,
int re,
int m)
Reads in 3 normalisation points and some PCA parameters and reconstructs the Template (I think!) |
void |
Template.reconstructPCA(PCA pca,
Template average,
float[] pcaParams,
int toskip)
Reconstruct this Template from PCA data |
void |
Template.reconstructPCA(PCA pca,
Template average,
java.awt.geom.Point2D.Float left,
java.awt.geom.Point2D.Float right,
java.awt.geom.Point2D.Float mouth,
float[] pcaParams,
int leftIndex,
int rightIndex,
int mouthIndex)
Builds a Template from a set of PCA parameters and data |
void |
Template.reconstructPCAandNorm(PCA pca,
Template average,
float[] PCAandRBparams,
int normalisation,
int[] normPoints)
Reconstructs this Template from the PCA data using the parameters and normalisation specified |
void |
Template.reconstructPCAandRB(PCA pca,
Template average,
float[] PCAandRBparams)
Builds a Template from a set of PCA and Rigid Body parameters and data |
void |
Template.trackASM(FloatImage average,
FloatImage subject,
Template avrg,
PCA pca,
float scale,
int its,
int[] normalisePointIndex)
Fits a PCA model to an image using edge normal profiles |
Constructors in Facemorph with parameters of type PCA | |
---|---|
ASM(Template template,
PCA pca,
java.awt.Image image,
int normalisation,
int[] pindex)
Creates a new instance of an ASM using the data specified |
Uses of PCA in Facemorph.aam |
---|
Methods in Facemorph.aam with parameters of type PCA | |
---|---|
static void |
CAAMPowell.test(java.lang.String listFile,
java.lang.String resFile,
PCI pci,
PCA pca,
Mask mask)
Test method |
Constructors in Facemorph.aam with parameters of type PCA | |
---|---|
CAAMPowell(Mask mask,
PCA pca,
PCI pci,
java.awt.Image subject,
Template template)
Constructor for CAAMPowell |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |