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Abstract

We show that the first- and second-order Reed-Muller codes, R(1,m) and
R(2,m), can be used for permutation decoding by finding, within the translation
group, (m − 1)- and (m + 1)-PD-sets for R(1,m) for m ≥ 5, 6, respectively, and
(m− 3)-PD-sets for R(2,m) for m ≥ 8. We extend the results of Seneviratne [14].

1 Introduction

The first- and second-order Reed-Muller codes, R(1,m) and R(2,m), are binary codes
with large minimum weight, being the codes of the affine geometry designs over F2 of
points and (m − 1)-flats or (m − 2)-flats, respectively, and with the minimum words
the incidence vectors of the blocks. Furthermore, they each have a large automorphism
group containing the translation group, making them good candidates for permuta-
tion decoding. Seneviratne [14] found 4-PD-sets for the first-order Reed-Muller codes
R(1,m) for m ≥ 5. We extend his method to find (m−1)-PD-sets of size 1

2(m2 +m+4)
for R(1,m) for m ≥ 5, (m+ 1)-PD-sets of size 1

6(m3 + 5m+ 12) for R(1,m) for m ≥ 6,
and (m− 3)-PD-sets of size 1

6(m3 + 5m+ 12) for R(2,m) for m ≥ 8.

We prove the following theorem.

Theorem 1 Let V = Fm2 and Ci = {v | v ∈ V,wt(v) = i} for 0 ≤ i ≤ m. Let Tu denote
the translation of V by u ∈ V ,

Am = {Tu | u ∈ C0 ∪ C1 ∪ C2 ∪ Cm}, Bm = Am ∪ {Tu | u ∈ C3},

then

1. Am is an (m− 1)-PD-set of size 1
2(m2 +m+ 4) for R(1,m) and m ≥ 5 using the

information set C0 ∪ C1;

2. Bm is an (m + 1)-PD-set of size 1
6(m3 + 5m + 12) for R(1,m) and m ≥ 6 using

the information set C0 ∪ C1;
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3. Bm is an (m − 3)-PD-set of size 1
6(m3 + 5m + 12) for R(2,m) and m ≥ 8 using

the information set C0 ∪ C1 ∪ C2.

The theorem will follow from Propositions 1, 2 and 3 in Sections 4 and 5. Before stating
and proving these propositions, we give some background results and definitions.

2 Background and terminology

Most of the notation will be as in [1], with some exceptions noted. An incidence structure
D = (P,B, I), with point set P, block set B and incidence I is a t-(v, k, λ) design, if
|P| = v, every block B ∈ B is incident with precisely k points, and every t distinct
points are together incident with precisely λ blocks. We deal here with the design of
points and t-flats, where t ≥ 1, of the affine space AGm(F2), which we will denote by
AGm,t(F2), and in particular with the case of t = m − 1 (points and hyperplanes or
(m− 1)-flats) and t = m− 2 (points and (m− 2)-flats).

For F = Fp, where p is a prime, the code CF = Cp(D) of the design D over the finite
field F is the space spanned by the incidence vectors of the blocks over F . We take F to
be a prime field Fp where p must divide the order of the design. If the incidence vector
of a subset Q of points is denoted by vQ, then CF =

〈
vB | B ∈ B

〉
, and is a subspace of

FP , the full vector space of functions from P to F .

A linear code over Fq of length n, dimension k, and minimum weight d, is denoted by
[n, k, d]q. If c is a codeword then the support of c, Supp(c), is the set of non-zero
coordinate positions of c, and the weight (or Hamming weight) of c, wt(c), is the size
of its support. A constant word in the code is a codeword all of whose non-zero
coordinate entries are equal. The all-one vector  is the constant vector with all entries
equal to 1. The value of c at the coordinate position P will be denoted by c(P ). An
automorphism of a code C is an isomorphism from C to C.

Permutation decoding was introduced by MacWilliams [10] and Prange [12] and
involves finding a set of automorphisms of a code called a PD-set. The method is
described fully in MacWilliams and Sloane [11, Chapter 15] and Huffman [4, Section 8].
The concept of PD-sets was extended to s-PD-sets for s-error-correction in [6] and [8]:

Definition 1 If C is a t-error-correcting code with information set I and check set C,
then a PD-set for C is a set S of automorphisms of C which is such that every t-set
of coordinate positions is moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set
of coordinate positions is moved by at least one member of S into C.

The efficiency of the algorithm for permutation decoding (see [4, Section 8], or [7,
Section 2]) requires that the set S is small; there is a combinatorial lower bound on its
size due to Gordon [3] and Schönheim [13] (see [4] or [7]). A partial survey of known
results concerning s-PD-sets for codes from designs and geometries can be found in [5]
or at the website:

http://www.ces.clemson.edu/~keyj/ and, in particular,
http://www.ces.clemson.edu/~keyj/Key/c2008.pdf.



3 REED-MULLER CODES 3

3 Reed-Muller codes

We use the notation of [1, Chapter 5] or [2] for generalized Reed-Muller codes. Let
q = pt, where p is a prime, and let V be the vector space Fmq of m-tuples, with standard
basis. The codes will be q-ary codes with ambient space the function space FVq , with the
usual basis of characteristic functions of the vectors of V . We can denote the elements
f of FVq by functions of the m-variables denoting the coordinates of a variable vector
in V , i.e. if x = (x1, x2, . . . , xm) ∈ V, then f ∈ FVq is given by f = f(x1, x2, . . . , xm)
and the xi take values in Fq. Since aq = a for a ∈ Fq, the polynomial functions can be
reduced modulo xqi − xi. Furthermore, every polynomial can be written uniquely as a
linear combination of the qm monomial functions

M = {xi11 x
i2
2 . . . x

im
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m}.

For any such monomial the degree ρ is the total degree, i.e. ρ =
∑m

k=1 ik and clearly
0 ≤ ρ ≤ m(q − 1).

The generalized Reed-Muller codes are defined as follows (see [1, Definition 5.4.1]):

Definition 2 Let V = Fmq be the vector space of m-tuples, for m ≥ 1, over Fq, where
q = pt and p is a prime. For any ρ such that 0 ≤ ρ ≤ m(q−1), the ρth-order general-
ized Reed-Muller code RFq

(ρ,m) is the subspace of FVq (with basis the characteristic
functions of vectors in V ) of all m-variable polynomial functions (reduced modulo xqi−xi)
of degree at most ρ. Thus

RFq
(ρ,m) = 〈xi11 x

i2
2 · · ·x

im
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m,

m∑
k=1

ik ≤ ρ〉.

These codes are thus codes of length qm and the codewords are obtained by evaluating
the m-variable polynomials in the subspace at all the points of the vector space V = Fmq .

The code RFp
((m − r)(p − 1),m) is the p-ary code of the affine geometry design

AGm,r(Fp): see [1, Theorem 5.7.9].

The Reed-Muller codes are the codes RF2
(r,m) and are usually written simply as

R(r,m), where 0 ≤ r ≤ m. The standard well-known facts concerning R(r,m) (see, for
example, [1, Theorem 5.3.3]), can be summarized as:

Result 1 For 0 ≤ r ≤ m, R(r,m) is a [2m,
(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
r

)
, 2m−r]2 binary code.

Furthermore, R(r,m) = C2(AGm,m−r(F2)) and the minimum-weight vectors are the
incidence vectors of the (m− r)-flats. The automorphism group of R(r,m) is the affine
group AGLm(F2) for 0 < r < m− 1.

For permutation decoding, the following is Proposition 1 of [7] stated for generalized
Reed-Muller codes:

Result 2 Let fν,m,q denote the dimension and dν,m,q the minimum weight of RFq(ν,m).
If s = min(b(qm − 1)/fν,m,qc, b(dν,m,q − 1)/2c), then the translation group Tm(Fq) is an
s-PD-set for RFq(ν,m).
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For the Reed-Muller codes this becomes:

Result 3 For 0 ≤ r ≤ m, the translation group Tm(F2) is an s-PD-set for R(r,m), for
s = min(b(2m − 1)/ρr,mc, 2m−r−1 − 1), where ρr,m =

(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
r

)
.

These results hold for any information set for the code. As an illustration of Result 3,
Table 1 shows the value of s for which the translation group is an s-PD-set (of size 2m)
for R(1,m) or R(2,m), and 4 ≤ m ≤ 16, using any information set.

m 4 5 6 7 8 9 10 11 12 13 14 15 16
R(1,m) 3 5 9 15 28 51 93 170 315 585 1092 2047 3855
R(2,m) 1 1 2 4 6 11 18 30 51 89 154 270 478

Table 1: Translation group as s-PD-set

We will use coding-theoretic terminology and notation for vectors in V = Fm2 ; we do
not expect that any confusion should arise with the vectors in the code R(r,m) since
we will not need to deal with the latter vectors in our search for PD-sets. Thus, using
the standard basis {e1, . . . , em} for V = Fm2 , and writing e0 for 0 ∈ V , for each v =∑m

i=1 λiei ∈ V , let wt(v) be the weight of v, i.e. the number of non-zero λi. The support
of v =

∑r
j=1 eij ∈ V will be denoted by Supp(v) = {i1, . . . , ir}. If X ⊆ {1, . . . ,m}, then

v(X) will denote the vector with support X, and if X = {i1, . . . , ir} we will write simply
v(i1, . . . , ir), for convenience. (This contrasts with notation vX for codewords described
in Section 2 above.)

Following the notation in [14], for 0 ≤ i ≤ m, let

Ci = {v | v ∈ V, wt(v) = i}. (1)

Let f = xi1 . . . xir be a monomial function of degree r. If i < r and v ∈ Ci then f(v) = 0.
Also, if i = r, v ∈ Ci and v 6= ei1 + . . .+ eir then f(v) = 0. So, it is easily seen that

Ir = C0 ∪ C1 ∪ . . . ∪ Cr (2)

is an information set for R(r,m). (Alternatively, see [7, Corollary 2].)

The translation group Tm(F2) acts on R(r,m) in the following way: for each u ∈ V ,
denote by Tu the translation of V given by Tu : v 7→ v + u. This mapping acts on
R(r,m) by f 7→ fu = f◦Tu, i.e. fu(v) = f(u+ v) for all v ∈ V .

4 s-PD-sets for R(1, m)

We now look for subsets of the translation group that will be s-PD-sets for R(1,m) for
some s. Using the notation from the previous section, let

Am = {Tu | u ∈ C0 ∪ C1 ∪ C2 ∪ Cm}. (3)

Then |Am| =
(
m+1

2

)
+ 2 = 1

2(m2 +m+ 4). We will use the information set I = I1 with
check set C = V \ I. We write e = e1 + e2 + . . .+ em for the all-one vector of V = Fm2 .
In [14], the following result is proved.
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Result 4 For m ≥ 5, Am is a 4-PD-set of size
(
m+1

2

)
+ 2 for R(1,m) with respect to

the information set I.

It is also conjectured in [14] that Am is a 5-PD-set for R(1,m). This is true for m ≥ 6
but not for m = 5. There are further results for PD-sets for punctured first-order
Reed-Muller codes for small m in [9].

We prove the following:

Proposition 1 If m ≥ 5 then Am is a (m − 1)-PD-set, but not an m-PD-set, for the
[2m,m+ 1, 2m−1]2 code R(1,m) with respect to the information set I.

Proof: Let S = {0, e1, . . . , em−3, em−2 + em−1 + em, e}. It is immediate that STu =
{u, e1 +u, . . . , em−3 +u, em−2 +em−1 +em+u, e+u} has an element of weight at most 1
if u ∈ C0 ∪C1 ∪C2 ∪Cm. Hence, Sθ 6⊆ C for all θ ∈ Am, and so Am is not an m-PD-set
for any m.

Now suppose that S is an (m− 1)-subset of V . We write Si = {v | v ∈ S, wt(v) = i} =
S ∩ Ci and li = |Si|, 0 ≤ i ≤ m. Then m− 1 =

∑m
i=0 li. For every choice of S we need

to find a translation Tu ∈ Am such that STu ⊂ C.
If lm−1 + lm = 0, then STe ⊆ C. This includes the case l1 = m− 1. If lm−1 + lm = 1 and
l1 = m− 2, then 0 6∈ S and C1 \ S1 = {ei, ej} for some i and j. In this case, STei ⊆ C.
Now, suppose that lm−1 + lm ≥ 1 and l1 ≤ m − 3. Let n = m − l1. Thus, n ≥ 3. By
relabelling the elements of the basis of V , we may suppose that C1 \ S1 = {e1, . . . , en}.
Since m ≥ 5, m − 1 ≥ l0 + l1 + l2 + l3 + lm−1 + lm ≥ m − n + 1 + l0 + l2 + l3. Hence,
l2 + l3 ≤ n− 2− l0. Note that l0 = 0 or 1.

Let [1, n] = {1, . . . , n}. For i, j ∈ [1, n] with i < j, we define: (i) ai,j to be 1 if ei+ej ∈ S
and 0 otherwise; (ii) bi,j to be the number of k with 1 ≤ k ≤ n and {i, j, k} a 3-set
for which ei + ej + ek ∈ S; (iii) ci,j to be the number of k with k > n and {i, j, k} a
3-set for which ei + ej + ek ∈ S. The sum l∗2 =

∑
1≤i<j≤n ai,j counts the number of

elements in S2 of the form ei + ej with 1 ≤ i, j ≤ n. The sum l∗∗3 = 1
3

∑
1≤i<j≤n bi,j

counts the number of elements in S3 of the form ei + ej + ek with 1 ≤ i, j, k ≤ n. The
sum

∑
1≤i<j≤n ci,j counts the number of elements in S3 of the form ei + ej + ek with

exactly two of the indices i, j, k in [1, n]. Hence, l∗3 =
∑

1≤i<j≤n
(

1
3bi,j + ci,j

)
counts the

number of elements in S3 of the form ei + ej + ek with |{i, j, k} ∩ [1, n]| ≥ 2.

Hence, writing fi,j = ai,j + 1
3bi,j + ci,j , we get∑

1≤i<j≤n
fi,j = l∗2 + l∗3 ≤ l2 + l3 ≤ n− 2− l0 (4)

Suppose that fi,j > 0 for all 2-sets i, j with 1 ≤ i < j ≤ n. Then, the left hand side of
equation (4) is at least 1

3

(
n
2

)
. Moreover, 1

3

(
n
2

)
− (n− 2) = 1

3

(
n−3

2

)
≥ 0 for n ≥ 3. Hence,

the inequalities in (4) are equalities, l0 = 0 and n = 3 or 4. Also, for every pair {i, j}
in [1, n], either ei + ej ∈ S2 or ei + ej + ek ∈ S3 for some k different from i and j.

If n = 3, then l∗2 +l∗3 = l2+l3 = 1. Hence, l∗2 = 0, l∗∗3 = 1, S2 = ∅ and S3 = {e1+e2+e3}.
But then STe3 ⊆ C.
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If n = 4, then l2 + l3 = 2. By the condition fi,j > 0 for every pair i, j in [1, 4], all six
pairs must occur in the support of vectors of weight 2 or 3. However, since at most five
pairs can occur in two vectors of weight 2 or 3, this case cannot occur.

Otherwise, we can find i, j ∈ [1, n] with i < j and fi,j = 0. Hence, ai,j = bi,j = ci,j = 0.
Let u = ei + ej . Then neither u nor any u + el, with 1 ≤ l ≤ m, l 6= i, j, is in S.
So, if v ∈ S2 ∪ S3 we get wt(v + u) ≥ 2 by the choice of u. If v ∈ Si with i ≥ 4,
wt(v + u) ≥ i − 2 ≥ 2. If v ∈ S1, we have v = ek with k > n and consequently
wt(v + u) = 3. Finally, wt(0 + u) = 2. Hence, STu ⊆ C. �

We now improve on this, but we need to increase the set of translations. Thus let

Bm = {Tu | u ∈ C0 ∪ C1 ∪ C2 ∪ C3 ∪ Cm}. (5)

Then |Bm| = 2 +m+
(
m
2

)
+
(
m
3

)
= 1

6(m3 + 5m+ 12).

Proposition 2 If m ≥ 6 then Bm is an (m+ 1)-PD-set for the [2m,m+ 1, 2m−1]2 code
R(1,m) with respect to the information set I.

Proof: Use the notation of Proposition 1. The check set C corresponding to I consists
of all vectors of weight at least 2. Here S is an (m+1)-subset of V , and m+1 =

∑m
i=0 li.

We need to show that for every choice of S, there is a translation Tu ∈ Bm such that
STu ⊂ C. As before, Si = S ∩ Ci for 0 ≤ i ≤ m.

If lm−1 + lm = 0, then STe ⊆ C. So suppose lm−1 + lm ≥ 1 . If l1 = m and S \C1 = {u}
where wt(u) ≥ m − 1, then Te1+e2+e3 will work, since m ≥ 6. If l1 = m − 1 and
C1 \ S1 = {ei} then Tei will work unless the remaining element in S is 0 or ei + ej , for
some j 6= i. In either case Tei+ek+el

, where k, l 6= j, will do.

Thus we take l1 ≤ m− 2. As in the proof of Proposition 1, let n = m− l1 where n ≥ 2.
Since m ≥ 6, m + 1 ≥ l0 + l1 + l2 + l3 + lm−1 + lm ≥ m − n + 1 + l0 + l2 + l3. Hence,
l2 + l3 ≤ n− l0 where l0 = 0 or 1.

By relabelling the elements of the basis for V , we may suppose that C1\S1 = {e1, . . . , en}.
We continue with the notation introduced in the proof of Proposition 1. We can write
S = {0, en+1, . . . , em, u1, . . . , un} or S = {en+1, . . . , em, u1, . . . , un, un+1}, according as
l0 = 1 or 0, where the first l∗2 + l∗3 of the ui’s are the elements of S2 ∪ S3 meeting [1, n]
in at least two points, the next l2 + l3− l∗2 − l∗3 of the ui’s are the remaining elements of
S2 ∪ S3, and the remaining ui’s, of which there is at least one, have weight at least 4.
Also, wt(un) ≥ m− 1 ≥ 5 or wt(un+1) ≥ m− 1 ≥ 5 according as l0 = 1 or 0.

Arguing as in the proof of Proposition 1, if fi,j > 0 for all pairs i, j ∈ [1, n], then
1
3

(
n
2

)
≤ n− 1 if l0 = 1, and 1

3

(
n
2

)
≤ n if l0 = 0. We deal with these two cases separately.

Note that fi,j > 0 implies that l2 + l3 ≥ l∗2 + l∗3 > 0.

1. l0 = 1. Then 1
3

(
n
2

)
≤ l∗2 + l∗3 ≤ l2 + l3 ≤ n− 1. In particular, 2 ≤ n ≤ 6.

The number l∗2 + l∗3 of 2-sets and 3-sets in [1, n] needed to contain all 2-sets is at
least n − 1 for n = 2 or 4 ≤ n ≤ 5, at least 1 if n = 3 and at least 6 for n = 6.
Hence, the case n = 6 cannot occur and, for n = 2, 4 and 5, l∗2 = l2, l∗3 = l3.
Moreover, for n = 4 and 5, l∗∗3 ≥ n− 2.
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For n = 2, 4 and 5, at most one of the elements u1, . . . , un−1 has a support
meeting [1, n] in 2 points. Hence, Tv(1,n+1,m) will map S into C unless n = 5 and
m = 6. In this case, each of u1, u2, u3 and u4 must have weight 3 and their
supports must lie in [1, 5]. Hence, Tv(1,2,6) will map S into C.
If n = 3, then we have u1 = e1 + e2 + e3. If possible, choose i ∈ [1, 3]\Supp(u2)
and let v = v(i, 4, 5). This will certainly be the case if wt(u2) ≤ 3. If wt(u2) = 4
and [1, 3] ⊆ Supp(u2), let v = v(1, j, k) with j, k ∈ [4,m]\Supp(u2) and j 6= k. If
wt(u2) ≥ 5, let v = v(1, 4, 5). In all cases, Tv will map S into C.

2. l0 = 0. Then 1
3

(
n
2

)
≤ l∗2 + l∗3 ≤ l2 + l3 ≤ n. In particular, 2 ≤ n ≤ 7. Also, if there

is an i ∈ [1, n] which is not in the support of any uj of weight 2 then Tei will map
S into C. So, we may suppose that every i ∈ [1, n] is in the support of some uj of
weight 2. We will refer to this as assumption (*).

As for the case l0 = 1, we see that l∗2 + l∗3 ≥ 1, 1, 3, 4 or 6 according as n = 2, 3,
4, 5 or 6. Moreover, l∗∗3 ≥ 2, 3 or 6 according as n = 4, 5 or 6. Additionally, when
n = 7 we see that l∗2 + l∗3 ≥ 7 and l∗∗3 ≥ 7.

(i) n = 2. If |Supp(u1) ∪ Supp(u2)| ≤ m − 2, let v = v(i, j, k) where j, k 6∈
Supp(u1) ∪ Supp(u2) and i 6= j and k. Otherwise, |Supp(u1) ∪ Supp(u2)| ≥
m − 1 ≥ 5. Hence, wt(u1) and wt(u2) are not both 2. By assumption (*),
u1 = e1 + e2.
If possible, choose i ∈ Supp(u1)\Supp(u2) and j, k ∈ Supp(u2)\Supp(u1)
with j 6= k, and let v = v(i, j, k). If this is not possible, then Supp(u1) ⊂
Supp(u2) and |Supp(u2)| ≥ m− 1 ≥ 5. We can then choose distinct i, j, k ∈
Supp(u2)\Supp(u1) and let v = v(i, j, k).
In all cases, Tv maps S into C.

(ii) n = 3. Suppose first that e1 + e2 + e3 = u1 ∈ S. By assumption (*),
wt(ui) = 2 and Supp(ui) ⊆ [1, 3] ∪ {j} for some j ∈ [4,m] and for i = 2 and
3. Let v = v(1, k, l), where k, l ∈ [4,m]\{j} and k 6= l.
If e1 +e2 +e3 6∈ S then l∗2 + l∗3 = 3 and u1 = e1 +e2 +δ1ej , u2 = e2 +e3 +δ2ek
and u3 = e1 + e3 + δ3el, where δi ∈ {0, 1} for i ∈ [1, 3] and j, k, l ∈ [4,m] but
not necessarily distinct. Let v = v(4, 5, 6).
In all cases, Tv maps S into C.

(iii) n = 4 or 5. We may now assume that wt(u1) = 2.
At most two of the ui, 1 ≤ i ≤ n, have supports meeting [1, n] in sets of size at
most 2. By (*), we must have n = 4, wt(u2) = 2 and Supp(u1)∪Supp(u2) =
[1, 4]. Then l∗2 + l∗3 = l2 + l3 = 4 and wt(ui) = 3 and Supp(ui) ⊆ [1, 4] for
i = 3 and 4. Let v = v(1, 4, 5). Then Tv maps S into C.

(iv) n = 6 or 7. Here l∗2 + l∗3 = n and all n elements of S2 ∪ S3 have weight 3.
This is excluded by assumption (*).

Thus there is a pair i, j for which fi,j = 0 and we can complete the proof as in Propo-
sition 1. �
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5 s-PD-sets for R(2, m)

We now adapt the method of proof of Propositions 1 and 2 to establish the following
proposition for R(2,m). Here the information set is I = I2 and the check set is
C = V \ I; the latter consists of all vectors of weight at least 3. Other notation is as in
Section 4.

Proposition 3 If m ≥ 8 then Bm is an (m−3)-PD-set for the [2m, 1+m+
(
m
2

)
, 2m−2]2

code R(2,m) with respect to the information set I2.

Proof: We first observe that Bm is not an (m − 2)-PD-set, since the (m − 2)-set S =
{e1 + e2 + e3 + e4, e5, . . . , em, e} is not mapped into C by translation with any element
of Bm.

Now let S be a set of size (m − 3) in V . As before, Si = S ∩ Ci and li = |Si|, for
0 ≤ i ≤ m. Thus m − 3 =

∑m
i=0 li. We let n = m − l1 and arrange the notation so

that C1\S1 = {e1, . . . , en}. We have to show that there is an element v ∈ Bm so that
STv ⊆ C.
If lm−2 + lm−1 + lm = 0, then we may take v = e. For the rest of the proof, we
assume that lm−2 + lm−1 + lm ≥ 1. If l1 = m − 4, then l0 = 0 and we may take
v = e1 + e2. Thus, we may assume that l1 ≤ m − 5, that is, n ≥ 5. Since m ≥ 8,
m− 3 ≥ l0 + l1 + l2 + l3 + l4 + l5 + lm−2 + lm−1 + lm ≥ m− n+ 1 + l0 + l2 + l3 + l4 + l5.
Hence, l2 + l3 + l4 + l5 ≤ n− 4− l0.

We now define a collection of functions defined on the triples {i, j, k} of [1, n]. To
simplify notation we will suppose that 1 ≤ i < j < k ≤ n. Then (i) ai,j,k is the
number of pairs {i′, j′} with v(i′, j′) ∈ S2 and i′, j′ ∈ {i, j, k}; (ii) b(p)i,j,k is the number
of triples {i′, j′, k′} ⊆ [1,m] with v(i′, j′, k′) ∈ S3 and |{i′, j′, k′} ∩ {i, j, k}| = p =
|{i′, j′, k′}∩ [1, n]|, for p = 2 and 3; (iii) c(p)i,j,k is the number of quadruples {i′, j′, k′, l′} ⊆
[1,m] with v(i′, j′, k′, l′) ∈ S4, {i, j, k} ⊆ {i′, j′, k′, l′} and |{i′, j′, k′, l′} ∩ [1, n]| = p,
for p = 3 or 4; (iv) d(p)

i,j,k is the number of quintuples {i′, j′, k′, l′,m′} ⊆ [1,m] with
v(i′, j′, k′, l′,m′) ∈ S5, {i, j, k} ⊆ {i′, j′, k′, l′,m′} and |{i′, j′, k′, l′,m′} ∩ [1, n]| = p, for
p = 3, 4 or 5.

If l′2 is the number of pairs {i′, j′} ⊆ [1, n] with v(i′, j′) ∈ S2, then
∑

1≤i<j<k≤n ai,j,k =
l′2(n− 2).

Clearly,
∑

1≤i<j<k≤n b
(3)
i,j,k is the number l′3 of elements of S3 with support in [1, n]. If

l′′3 denotes the number of elements of S3 whose support meets [1, n] in a set of size 2,
then

∑
1≤i<j<k≤n b

(2)
i,j,k = l′′3(n− 2).

If l′4 and l′′4 denote the numbers of elements of S4 whose support meets [1, n] in sets of
size 3 and 4, respectively, then

∑
1≤i<j<k≤n c

(3)
i,j,k = l′4 and

∑
1≤i<j<k≤n c

(4)
i,j,k = 4l′′4 .

If l′5, l′′5 and l′′′5 denote the numbers of elements of S5 whose support meets [1, n] in sets
of size 3, 4 and 5, respectively, then

∑
1≤i<j<k≤n d

(3)
i,j,k = l′5,

∑
1≤i<j<k≤n d

(4)
i,j,k = 4l′′5 .

and
∑

1≤i<j<k≤n d
(5)
i,j,k = 10l′′′5 .
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For each triple i, j, k with 1 ≤ i < j < k ≤ n, define

fi,j,k = 1
n−2ai,j,k + 1

n−2b
(2)
i,j,k + b

(3)
i,j,k + c

(3)
i,j,k + 1

4c
(4)
i,j,k + d

(3)
i,j,k + 1

4d
(4)
i,j,k + 1

10d
(5)
i,j,k.

Since l′2 ≤ l2, l′3 + l′′3 ≤ l3, l′4 + l′′4 ≤ l4 and l′5 + l′′5 + l′′′5 ≤ l5,∑
1≤i<j<k≤n

fi,j,k ≤ l2 + l3 + l4 + l5 ≤ n− 4− l0 (6)

We will show that there is a triple i, j, k with 1 ≤ i < j < k ≤ n such that fi,j,k = 0, or
find an element v ∈ Bm with STv ∈ C. Suppose that fi,j,k > 0 for all triples i, j, k with
1 ≤ i < j < k ≤ n. Then, the left hand side of equation (6) is at least 1

10

(
n
3

)
if n < 12

and at least 1
n−2

(
n
3

)
if n ≥ 12. Since 1

n−2

(
n
3

)
= n(n−1)

6 > n− 4 if n ≥ 12, we must have
n < 12. Also, 1

10

(
n
3

)
> n− 4 if 7 ≤ n ≤ 11. So we must have n = 5 or 6.

If n = 5 or 6, 1
10

(
n
3

)
= n− 4 so that l0 = 0 and all terms in the definition of fi,j,k are 0

with the exception of 1
10d

(5)
i,j,k which is 1

10 . Then d
(5)
i,j,k = 1 for every triple i, j, k in [1, n]

implies that l5 ≥ 1 if n = 5 and l5 ≥ 4 if n = 6, since every triple in [1, n] is in the
support of an element of S5. The latter is impossible since l5 ≤ n − 4 − l0 = 2. When
n = 5, for each triple i, j, k with 1 ≤ i < j < k ≤ n, ai,j,k = 0, b(p)i,j,k = 0 if p = 2 and 3,

and c
(p)
i,j,k = 0 if p = 3 and 4. Thus no element of S2 has support in [1, n], no element

of S3 has a support meeting [1, n] in more than one point and no element of S4 has a
support meeting [1, n] in more than two points. Since l4 ≤ n − 4 − l5 we have l4 = 0.
We may choose v = v(1, 2) and then STv ∈ C.
It remains to deal with those cases in which there is a triple i, j, k with 1 ≤ i < j < k ≤ n
such that fi,j,k = 0. For such a triple, (i) it contains the support of no element of S2,
(ii) it does not meet the support of any element of S3 in more than one point, and (iii)
it does not meet the support of any element of S4 ∪S5 in more than two points. Hence,
if we set v = v(i, j, k) then STv ∈ C. This completes the proof. �

Note: We cannot take m = 7 in Proposition 3 since the set S = {0, e1, e2, e3 + e4 + e5 +
e6 + e7} cannot be moved into C by B7.
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