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Abstract

Given an involution z in W , where W is the symmetric group of degree n, we
study the relation between the subsystems of a root system for W corresponding
to certain decreasing subsequences of z and the two-sided Kazhdan-Lusztig cell of
W containing z.
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1 Introduction

Kazhdan and Lusztig introduced three equivalence relations ∼L, ∼R and ∼LR on the
elements of a Coxeter group in [11] and called the equivalence classes left cells, right cells
and two-sided cells, respectively. Each left cell and each right cell contains at least one
involution. Every two-sided cell is a union of left cells and a union of right cells.

We study the finite symmetric group W which is a finite Coxeter group of type A. In
this case, each left cell and each right cell contains exactly one involution, and each
two-sided cell contains exactly one involution of a special form—a standard parabolic
involution—which we describe below. The parabolic involutions form a larger collection
of involutions, each of which may be associated with the standard parabolic involution in
the two-sided cell containing it in a simple combinatorial way. The Robinson-Schensted-
Knuth process provides a combinatorial technique for identifying the standard parabolic
involution in the same two-sided cell as a given involution. Our aim is to provide a simpler
combinatorial technique for carrying out this identification for a large proportion of the
involutions. Not all involutions will be covered by the technique, since they must satisfy
a certain length restriction which is not satisfied by all involutions. We have computed
the proportion of involutions failing this restriction for symmetric groups of degree ≤ 12
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and found it to be < 0.007. Similarly, the proportion of involutions not covered by our
combinatorial technique is < 0.016.

Moreover, if Φ is a system of roots for W , we show that in order to identify the two-sided
cell of W containing an involution z ∈ W it suffices to consider the realizations of z
as the longest element of a Young subgroup W (Ψ) with respect to a simple generating
system of the subsystem Ψ of Φ which is contained in Φ+. In particular, for involutions
covered by our combinatorial technique, among the Ψ described above there will exist a
dominant one with respect to a preorder we define below.

2 Background notation, terminology and results

Let W denote the symmetric group Sn, where n is an arbitrary positive integer, acting
on {1, . . . , n}. Then W is a Coxeter group with Coxeter system (W,S) where S =
{s1, . . . , sn−1} and si is the transposition (i, i+ 1) for 1 ≤ i ≤ n− 1. The corresponding

Coxeter graph is
s1b s2b p p p sn−1b . Moreover, W has the presentation 〈si : s2

i =
1, (sisi+1)3 = 1 and (sisj)

2 = 1 for all i, j ∈ {1, . . . , n− 1} with |i− j| > 1〉.
For each subset J ⊆ S, the subgroup WJ generated by J is called a parabolic subgroup
of W . It has a Coxeter system (WJ , J). Its length function lJ is that induced from l. It
has a unique longest element wJ . By tradition, w0 is written for wS.

For each composition λ = (λ1, . . . , λr) of n with r parts, with λi > 0, for 1 ≤ i ≤ r,
there is a standard parabolic subgroup of W whose Coxeter generator set J(λ) is given
by J(λ) = S\{sλ1 , sλ1+λ2 , . . . , sλ1+...+λr−1}. The longest element wJ(λ) of WJ(λ) can be
described in two-row form by

wJ(λ) =

(
. . . λ̂i−1 + 1 . . . λ̂i λ̂i + 1 . . . λ̂i+1 . . .

. . . λ̂i . . . λ̂i−1 + 1 λ̂i+1 . . . λ̂i + 1 . . .

)
where λ̂0 = 0, λ̂r = n, and λ̂i = λi + λ̂i−1 for i = 1, . . . , r− 1. The conjugate partition λ′

of λ is defined by λ′i = |{j : λj ≥ i}| for i ≥ 1. We will denote the number of parts of λ′

by r′. Thus, r = λ′1 and r′ = max{λi : 1 ≤ i ≤ r}.
We use the notions of λ-diagram, λ-tableaux and associated terminology as in Dipper
and James [2]; see also Fulton [4] and Sagan [15] for the corresponding terminology when
λ is a partition. In particular, a λ-tableau is row-standard if it is increasing on rows,
column-standard if it is increasing on columns, and standard if it is increasing on rows
and columns. Also, if T is a λ-tableau, we refer to λ as the shape of T and denote it by
sh T .

W acts on the set of λ-tableaux in the obvious way—if w ∈ W , an entry i is replaced
by iw and tw denotes the tableau resulting from the action of w on the tableau t. This
action on λ-tableaux is the action by letter permutations of Dipper and James [2, p.21].
If x, y ∈ W , we say that x is a prefix of y if y = u1u2 . . . up where ui ∈ S for i = 1, . . . , p,
p = l(y) and x = u1u2 . . . ur, for some r ≤ p. The prefix relation corresponds to the weak
Bruhat order in [2].

From the general theory of Coxeter groups, every parabolic subgroup WJ of W has a
distinguished set of right coset representatives XJ whose properties are listed in the next
result.



On root subsystems and involutions in Sn 3

Result 2.1. ([7, Proposition 2.1.1 and Lemma 2.2.1]) There is a special set of right coset
representatives XJ associated with each parabolic subgroup WJ . An element of XJ is
the unique element of minimum length in its coset. Moreover, if w = vx where v ∈ WJ

and x ∈ XJ then l(w) = l(v) + l(x). Also, XJ = {w ∈ W : L(w) ⊆ S − J} where
L(w) = {s ∈ S : l(sw) < l(w)} and, if dJ denotes the longest element in XJ , then XJ is
the set of prefixes of dJ .

We construct a special λ-tableau tλ, where tλ is obtained by filling in the λ-diagram with
1, . . . , n by rows from top to bottom, filling each row from left to right.

In the case of the symmetric group, Dipper and James [2] characterise XJ(λ) as follows:

Result 2.2. ([2, Lemma 1.1]) XJ(λ) = {w ∈ W : tλw is row-standard}.

3 Covers

Let w ∈ W and let ν = (ν1, . . . , νk) be a partition of n into k parts. By a decreasing
cover of type ν for w, we mean a set of k disjoint decreasing subsequences appearing in
the row-form of w so that the union of the elements in these subsequences is {1, . . . , n}
and the lengths of the subsequences (from longest to shortest) are ν1, . . . , νk. Similarly
we can define an increasing cover of type ν for w.

A decreasing cover of w is said to be symmetric if, for any i ∈ {1, . . . , n}, i and iw are
in the same subsequence of the cover.

In the terminology of Sagan [15], a decreasing cover of w of type ν is a k-decreasing
subsequence of w involving all elements in {1, . . . , n}. More generally, a k-decreasing
subsequence wI of w is the restriction of w to I ⊆ {1, . . . , n}, where I has a partition
into k disjoint subsets I1, . . . , Ik, and wIj is a decreasing subsequence of w for each j.

Example 3.1. Let w = [ 7 , 8 , 5 , 9 , 3 , 6 , 1 , 2 , 4 ] ∈ S9. Then, {(7, 5, 3, 1), (8, 6, 2),
(9, 4)} and {(7, 5, 3, 2), (9, 6, 1), (8, 4)} are decreasing covers of type (4, 3, 2) for w, the first
being a symmetric decreasing cover. Also, {(7, 8, 9), (1, 2, 4), (3, 6), (5)} is an increasing
cover of type (3, 3, 2, 1) for w.

We note that only involutions, or the identity, can have symmetric decreasing covers.

Lemma 3.2. Let w ∈ W and suppose that w has a symmetric decreasing cover. Then
w2 = 1.

Proof. Let i1, . . . , ir be a subsequence of the symmetric decreasing cover, and let jk =
ikw

−1 for k = 1, . . . , r. Then the sequence j1, . . . , jr is increasing and {i1, . . . , ir} =
{j1, . . . , jr}. Hence, ik = jr−k+1 for k = 1, . . . , r. So, ikw

2 = ir−k+1w = ik for k = 1, . . . , r.
Since this is true for all subsequences of the cover, iw2 = i for i = 1, . . . , n.

We see that the symmetric decreasing covers of an involution are optimal among all
decreasing covers in the sense described in the following theorem.

Theorem 3.3. Let w ∈ W be an involution which has a k-decreasing subsequence wI of
length l. Then w has a symmetric k′-decreasing subsequence of length at least l for some
k′ ≤ k.
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Proof. Let wI be a k-decreasing subsequence of w of length l. Thus, I ⊆ {1, . . . , n},
I has a partition into k disjoint non-empty subsets I1, . . . , Ik, and wIj is a decreasing
subsequence of w for each j.

If 1 ≤ j ≤ k, a, b ∈ Ijw and a < b, then bw < aw. So, wIjw is a decreasing subsequence
of w. Hence, wIw is a k-decreasing subsequence of w.

Let I= = {i ∈ I : i = iw}, I< = {i ∈ I : i < iw}, and I> = {i ∈ I : i > iw}. Observe that
|Iw<| > |Iw>| if and only if |I<| < |I>|, so we may assume without loss of generality
that |I<| ≥ |I>|
Let J = {j : 1 ≤ j ≤ k and {i ∈ Ij : i ≤ iw} 6= ∅} and let k′ = |J |.
For each j ∈ J , let aj be the maximum element of {i ∈ Ij : i ≤ iw} and let Kj =
Ij ∩ (I< ∪ I=). Then wKj and wKjw are decreasing subsequences of w. Also, if i ∈ Kjw
then iw ∈ Kj; so, iw ≤ aj and i ≥ ajw ≥ aj. Hence, Kj ∩Kjw = {aj} ∩ I=. Moreover,
if we let Lj = Kj ∪Kjw, then wLj is a symmetric decreasing subsequence of w.

Since the k′ sets Kj, j ∈ J , are pairwise disjoint, so are the k′ sets Kjw, j ∈ J .

Suppose r, s ∈ J , r 6= s and let x ∈ Kr. If xw = x, then x ∈ Krw so x /∈ Ksw. If x < xw,
then again x /∈ Ksw because yw ≤ y for all y ∈ Ksw. Hence

⋃
j∈J Kj is disjoint from⋃

j∈J(Kjw\{aj}). Letting L =
⋃
j∈J Lj, w

L is a symmetric k′-decreasing subsequence of
w.

Finally, since L = I<∪I=∪(I<)w, it follows that |L| = 2|I<|+|I=| ≥ |I<|+|I=|+|I>| = |I|
as required.

Recall from Section 3 of [13] that, for a partition ν of n, wJ(ν) has a unique decreasing
cover P ν of type ν, and this cover is also symmetric. This statement generalizes easily
to compositions. Thus, for a composition λ of n, wJ(λ) has a unique decreasing cover,
denoted by P λ, of type λ′′, and this cover is also symmetric. Moreover, we have the
following lemma.

Lemma 3.4. Let λ be a composition of n and let ν = λ′′. If w ∈ W has a decreasing
cover P of type ν, then P = P νe for some e ∈ XJ(ν) and there is an element d ∈ XJ(λ)

such that P λd = P νe. Moreover, there is an element f ∈ XJ(ν) such that w = f−1wJ(ν)e.

Proof. Let (pi,1, . . . , pi,νi
) and (qi,1, . . . , qi,νi

) be the i-th subsequences in P ν and P , re-
spectively, and let ri,j = qi,jw

−1 for all i and j. Define e by pi,j 7→ qi,j for all i and j, and
f by pi,j 7→ ri,νi+1−j for all i and j. Then w = f−1wJ(ν)e. Since e is increasing on each
set {pi,νi

, . . . , pi,1}, e ∈ XJ(ν). Since f is increasing on each set {pi,νi
, . . . , pi,1}, f ∈ XJ(ν).

Since λ is a rearrangement of ν, the preceding argument gives P = P λd for some d ∈
XJ(λ), and w = g−1wJ(λ)d for some g ∈ XJ(λ).

So, a decreasing cover for an element of W does not determine the pair (λ, d) uniquely.
Note that if (λ, d) and (λ, d′) correspond to a cover P of type λ′′, then d′d−1 centralizes
wJ(λ). In particular, if ν has parts of the same size, it is possible to find distinct elements
e and e′ with (ν, e) and (ν, e′) corresponding to P .

Example 3.5. Let w = [2, 1, 5, 7, 3, 6, 4] and P = {(7, 6, 4), (2, 1), (5, 3)}. We may take
e = [4, 6, 7, 1, 2, 3, 5] and e′ = [4, 6, 7, 3, 5, 1, 2]. Then e, e′ ∈ XJ(ν) and P = P νe = P νe′.
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Following [2] we introduce a preorder � on compositions of n. We write λ � µ, for any
two compositions λ and µ of n, if λ′′ E µ′′ where E denotes the usual partial order of
dominance on partitions. We have a corresponding preorder � of decreasing covers of an
element w ∈ W . Now suppose that λ and µ are partitions and P and Q are decreasing
covers of w of types λ and µ, respectively. We write P � Q if λE µ.

We recall some details of the Robinson-Schensted correspondence, a bijection of the set
of elements of the symmetric group W to pairs (P ,Q), where P and Q are ν-tableaux
for some partition ν of n. See Fulton [4] and Sagan [15] for a good description of this
correspondence. We write the pair of tableaux corresponding to an element w ∈ W as
(P(w),Q(w)) and recall that Q(w) = P(w−1). We define the shape of w as the shape of
P(w), and denote it by shw. For example, for a composition λ, shwJ(λ) = λ′. We will
say that two elements w1, w2 ∈ W are shape-equivalent if shw1 = shw2 and, in this case,
we will write w1∼sh w2. The ∼sh -equivalence classes are the two-sided Kazhdan-Lusztig
cells of W , as described in [11]. (See also [6, Corollary 5.6].)

For our next result, we need the following theorem of Greene [8]. We refer the reader to
Sagan [15] for a proof.

Theorem 3.6. (see [15, Theorem 3.5.3]) Let w = [w1, w2, . . . , wn] ∈ W and let shw = ν.
Let ξ0 = 0, and for each k ≥ 1, let ξk be the maximum length of a k-decreasing subsequence
of w. Similarly, let η0 = 0, and for each k ≥ 1, let ηk be the maximum length of a k-
increasing subsequence of w. Let α and β be the compositions defined by αk = ξk − ξk−1

and βk = ηk − ηk−1 for k ≥ 1, where trailing zeros are ignored. Then α = ν ′ and β = ν.

We can now relate the type of any increasing or decreasing cover of an element of W to
its shape.

Corollary 3.7. Let w ∈ W and shw = ν. Suppose that w has a decreasing cover of
type λ and an increasing cover of type µ. Then, λE ν ′ and µE ν.

Proof. In the notation of Theorem 3.6, for each k ≥ 1,
∑k

i=1 λi ≤ ξk =
∑k

i=1 αi. Since
α = ν ′, we have λE ν ′. In a similar way we get µE ν.

In [9, 1.4.16], it is shown that the partitions of n form a lattice with respect to the
dominance order. Hence, any set of partitions of n has a supremum and an infimum. It
is clear from Theorem 3.6 that, for an element w ∈ W , the conjugate of shw dominates
the type of every decreasing cover of w and, hence, it dominates the supremum of these
types. Making use of [9, Theorem 1.4.10], we see that each neighbour of (shw)′, which
is dominated by (shw)′, fails to dominate the type of at least one decreasing cover of w.
Hence, (shw)′ is the supremum of the types of the decreasing covers of w.

Combining this result with Theorem 3.3, we obtain the following theorem.

Theorem 3.8. If w ∈ W is an involution, then shw is the conjugate of the supremum
(with respect to the usual partial order of dominance on partitions) of the types of the
symmetric decreasing covers of w.

Proof. Let w be an involution and suppose that (shw)′ = (λ1, . . . , λr). Choose k such that
1 ≤ k ≤ r. We know from Theorem 3.6 that w has a k-decreasing subsequence of length
λ1 + . . .+λk. Since λ1 + . . .+λk is the length of w’s longest k-decreasing subsequence, it
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follows from Proposition 3.3 that w has a symmetric k-decreasing subsequence of length
λ1 + . . .+λk. We can easily ‘complete’ this latter symmetric k-decreasing subsequence of
w into a symmetric cover of type (µ1, . . . , µs) for w where µ1 + . . .+µk = λ1 + . . .+λk. It
follows that each neighbour of (shw)′, which is dominated by (shw)′, fails to dominate
the type of at least one symmetric decreasing cover of w. This is enough to complete the
proof.

4 Root subsystems

In this section we study the relation between increasing and decreasing subsequences of
an element of W and certain root subsystems of a root system Φ of W .

We may take Φ = {ei − ej : 1 ≤ i, j ≤ n, i 6= j} where {e1 . . . , en} is an orthogonal basis
of an n-dimensional Euclidean space; see Chapter 3 of Carter [1]. The Coxeter generator
si corresponds to the reflection in the hyperplane orthogonal to ei − ei+1 through the
origin. The Dynkin diagram corresponding to this root system is

e1 − e2b e2 − e3b p p p en−1 − enb .

The subset Π = {ei− ei+1 : 1 ≤ i ≤ n− 1} of Φ is a simple (or fundamental) root system
for Φ; that is, it is a basis for the space generated by Φ and every element of Φ or its
negative is a linear combination of Π with non-negative integers. Thus, Φ = Φ+ ∪ Φ−,
where the set of positive roots Φ+ is the set of non-negative linear combinations of Π in
Φ and the set of negative roots Φ− is −Φ+. In our case, Φ+ = {ei − ej : 1 ≤ i < j ≤ n}.
If Σ is any simple system of roots in Φ, we write ΦΣ for the subsystem of Φ generated
by Σ. In particular, Φ = ΦΠ. We also write Φ+

Σ and Φ−Σ for the positive and negative
roots respectively in ΦΣ with respect to the simple system Σ. In particular, Φ+ = Φ+

Π and
Φ− = Φ−Π. We denote by W (ΦΣ) the Weyl group generated by the reflections associated
with the root system ΦΣ.

For any element w ∈ W (ΦΣ), we define N+
Σ (w) = {α ∈ Φ+

Σ : αw ∈ Φ−Σ} and NΣ(w) =
N+

Σ (w)∪−N+
Σ (w). We write N+(w) and N(w) for N+

Π (w) and NΠ(w) respectively. The
length of w is related to the size of N(w) in the following result; see Carter [1, Theorem
2.2.2]

Result 4.1. If w ∈ W , then 2l(w) = |N(w)|.

In the case of involutions, we have the following elementary lemma.

Lemma 4.2. If w ∈ W is an involution, then N(w)w = N(w).

Proof. Let ei − ej ∈ N(w) with i < j. Then iw > jw and (iw)w < (jw)w. So,
(ei − ej)w = eiw − ejw ∈ N(w).

Let λ be a composition of n and let Σ(λ) denote the simple system of roots in Π
corresponding to the subset J(λ) of S, the Coxeter generators of W ; that is, Σ(λ) =
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{ei − ei+1 : si ∈ J(λ)}. Then N(wJ(λ)) is just the root subsystem ΦΣ(λ) of Φ. Moreover,

|ΦΣ(λ)| =
r∑
i=1

(
λi
2

)
.

Let d ∈ XJ(λ). The set d−1J(λ)d is a system of Coxeter generators for the group
d−1WJ(λ)d corresponding to the simple system of roots Σ(λ)d which generates the root
subsystem ΦΣ(λ)d = ΦΣ(λ)d.

The following result arises from the classification of subsystems of root systems given by
Dynkin [3, Theorems 5.2 and 5.3]

Result 4.3. Any subsystem Ψ of Φ is of the form ΦΣ(λ)d for some composition λ of n
and d ∈ XJ(λ). Moreover, Ψ has the simple subsystem Σ(λ)d which is a subset of Φ+.
Also, if ΦΣ(λ)d = ΦΣ(µ)e for compositions λ and µ of n with d ∈ XJ(λ) and e ∈ XJ(µ),
then λ and µ are rearrangements of one another.

Consequently, d−1J(λ)d is a system of Coxeter generators for the subgroup W (ΦΣ(λ)d)
and d maps every root in ΦΣ(λ) ∩ Φ+ to a root in Φ+.

Example 4.4. Let n = 8 and λ = (3, 1, 4). Then J(λ) = {s1, s2, s5, s6, s7}. Let d =
[1, 2, 4, 5, 3, 6, 7, 8] ∈ XJ(λ). Then Σ(λ) = {e1 − e2, e2 − e3, e5 − e6, e6 − e7, e7 − e8} and
Σ(λ)d = {e1 − e2, e2 − e4, e3 − e6, e6 − e7, e7 − e8}.
Consider the involution z = (1, 4)(3, 8)(6, 7) = d−1wJ(λ)d ∈ W (ΦΣ(λ)d). Observe that z
maps every root in Σ(λ)d to a root in −Σ(λ)d and every root in (ΦΣ(λ)d)+ = ΦΣ(λ)d∩Φ+

to a root in (ΦΣ(λ)d)−. Consequently, z is the longest element of W (ΦΣ(λ)d) with respect
to the length function determined by its simple generating system Σ(λ)d.

Since the decreasing cover P λ = {(8, 7, 6, 5), (3, 2, 1), (4)} of wJ(λ) is symmetric and d is
a distinguished right coset representative of WJ(λ)), P

λd = {(8, 7, 6, 3), (4, 2, 1), (5)} is a
symmetric decreasing cover of d−1wJ(λ)d.

The following result, which shows that symmetric decreasing covers of an involution z
are in bijective correspondence with root subsystems Ψ of Φ such that z is the longest
element of W (Ψ) with respect to the length function determined by a simple generating
system of roots in Ψ contained in Φ+, may be easily established.

Lemma 4.5. Let z ∈ W be an involution and let d ∈ XJ(λ) where λ denotes a composi-
tion of n. Then statements (i), (ii) and (iii) are equivalent.

(i) P λd is a symmetric decreasing cover for z.
(ii) z ∈ W (ΦΣ(λ)d), ΦΣ(λ)d ⊆ N(z) and z stabilizes ΦΣ(λ)d.
(iii) z = d−1wJ(λ)d.

Let w ∈ W . It is easy to see that P λd is a decreasing cover for w if, and only if,
ΦΣ(λ)d ⊆ N(w−1). In particular, if w is an involution we see that there is a bijective
correspondence between decreasing covers of w and root subsystems contained in N(w)
since any root subsystem contains a simple system lying entirely in Φ+.

As in the case of covers, the dominance preorder � of compositions induces a preorder
on subsystems Ψ of Φ since any such subsystem is of the form ΦΣ(λ)d. Note that if λ1 and
λ2 are compositions of n and λ2 is not a rearrangement of λ1, then ΦΣ(λ2)d2 6= ΦΣ(λ1)d1 .

We illustrate these comments with some examples of realizations of an involution z as the
longest element of a Young subgroup W (Ψ), with respect to a simple generating system
for Ψ which is contained in Φ+, for various root subsystems Ψ ⊆ N(z).
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Example 4.6. Let z1 = (1, 5)(2, 6)(3, 4). Among the realizations of z1 as the longest
element of a subsystem are those given by the subsystems with the following simple
systems contained in Φ+:

(i)
e1−e5c e2−e6c e3−e4c

(ii)
e1−e3c e3−e4c e4−e5c e2−e6c

(iii)
e1−e5c e2−e3c e3−e4c e4−e6c .

Note that z1 = [5, 6, 4, 3, 1, 2] and that these simple systems correspond to the symmetric
decreasing covers {(5, 1), (6, 2), (4, 3)}, {(5, 4, 3, 1), (6, 2)} and {(6, 4, 3, 2), (5, 1)} of
z1 of shapes (2, 2, 2), (4, 2) and (4, 2), respectively. For this example, the shape (4, 2)
dominates the shapes of all the decreasing covers of z1. Hence, (2, 2, 1, 1), the conjugate
of (4, 2), is the shape of the Robinson-Schensted tableau P(z1) of z1.

Example 4.7. Let z2 = (1, 8)(2, 12)(3, 11)(4, 7)(5, 6)(9, 10). Among the realizations of
z2 as the longest element of a subsystem are those given by the subsystems with the
following simple systems contained in Φ+:

(i)
e1−e8c e2−e12c e3−e11c e4−e7c e5−e6c e9−e10c

(ii)
e1−e8c e2−e3c e3−e11c e11−e12c e4−e7c e5−e6c e9−e10c

(iii)
e1−e8c e2−e3c e3−e11c e11−e12c e4−e5c e5−e6c e6−e7c e9−e10c

(iv)
e1−e8c e2−e3c e3−e4c e4−e5c e5−e6c e6−e7c e7−e11c e11−e12c e9−e10c

(v)
e1−e4c e4−e5c e5−e6c e6−e7c e7−e8c e2−e3c e3−e9c e9−e10c e10−e11c e11−e12c

In this example, z2 = [8, 12, 11, 7, 6, 5, 4, 1, 10, 9, 3, 2] and the simple systems (i)-(v) cor-
respond to the symmetric decreasing covers {(8, 1), (12, 2), (11, 3), (7, 4), (6, 5), (10, 9)},
{(12, 11, 3, 2), (8, 1), (7, 4), (6, 5), (10, 9)} and {(12, 11, 3, 2), (7, 6, 5, 4), (8, 1), (10, 9)}
and {(12, 11, 7, 6, 5, 4, 3, 2), (8, 1), (10, 9)} and {(8, 7, 6, 5, 4, 1), (12, 11, 10, 9, 3, 2)} of z2

of shapes (2, 2, 2, 2, 2, 2), (4, 2, 2, 2, 2), (4, 4, 2, 2), (8, 2, 2) and (6, 6), respectively. The
element z2 has no descreasing cover with a shape which dominates the shapes of all its
the decreasing covers. Simple systems (iv), of shape (8,2,2), and (v), of shape (6,6), are
maximal among all simple systems contained in Φ+ corresponding to realizations of z2

as their longest element with respect to the preorder � of subsystems. Observe that
sh z2 = (22, 12), the conjugate of (8,4) which is the supremum of the shapes (8,2,2) and
(6,6). (Compare with Theorem 3.8 and Lemma 4.5.)

Remark. In the example above, observe that z2 has a decreasing cover of type (7, 4, 1),
namely {(8, 7, 6, 5, 4, 3, 2), (12, 11, 10, 9), (1)}. However, none of the symmetric decreasing
covers of z2 has shape λ with λ D (7, 4, 1). It follows that our hoped-for extension of
Proposition 3.3 to “whenever an involution w has a decreasing cover of type ν, then w
has a symmetric decreasing cover of type λ with λD ν” is not true.
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For the remainder of this section we will look at some consequences in the special case
where an involution has a dominant symmetric decreasing cover. It is easy to see that
any involution in W is conjugate to a parabolic involution, see [14] for a generalization of
this result to arbitrary Coxeter groups. In Corollary 4.10 we compare various realizations
(that satisfy an additional length restriction) of an involution as a conjugate of a parabolic
involution. First we show the following preliminary result.

Lemma 4.8. Let λ and µ be compositions of n with λ � µ. Then (i)
∣∣ΦΣ(λ)

∣∣ ≤ ∣∣ΦΣ(µ)

∣∣,
and (ii)

∣∣WJ(λ)

∣∣ ≤ ∣∣WJ(µ)

∣∣, with equality if, and only if, λ is a rearrangement of µ.

Proof. If λ is a rearrangement of µ, it is immediate that we have equality in (i) and
(ii). Now suppose that λ is not a rearrangement of µ. Then λ′′ E µ′′ and λ′′ 6= µ′′.
Using [9, Theorem 1.4.10], we see that for some k ≥ 1 there is a sequence of partitions
λ′′ = α(0) E α(1) E . . .E α(k) = µ′′ where, for each i = 1, . . . , k, there is a pair of integers
j1 and j2 > j1 such that α

(i)
j1

= α
(i−1)
j1

+ 1, α
(i)
j2

= α
(i−1)
j2
− 1, α

(i)
j = α

(i−1)
j for j 6= j1, j2,

and either j1 = j2 − 1 or α
(i−1)
j1

= α
(i−1)
j2

. Hence, l(wJ(α(i))) − l(wJ(α(i−1))) =
(α(i−1)

j1
+1

2

)
+(α(i−1)

j2
−1

2

)
−
(α(i−1)

j1
2

)
−
(α(i−1)

j2
2

)
= α

(i−1)
j1
− α(i−1)

j2
+ 1 ≥ 1. Hence, l(wJ(λ′′)) < l(wJ(µ′′)).

Also, |WJ(α(i)))|/|WJ(α(i−1)))| = (α
(i−1)
j1

+ 1)/α
(i−1)
j2

> 1. Hence, |WJ(λ′′)| < |WJ(µ′′)|.

Theorem 4.9. Let z ∈ W be an involution. Suppose that for some composition λ of n
and some element d ∈ XJ(λ), P

λd is a symmetric decreasing cover for z which dominates
all symmetric decreasing covers for z. If Ψ is a root subsystem contained in N(z) then
(i)
∣∣ΦΣ(λ)d

∣∣ ≥ |Ψ|, (ii)
∣∣W (ΦΣ(λ)d)

∣∣ =
∣∣WJ(λ)

∣∣ ≥ |W (Ψ)|. In (i) and (ii), we get equality
if, and only if, Ψ is of type λ′′.

Proof. From the hypothesis, ΦΣ(λ)d ⊆ N(z). Moreover, sh z = λ′ in view of Theorem 3.8.
Any subsystem Ψ ⊆ N(z) will be generated by a simple system Σ in Ψ ∩ Φ+, Also, Σ
gives a decreasing cover for z of type ν and ν � λ. The result now follows from Lemma
4.8.

Corollary 4.10. Let z, λ and d satisfy the hypothesis of Theorem 4.9. Suppose further
that (i) z = e−1wJ(ν)e for some composition ν of n and e ∈ W for which l(z) = 2l(e) +
l(wJ(ν)), and (ii) l(z) = 2l(d) + l(wJ(λ)). Then ν ′′ E λ′′ and, if ν ′′ 6= λ′′, then l(e) > l(d).

Proof. P νe is a decreasing cover for z of type ν ′′. From the hypothesis, λ′′ dominates the
shape of any decreasing cover of z. Hence, ν ′′Eλ′′. Since ΦΣ(λ)d and ΦΣ(ν)e are contained
in N(z), and since l(d) = 1

4

(
|N(z)| −

∣∣ΦΣ(λ)d

∣∣) and l(e) = 1
4

(
|N(z)| −

∣∣ΦΣ(ν)e

∣∣), the last
part of the corollary follows from Theorem 4.9.

Observe that the involution z in Corollary 4.10 is the longest element of the Young
subgroup d−1WJ(λ)d also with respect to the generating system Π.

5 (λ, µ)-diagrams

We define the notion of a diagram in two stages. First, let ν = (ν1, . . . , νr) be a partition.
Then, the diagram Dν associated with ν is the array of points {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤
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νi}. We refer to the elements of this array as the nodes of the diagram. In pictorial form,
the points are listed with first index indicating the row, and second index indicating the
column, on which the point occurs. The row index increases from top to bottom and
the column index from left to right. A general diagram D is obtained by permuting the
rows and columns of Dν for some ν (that is, permuting the row indices and permuting
the column indices). The i-th row of D is the set of nodes of D with index i. The j-th
column is defined similarly. If λi is the number of nodes on the i-th row of D and µj is the
number of nodes on the j-th column of D, then the compositions λ = (λ1, . . . , λr) and
µ = (µ1, . . . , µs) are such that λ′′ = ν = µ′. We refer to λ and µ as the row-composition
and the column-composition of D, respectively, and we refer to D as a (λ, µ)-diagram.
We say that D has shape (λ, µ) and write shD = (λ, µ).

Example 5.1. The diagram D = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), } is
obtained by permuting the rows and columns of D(4,3,1). We picture these diagrams
below.

× × ×
×

× × × ×

× × × ×
× × ×
×

D D(4,3,1)

The row-composition and column-composition of D are (3, 1, 4) and (1, 2, 3, 2), respec-
tively.

Generalizations of the notions of diagram and tableau associated with partitions similar
to our generalizations have already appeared in [10, §2]. Some immediate consequences
of the definition of a diagram are contained in the following lemma.

Lemma 5.2. (i) If, in a diagram D, (i1, j1) and (i2, j2) are nodes with i1 6= i2 and j1 6= j2,
then either (i1, j2) or (i2, j1) is also a node.

(ii) If λ and µ are compositions such that λ′′ = µ′, there is a unique (λ, µ)-diagram.

Proof. For part (i), let (i1, j1) and (i2, j2) be nodes in Dλ′′ with i1 < i2. If j1 > j2 then
(i2, j1) is also a node of Dλ′′ . If j1 < j2 then both (i1, j2) and (i2, j1) are also nodes of
Dλ′′ . For part (ii), it is enough to observe that any permutation of rows and columns of
a (λ, µ)-diagram resulting in Dλ′′ has the same effect on all (λ, µ)-diagrams.

A (λ, µ)-tableau is a bijection from the (λ, µ)-diagram to {1, . . . , n}. We say that a (λ, µ)-
tableau t has shape (λ, µ) and write sh t = (λ, µ). A (λ, µ)-tableau is row-standard if it
is increasing on rows, column-standard if it is increasing on columns, and standard if it
is increasing on rows and columns.

Lemma 5.3. A (λ, µ)-tableau t is standard if, and only if, for any two nodes (i1, j1) and
(i2, j2) of the corresponding diagram, i1 ≤ i2 and j1 ≤ j2 implies that ti1,j1 ≤ ti2,j2 .

Proof. Suppose that t is a standard tableau. Let (i1, j1) and (i2, j2) be nodes of the
corresponding diagram for which i1 ≤ i2 and j1 ≤ j2. By Lemma 5.2 (i), either (i1, j2)
or (i2, j1) is also a node. In the first case, we get ti1,j1 ≤ ti1,j2 ≤ ti2,j2 . In the second case,
we get ti1,j1 ≤ ti2,j1 ≤ ti2,j2 . Hence, the condition on the tableau entries holds.

Conversely, a tableau for which the condition holds is clearly both row-standard and
column-standard. Hence, it is standard.
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W acts on the set of (λ, µ)-tableaux in the obvious way; if w ∈ W , an entry i is replaced
by iw and tw denotes the tableau resulting from the action of w on the tableau t. This
action on (λ, µ)-tableaux is a natural extension of the action by letter permutations of
Dipper and James in [2, p.21].

We construct a special standard (λ, µ)-tableau tλ,µ, where tλ,µ is obtained by filling in
the (λ, µ)-diagram with 1, . . . , n by rows from top to bottom, filling each row from left
to right.

For any (λ, µ)-tableau t, we define the row reversed (λ, µ)-tableau rev(t) to be that
obtained from t by reversing the entries in its rows, and the row reflected reversal (λ, µ̇)-
tableau refrev(t) to be that obtained from rev(t) by reflecting the entire tableau rev(t)
in a vertical axis. The composition µ̇ is the composition obtained from µ by reversing its
entries.

Example 5.4. With λ and µ as in Example 5.1, let t be the (λ, µ)-tableau
1 2 4

5
3 6 7 8

.

Then rev(t) =
4 2 1

5
8 7 6 3

, refrev(t) =
1 2 4

5
3 6 7 8

The following result gives a simple combinatorial technique for identifying involutions in
the same two-sided cell as the standard parabolic involution wJ(λ′′) where λ is a com-
position of n. We already know from a theorem of Schűtzenberger [16] that involutions
in the same two-sided cell of W are conjugate. The involutions covered by Theorem 5.5
satisfy an additional length restriction which is not in general satisfied by all involutions
within a two-sided cell of W . Also note that if an involution satisfies the hypothesis of
Theorem 5.5 then it also satisfies the hypothesis of Theorem 4.9 and Corollary 4.10.

Theorem 5.5. Let t be a standard (λ, µ)-tableau for which rev(t) is column-standard.
Let d ∈ W be the element defined by tλ,µd = t and let z = d−1wJ(λ)d. Then sh z = λ′,
z ∼LR wJ(λ), and l(z) = 2l(d) + l(wJ(λ)).

Proof. Note that tz = rev(t), the rows of rev(t) give a decreasing cover of type λ′′ for
z and the columns of rev(t) give an increasing cover of type λ′ for z. By Corollary 3.7,
λ′′ E (sh z)′ and λ′ E sh z. It follows that sh z = λ′.

We now show that N(z) is the disjoint union of N(d−1), ΦΣ(λ)d and N(d−1)z. For
i = 1, . . . , n, let (a(i), b(i)) denote the position of i in the tableau t, where a(i) denotes
the row number of the position and b(i) denotes the column number, and let (a′(i), b′(i))
denote the position of i in the tableau refrev(t). By hypothesis, refrev(t) is a standard
tableau whose row-reversal is column-standard and tλ,µ̇d = refrev(t).

Let 1 ≤ i < j ≤ n. If a(i) = a(j) then id−1 < jd−1, since td−1 = tλ,µ, and id−1 and
jd−1 are on the same row of tλ,µ. Hence, eid−1 − ejd−1 ∈ ΦΣ(λ). So, ei − ej ∈ ΦΣ(λ)d.
Since jz < iz, ei − ej ∈ N(z) also. If a(i) > a(j) and b(i) < b(j) then jd−1 < id−1. So
ei − ej ∈ N(d−1). We will see later that ei − ej ∈ N(z) also in this case. If a(i) < a(j)
and b(i) < b(j) and ei − ej ∈ N(z), then a′(iz) < a′(jz) and b′(iz) > b′(jz) and jz < iz.
Hence, ejz − eiz ∈ N(d−1). So, ei − ej ∈ N(d−1)z. If a(i) < a(j) and b(i) < b(j)
and ei − ej 6∈ N(z), then a′(iz) < a′(jz) and b′(iz) > b′(jz) and iz < jz. Hence,
ejz − eiz 6∈ N(d−1). So, ei − ej 6∈ N(d−1)z. Finally, if a(i) < a(j) and b(i) ≥ b(j) then
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a′(iz) < a′(jz) and b′(iz) ≤ b′(jz). So, iz < jz and ei − ej 6∈ N(z). At this point, we
have established that N(z) is contained in ΦΣ(λ)d ∪N(d−1) ∪N(d−1)z

Suppose now that ei− ej ∈ N(d−1). Since i < j, jd−1 < id−1. Hence, jd−1 occurs on the
same row of tλ,µ as id−1 but before it, or on an earlier row. Consequently, j occurs on the
same row of t as i but before it, or on an earlier row. Since t is standard, this is possible
only if a(i) > a(j) and b(i) < b(j). By Lemma 5.2, t has an entry at one of the positions
(a(i), b(j)) or (a(j), b(i)). Suppose that it has an entry k at position (a(i), b(j)). Then
i < k and j < k. So kz < iz and rev(t) has entries jz and kz at positions (a(j), b(j)) or
(a(i), b(j)), respectively. Since rev(t) is column-standard, jz < kz. Hence, jz < iz. We
get the same result if t has an entry at position (a(j), b(i)). So, ei − ej ∈ N(z). Hence,
N(d−1) ⊆ N(z).

Since N(z)z = N(z), N(d−1)z ⊆ N(z). If ei− ej ∈ N(d−1)z, then eiz− ejz ∈ N(d−1) and
jz < iz. By an earlier argument, now applied to refrev(t) instead of t, a′(jz) > a′(iz)
and b′(jz) < b′(iz). Hence, a(j) > a(i) and b(j) > b(i).

We have now shown that N(z) contains ΦΣ(λ)d ∪N(d−1) ∪N(d−1)z and by considering
the relative positions of i and j in t for the elements ei − ej ∈ N(z), we see that the sets
ΦΣ(λ)d, N(d−1), and N(d−1)z are mutually disjoint.

From Result 4.1, 2l(z) = |N(z)|, 2l(d) = 2l(d−1) = |N(d−1)| and 2l(wJ(λ)) = |N(wJ(λ))| =
|ΦΣ(λ)|. We conclude that l(z) = 2l(d) + l(wJ(λ)).

Note that in Example 5.4, N(d−1) = {e3 − e4, e3 − e5, e4 − e3, e5 − e3} and N(d−1)z =
{e1 − e8, e5 − e8, e8 − e1, e8 − e5}.

6 Computational Results

We determined, using programs in GAP [5] and C, the involutions which are not ac-
counted for by Theorem 5.5. The partitions corresponding to cells which contain such
involutions for the cases n ≤ 12 are

n = 9: 6.3, 32.2.1.

n = 10: 7.3, 6.3.1, 4.3.2.1, 32.2.12.

n = 11: 8.3, 7.4, 7.3.1, 6.3.2, 6.3.12, 5.3.2.1, 42.2.1, 4.3.22, 4.3.2.12, 32.22.1, 32.2.13.

n = 12: 9.3, 8.4, 8.3.1, 7.4.1, 7.3.2, 7.3.12, 6.32, 6.3.2.1, 6.3.13, 5.4.2.1, 5.3.2.12, 42.22,
42.2.12, 4.3.22.1, 4.3.2.13, 33.2.1, 32.22.12, 32.2.14.

We also determined the involutions z with sh z = λ′, which cannot be written in the form
z = d−1wJ(λ)d for some composition λ with l(z) = 2l(d) + l(wJ(λ)). For each n, the total
number of such involutions is denoted by Nv,n. An investigation carried out in [12] had
already shown that Nv,n = 0 whenever n ≤ 7.

In the following table, we list the total number Nt,n of involutions for 9 ≤ n ≤ 12, the
number of involutions Nb,n not accounted for by Theorem 5.5 and the fraction Nb,n/Nt,n,
together with Nv,n and Nv,n/Nt,n.
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n Nt,n Nb,n Nb,n/Nt,n Nv,n Nv,n/Nt,n

9 2620 12 0.00458 4 0.00153
10 9496 58 0.00611 22 0.00232
11 35696 418 0.01171 142 0.00398
12 140152 2234 0.01594 870 0.00621

More detailed information in the form of tables can be obtained from any of the authors
on request. In these tables, for each n, 9 ≤ n ≤ 12 and each partition λ of n the column
entries give (i) the partition λ; (ii) the number Nt,λ of standard tableaux whose shape is
the partition λ, and this is also the number of involutions in the corresponding two-sided
cell; (iii) the number Nb,λ of involutions in the two-sided cell corresponding to λ which
are not accounted for by Theorem 5.5.
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