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Abstract

In a recent paper, Pawale [22] investigated quasi-symmetric 2-(v, k, λ) designs
with intersection numbers x > 0 and y = x+ 2 with λ > 1 and showed that under
these conditions either λ = x + 1 or λ = x + 2, or D is a design with parameters
given in the form of an explicit table, or the complement of one of these designs.
In this paper, quasi-symmetric designs with y−x = 3 are investigated. It is shown
that such a design or its complement has parameter set which is one of finitely
many which are listed explicitly or λ ≤ x + 4 or 0 ≤ x ≤ 1 or the pair (λ, x) is
one of (7, 2), (8, 2), (9, 2), (10, 2), (8, 3), (9, 3), (9, 4) and (10, 5). It is also shown
that there are no triangle-free quasi-symmetric designs with positive intersection
numbers x and y with y = x+ 3.

1 Introduction

Let D be a 2-(v, k, λ) design. Here as usual, v denotes the number of points of D, k

the block size and λ the number of occurrences of pairs of points in the blocks of D.
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Then each point occurs in a constant number r of blocks of D. If b denotes the number

of blocks of D, then the parameters (v, k, λ, r, b) satisfy the basic relations bk = vr,

λ(v − 1) = r(k − 1), and Fisher’s inequality b ≥ v.

For general notation and concepts in design theory, we refer to Beth, Jungnickel, and

Lenz [2] or Hughes and Piper [7]. A design with v = b (equivalently r = k) is known

as a symmetric 2-(v, k, λ)-design. The intersection numbers of 2-(v, k, λ)-design are the

cardinalities of the intersection of any two distinct blocks. It is well known that a 2-

(v, k, λ)-design is symmetric if and only if D has exactly one intersection number (=λ).

Let x and y be non-negative integers with x ≤ y < k. A design D is called quasi-

symmetric with intersection numbers x and y if any two distinct blocks of D intersect

in x or y points and both intersection numbers are realized. We refer to Shrikhande and

Sane [26] as a basic reference on quasi-symmetric designs. A quasi-symmetric design is

called proper if x 6= y and improper otherwise. Clearly symmetric designs are improper

quasi-symmetric designs and any 2-(v, k, 1) design with b > v is a proper quasi-symmetric

design with x = 0 and y = 1. Thus linear spaces, that is 2-(v, k, 1) designs, give examples

of proper and improper quasi-symmetric designs.

A 2-(v, k, λ) design is called resolvable if its blocks can be partitioned in subsets called

parallel classes such that each parallel class partitions the point set. A partition of

the blocks is called a parallelism with blocks in the same class being parallel. Two

distinct parallel blocks are disjoint. If further, any two blocks from different parallel

classes intersect in a constant number y (say) of points, the design is called affine. Affine

designs are thus quasi-symmetric with x = 0 and y.

Examples of quasi-symmetric designs which are not symmetric, or affine designs, or lin-

ear spaces are rather rare, so construction methods of quasi-symmetric designs are of

interest. The problem of classifying quasi-symmetric 2-designs, even for the case x = 0

appears to be a difficult open problem. As a consequence, one approach in the study of

such designs has been to put additional parametric or structural restrictions. Baartmans

and Shrikhande [1]; Limaye, Sane, and Shrikhande [11]; Mavron and Shrikhande [13]

; Cameron [6]; Sane and Shrikhande [24]; McDonough and Mavron [16]; Mavron, Mc-

Donough and Shrikhande [14] are some papers where additional structural conditions are

imposed. Pawale [21] studies quasi-symmetric 2-designs satisfying a parametric condition

of the form y − x has a fixed value.

In a recent preprint, Pawale [22] obtained a parametric classification of proper quasi-

symmetric 2-designs with y−x = 2, with x > 0 and λ > 1. It is shown in [22] that if D is

a quasi-symmetric 2-design with these conditions, then either λ = x+ 1 or λ = x+ 2, or

D is a design with parameters given in the form of an explicit table, or the complement

of one of these designs.

Suppose now that y = x+ 3 in a proper quasi-symmetric 2-design. The following are the
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currently known examples of such designs: The affine 2 − (27, 9, 4) designs considered

by Lam and Tonchev [10] with x = 0 and y = 3; the geometric 2-(121, 13, 13) design

D = PG2(4, 3) of points and planes of the projective space PG(4, 3), with x = 1 and

y = 4; a non-geometric 2-(121, 13, 13) design with x = 1, y = 4 given in Jungnickel and

Tonchev [8], which is a special case of an infinite class of quasi-symmetric designs with

x = 1, y = q + 1, where q is a prime power, with parameters the same as those of the

geometric design PGd(2d, q); a class of quasi-symmetric 2-(66, 30, 29) designs with x = 12

and y = 15 and a class of quasi-symmetric 2-(78, 36, 30) designs with x = 15 and y = 18

constructed by Bracken, McGuire and Ward [3]. See also McDonough, Mavron and Ward

[17] for an alternative description of quasi-symmetric designs with these parameters.

In this paper, we investigate quasi-symmetric 2-designs with y−x = 3, with a goal towards

obtaining parametric classification of such designs. Calculation was greatly facilitated by

the computer algebra system Maxima [15]. Section 2 contains preliminary results needed.

The main results, which are to be found in Section 3 and Section 4, are the following:

Theorem 3.1. Let D be a proper quasi-symmetric design with standard parameters

and let y = x+ 3. If x ≥ 31, then λ ≤ x+ 14.

Theorem 3.2. Let D be a proper quasi-symmetric design with standard parameters

and let y = x+ 3. If x ≥ 28 and λ ≥ x+ 5, then

k + 1 ≤ r <
9

2
+
λ(2k2(x+ 1)− x(x+ 3))

2(k − 1)x(x+ 3)
.

Theorem 3.3. Let D be a proper quasi-symmetric design with standard parameters

and let y = x+ 3. Then either λ ≤ x+ 4 or x ≤ 30 or the set of parameters of D is one

of the six listed in Table 1.

Theorem 3.4. Let D be a proper quasi-symmetric design with standard parameters

with 2 ≤ x ≤ 30 and y = x + 3. Then the set of parameters of D is one of the 43 sets

listed on Tables 3 and 4 or (λ, x) is one of the “exceptional” pairs (7, 2), (8, 2), (9, 2),

(10, 2), (8, 3), (9, 3), (9, 4) and (10, 5).

Theorem 4.6. There are no proper triangle-free quasi-symmetric designs with non-zero

intersection numbers x and y with y = x+ 3.

2 Preliminaries

Throughout this paper, we consider a proper quasi-symmetric design with standard pa-

rameters (v, k, λ, r, b, x, y, a). This means that v is the number of points, b is the number

of blocks, k is the number of points on a block, r is the number of blocks on a point, λ is

the number of blocks on a pair of points, λ > 1, x and y are the sizes of intersections of
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pairs of blocks, each of x and y occurs as the size of a block intersection, 0 ≤ x < y < k

and a is the number of blocks intersecting a given block in a set of size y. The com-

plementary design of a quasi-symmetric design with parameters (v, k, λ, r, b, x, y, a) is a

quasi-symmetric design with parameters (v, v−k, b−2r+λ, b−r, b, v−2k+x, v−2k+y, a).

Consequently, either a design or its complement will have a block size which is no more

than half of the size of the set of points. We may also refer, more briefly, to the quintuple

(v, k, λ, r, b) as the set of design parameters. It will be convenient to assume that 2k ≤ v.

Lemma 2.1. Let D be a proper quasi-symmetric design with standard parameters. Then

(i) vr = bk, (ii) (v−1)λ = (k−1)r, (iii) ay+(b−1−a)x = k(r−1), (iv) ay(y−1)+(b−
1−a)x(x−1) = k(k−1)(λ−1), (v) (b−1)xy−k(r−1)(x+y−1) +k(k−1)(λ−1) = 0,

(vi) (k − 1)r2 + λr − bkλ = 0, (vii) y − x is a factor of k − x and r − λ.

Proof. (vi) (k − 1)r2 = (v − 1)λr = vrλ− λr = bkλ− λr. The remaining parts are well

known and their proofs can be found in [26].

Using Lemma 2.1 (iii), (iv) and (v), we get the following lemma.

Lemma 2.2. Let D be a proper quasi-symmetric design with standard parameters. Then

a =
k((k − 1)(λ− 1)− (r − 1)(x− 1))

y(y − x)
, b − 1 =

k((r − 1)(x+ y − 1)− (k − 1)(λ− 1))

xy

and b − 1 − a =
k((r − 1)(y − 1)− (k − 1)(λ− 1))

x(y − x)
if x > 0 and a =

k(r − 1)

y
if x = 0.

Moreover, a < b− 1.

Lemma 2.3. Let D be a proper quasi-symmetric design with standard parameters. Then

(i) b > v, (ii) r > k, (iii) if λ > 1 then x < k2/v < λ, (iv) 2x < k, (v) if k ≥ 4 then

b ≤ v(v − 1)/2, (vi) if k ≥ 4 then λ ≤ k(k − 1)/2.

Proof. (iii) From Lemma 2.1 (iii), a = (k(r − 1)− x(b− 1))/(y − x). Since λ ≥ 2, y ≥ 2

and a ≥ 1. Hence, k(r − 1) > x(b − 1). So, x < k(r − 1)/(b − 1) < kr/b = k2r/bk =

k2r/vr = k2/v. Since r > k, λ(v − 1) = r(k− 1) ≥ k2 − 1. Hence, λv ≥ k2 − 1 + λ > k2,

as λ ≥ 2.

(iv) Since v ≥ 2k, k/v ≤ 1/2. From (iii), x < k/2.

(v) Since y < k, there are no repeated blocks. Now apply [26, Theorem 3.16].

(vi) From (v), br ≤ vr(v−1)/2 = bk(v−1)/2 = bk(k−1)r/2λ. Hence, λ ≤ k(k−1)/2.

Lemma 2.4. Let D be a proper quasi-symmetric design with standard parameters. Then

a1r
2 + b1r + c1 = 0, where a1 = (k − 1)xy, b1 = λ(xy − k2(x + y − 1)), and c1 =

λk(k2(λ− 1) + k(x+ y − λ)− xy).
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Proof. From Lemma 2.1 (vi), (k−1)r2+λr−bkλ = 0. Hence, (k−1)xyr2+λxyr−bxykλ =

0. From Lemma 2.1 (v), bxy = xy + k(r− 1)(x+ y− 1)− k(k− 1)(λ− 1). Substituting,

we get (k− 1)xyr2 + λxyr− (xy + k(r− 1)(x+ y − 1)− k(k− 1)(λ− 1))kλ = 0. Hence,

(k− 1)xyr2 + (xy− k2(x+ y− 1))λr− (xy− k(x+ y− 1)− k(k− 1)(λ− 1))kλ = 0. Since

k(x+ y − 1) = k(x+ y − λ) + k(λ− 1), the result follows.

Calderbank [4, 5] has developed some very useful necessary conditions for the existence

of a quasi-symmetric design on its parameters. We list three of these in the following

theorems.

Theorem 2.5 (Calderbank [5, Theorem 2]). Let D be a proper quasi-symmetric design

with standard parameters. Then (a) k(v−k)(k(v−k)−1)+(v−2)(v−1)(k−x)(k−y)−
k(v−2)(v−k)(2k−x−y) ≥ 0 and (b) k(v−6)(v−3)(v−k)(2k−x−y)2−2k(v−3)(v−
k)(2k(v−k)−3v)(2k−x−y)+(6−v)(v−3)(v−1)(k−x)(k−y)(2k−x−y)+k(v−k)(5v+

3k(v−k)(k(v−k)−2(v−1))−3)+(v−3)(k(v−k)(3v+2)−6(v−1)v)(k−x)(k−y) ≥ 0.

Theorem 2.6 (Calderbank [4, Theorems 1 and 2]). Let D be a proper quasi-symmetric

design with standard parameters. Let s1, . . . , sl be the distinct intersection sizes of pairs

of blocks. Let p be a prime. Suppose that s1 ≡ . . . ≡ sl ≡ s (mod p).

If p = 2 then either

(a) r ≡ λ (mod 4), or

(b) s ≡ 0 (mod 2), k ≡ 0 (mod 4) and v ≡ ±1 (mod 8), or

(c) s ≡ 1 (mod 2), k ≡ v (mod 4) and v ≡ ±1 (mod 8).

If p > 2 then either

(a) r ≡ λ (mod p2), or

(b) v ≡ 0 (mod 2), v ≡ k ≡ s ≡ 0 (mod p) and (−1)v/2 is a square (mod p),

or

(c) v ≡ 1 (mod 2), v ≡ k ≡ s 6≡ 0 (mod p) and (−1)(v−1)/2s is a square

(mod p), or

(d) r ≡ λ ≡ 0 (mod p) and either

(i) v ≡ 0 (mod 2) and v ≡ k ≡ s 6≡ 0 (mod p), or

(ii) v ≡ 0 (mod 2), k ≡ s ≡ 0 (mod p) and vs is a square (mod p), or

(iii) v ≡ 1 (mod 2p), r ≡ 0 (mod p2) and k ≡ s 6≡ 0 (mod p), or

(iv) v ≡ p (mod 2p), r ≡ 0 (mod p2) and k ≡ s ≡ 0 (mod p), or

(v) v ≡ 1 (mod 2), k ≡ s ≡ 0 (mod p) and v is not a square (mod p), or

(vi) v ≡ 1 (mod 2), k ≡ s ≡ 0 (mod p) and v and (−1)(v−1)/2 are squares

(mod p).
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3 Difference 3

From Lemma 2.3, λ ≥ x+ 1 and k ≥ 2x+ 1.

From Lemma 2.4, r =
−b1 ±

√
b21 − 4a1c1

2a1

. So, r ≤ −b1 +
√
b21 − 4a1c1

2a1

. Moreover, the

discriminant ∆ = b21 − 4a1c1 must be a perfect square. Letting y = x+ 3 and λ = x+ p,

we get ∆ as a polynomial function of k, x and p, with degree 4 in k. We will show that

if x and p are sufficiently large then ∆ is negative; so, a lower bound on x will imply an

upper bound on p. We will also show that if x and p are sufficiently large and then r is

suitably bounded above.

Theorem 3.1. Let D be a proper quasi-symmetric design with standard parameters and

let y = x+ 3. If x ≥ 31 then λ ≤ x+ 14.

Proof. In this case, ∆ = λ(λF (k, x) + G(k, x)), where F (k, x) = 4k4(1 − x) + 8k3x(x +

3)− 4k2x(x+ 2)(x+ 3) + x2(x+ 3)2 and G(k, x) = 4k(k − 1)(k − x)(k − x− 3)x(x+ 3).

Throughout the proof we assume that x ≥ 31. We will show that if λ ≥ x + 15 then

∆ < 0.

Let F (i)(k, x) =
∂iF (k, x)

∂ki
. Then F (4)(k, x) = 96(1 − x) < 0 since x ≥ 31. Hence,

F (3)(k, x) is decreasing as k increases.

We write x = 31 + ζ. Then F (3)(2x + 1, x) = −48(ζ + 29)(3ζ + 94) < 0 for ζ ≥ 0. So

F (3)(k, x) < 0 for k ≥ 2x+ 1. Noting that

F (2)(2x+ 1, x) = −8(13ζ3 + 1172ζ2 + 35155ζ + 350790),

F (1)(2x+ 1, x) = −8(2ζ + 63)(3ζ3 + 263ζ2 + 7648ζ + 73716),

F (2x+ 1, x) = −16ζ5 − 2351ζ4 − 137570ζ3 − 4004595ζ2 − 57943436ζ − 333047132,

and repeatedly applying the preceding argument, we get F (k, x) < 0 for k ≥ 2x + 1.

Hence, for x ≥ 31 and k ≥ 2x + 1, λF (k, x) + G(k, x) decreases as λ increases. We will

show that λF (k, x) + G(k, x) < 0 when λ = x + 15, and hence λF (k, x) + G(k, x) < 0

when λ ≥ x+ 15.

We now consider the case in which λ = x+ 15. Let H(k, x) = (x+ 15)F (k, x) +G(k, x).

Denoting partial derivatives with respect to k as before, we find H(4)(k, x) = −96(11x−
15) < 0 when x ≥ 2.

H(3)(2x+ 1, x) = −48(31ζ2 + 1845ζ + 27374).

H(2)(2x+ 1, x) = −24(40ζ3 + 3527ζ2 + 103205ζ + 1001518).

H(1)(2x+ 1, x) = −4(89ζ4 + 10118ζ3 + 426789ζ2 + 7895932ζ + 53861572).

H(2x+ 1, x) = −71ζ5 − 8940ζ4 − 423367ζ3 − 8975086ζ2 − 73364052ζ − 38146184.
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So, for ζ ≥ 0, we get H(3)(2x + 1, x) < 0, H(2)(2x + 1, x) < 0, H(1)(2x + 1, x) < 0

and H(2x + 1, x) < 0. By an argument used earlier, H(k, x) ≤ H(2x + 1, x) < 0 for

all k ≥ 2x + 1. Thus, when x ≥ 31 and λ ≥ x + 15, ∆ < 0. Since this is impossible,

λ < x+ 15 when x ≥ 31.

We should mention that the above theorem is a particular case for y = x+ 3 of a general

result of Pawale [21], with an improved upper bound. Theorem 3.1 of [21] states: Let D
be a proper quasi-symmetric design with standard parameter set (v, b, r, k, λ;x, y) with

v ≥ 2k and z = y − x. If x ≥ 1 + z + z3, then x < λ < x+ 1 + z + z3.

Theorem 3.2. Let D be a proper quasi-symmetric design with standard parameters and

let y = x+ 3. If x ≥ 28 and λ ≥ x+ 5, then

k + 1 ≤ r <
9

2
+
λ(2k2(x+ 1)− x(x+ 3))

2(k − 1)x(x+ 3)

Proof. We consider the function K(k, x, λ) = ∆ − 81x2(x + 3)2(k − 1)2. We denote

derivatives as in Theorem 3.1. Then K(4)(k, x, λ) = −96λ((λ−x− 5)(x− 1) +x− 5) < 0

when x ≥ 6 and λ ≥ x+ 5; so K(3)(k, x, λ) is decreasing as k increases.

We will now compute K(i)(2x+ 1, x, λ) for i = 0, . . . , 3 and we will observe that they are

all negative. Thus K(i)(2x+ 1, x, λ) < 0 for all k ≥ 2x+ 1 when x ≥ 28 and λ ≥ x+ 5.

Replacing x by 28 + ζ and λ by 33 + η + ζ, we get

K(3)(2x+ 1, x, λ) = −48(ζ + η + 33)(3ηζ2 + ζ2 + 163ηζ + 29ζ + 2210η + 18),

K(2)(2x+ 1, x, λ) = −2((52η+41)ζ4 +(52η2 +5896η+4042)ζ3 +(4220η2 +248960η+

142625)ζ2 + (113896η2 + 4639172η + 2077284)ζ + (1022088η2 +

32178816η + 9874440)),

K(1)(2x+ 1, x, λ) = −4((12η+50)ζ5 +(12η2 +1651η+6993)ζ4 +(1286η2 +90136η+

389924)ζ3 + (51508η2 + 2438663η + 10832761)ζ2 + (913446η2 +

32656642η + 149910052)ζ + (6048612η2 + 172866976η +

826437372)),

K(2x+ 1, x, λ) = −((16η + 235)ζ6 + (16η2 + 2550η + 40204)ζ5 + (2111η2 +

167226η+ 2863058)ζ4 + (110798η2 + 5759930η+ 108632296)ζ3 +

(2889099η2 + 109460478η + 2316204943)ζ2 + (37382828η2 +

1081543056η+ 26312182500)ζ + (191730332η2 + 4297903416η+

124418231964)).

We have established that ∆ < (9x(x + 3)(k − 1))2 when x ≥ 28 and λ ≥ x + 5. From

Lemma 2.4, r = (−b1 ±
√

∆)/2a1 ≤ (−b1 +
√

∆)/2a1 < (−b1 + 9x(x + 3)(k − 1))/2a1.

Since a1 = (k − 1)x(x+ 3) and b1 = λ(x(x+ 3)− 2k2(x+ 1)), r < 9/2 + λ(2k2(x+ 1)−
x(x+ 3))/(2(k − 1)x(x+ 3)).
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Theorem 3.3. Let D be a proper quasi-symmetric design with standard parameters and

let y = x + 3. Then either λ ≤ x + 4 or x ≤ 30 or the set of parameters of D is one of

the six listed in Table 1.

Proof. Assume that x ≥ 31 and λ ≥ x+ 5. By Theorem 3.1, λ ≤ x+ 14.

∆ = λL(k, x, λ) where L(k, x, λ) = λF (k, x) + G(k, x) and F (k, x) and G(k, x) are as

in the proof of Theorem 3.1. Then L(k, x, λ) = 4k4(x(x + 3) + λ(1 − x)) + 8k3x(x +

3)(λ − x − 2) − 4k2x(x + 3)(λ(x + 2) − x2 − 5x − 3) − 4kx2(x + 3)2 + λx2(x + 3)2. So,

L(4)(k, x, λ) = 96(x(x+ 3) + λ(1− x)) < 0 since λ ≥ x+ 5 and x ≥ 31.

We now write x = 31 + ζ and λ = 36 + η + ζ, where ζ ≥ 0 and 0 ≤ η ≤ 9. Then

L(3)(8x− 17, x, λ) = −48((15η + 13)ζ2 + (877η + 683)ζ + 2(6403η + 4425)),

L(2)(8x− 17, x, λ) = −8((337η+242)ζ3 +(29288η+18841)ζ2 +(847963η+481289)ζ+

6(1363153η + 669085)),

L(1)(8x− 17, x, λ) = −4((1680η + 929)ζ4 + 2(96871η + 46743)ζ3 + (8375014η +

3439997)ζ2 + 20(8041770η + 2714417)ζ + 20(57889062η +

15214505)),

L(8x− 17, x, λ) = −((12544η+ 4639)ζ5 + (1802687η+ 540598)ζ4 + 5(20717722η+

4731103)ζ3 + (2975229843η+ 461640976)ζ2 + 260(164275123η+

13174991)ζ + 100(2451743279η + 8302524)).

Thus L(k, x, λ) < 0 for all k ≥ 8x− 17. Consequently, ∆ < 0 and there is no design with

k ≥ 8x− 17, λ ≥ x+ 5 and x ≥ 31.

We must now consider 2x+ 1 ≤ k ≤ 8x− 18. Let M(k, x, η) = (x+ 5 + η)(2k2(x+ 1)−
x(x+ 3))− 2(k− 1)x(x+ 3)(k+ 25 + 9η). Hence M (2)(k, x, η) = 4(ηx+ 3x+ η+ 5) > 0.

Writing x = 31+ζ, we get M(2x+1, x, η) = −(73+28η)ζ3−(7019+2697η)ζ2−(224682+

86483η)ζ−2394616−923302η and M(8x−18, x, η) = −(1+16η)ζ3− (1427+2027η)ζ2−
(83800 + 78451η)ζ−1253004−960042η. Hence, M(k, x, η) < 0 for 2x+ 1 ≤ k ≤ 8x−18.

That is,
(x+ 5 + η)(2k2(x+ 1)− x(x+ 3))

2(k − 1)x(x+ 3)
< k + 25 + 9η. Combining this with the

inequality in Theorem 3.2, we get k + 1 ≤ r ≤ k + 29 + 9η.

Write r = k + t. Then 1 ≤ t ≤ 29 + 9η. From Lemma 2.1 (vi), k is a factor of

r(λ − r). Hence, k is a factor of t(x + 5 + η − t). Write s = t(x + 5 + η − t)/k. Since

x+ 5 + η − t ≥ x− 24− 8η ≥ x− 24 > 0, x+ 5 + η − t ≤ x+ 14 < 2x and k ≥ 2x+ 1,

1 ≤ s < t. Note also that 3 is a factor of r − k − λ+ x = t− η − 5

Substituting k = t(x + 5 + η − t)/s, r = k + t, λ = x + 5 + η and y = x + 3 into

the quadratic equation for r in Lemma 2.4, we get a polynomial equation in x whose

coefficients involve η, s and t. We examine each of these for η = 0, . . . , 9, t = 1, . . . , 29+9η

and s = 1, . . . , t− 1, and find six cases in which there is an integer solution x ≥ 31 with

8



x v k λ r b η t s

36 253 99 42 108 276 1 9 3

39 1065 210 44 224 1136 0 14 2

45 231 105 52 115 253 2 10 4

45 441 144 52 160 490 2 16 4

51 301 126 60 144 344 4 18 6

57 246 120 68 140 287 6 20 8

Table 1: parameters of the six possible exceptional designs in Theorem 3.3

t− η − 1 divisible by 3 and such that the resulting values of v, k, λ, r and b are positive

integers and the Calderbank criteria (Theorems 2.5 and 2.6) are satisfied. These are

listed in Table 1.

We now consider the cases 2 ≤ x ≤ 30.

Theorem 3.4. Let D be a proper quasi-symmetric design with standard parameters with

2 ≤ x ≤ 30 and y = x + 3. Then the set of parameters of D is one of the 43 sets listed

on Tables 3 and 4 or (λ, x) is one of the “exceptional” pairs (7, 2), (8, 2), (9, 2), (10, 2),

(8, 3), (9, 3), (9, 4) and (10, 5).

Proof. Recall from the proof of Theorem 3.1 that ∆ = λ(λF (k, x) + G(k, x)), where

F (k, x) = 4k4(1 − x) + 8k3x(x + 3) − 4k2x(x + 2)(x + 3) + x2(x + 3)2 and G(k, x) =

4k(k−1)(k−x)(k−x−3)x(x+3). Clearly G(k, x) > 0 when k > x+3. As the coefficient

of k4 in F (k, x) is negative, there is some integer kx such that F (k, x) < 0 when k ≥ kx.

For any k ≥ kx, λF (k, x) + G(k, x) is a decreasing function of λ. Hence we can find an

integer λx such that ∆ < 0 when k ≥ kx and λ ≥ λx. Hence, we must have either k < kx

or λ < λx.

Writing x = 2 + ζ and k = 5x + 8 + ξ, we get F (k, x) = −4(ζ + 1)ξ4 − 8(9ζ2 + 39ζ +

26)ξ3 − 4(121ζ3 + 923ζ2 + 2006ζ + 904)ξ2 − 16(5ζ + 18)(18ζ3 + 131ζ2 + 259ζ + 74)ξ −
(1600ζ5 + 22519ζ4 + 118922ζ3 + 279691ζ2 + 248980ζ + 5084) and G(k, x) = 4(ζ + 2)(ζ +

5)(ξ4 + 2(9ζ + 32)ξ3 + (121ζ2 + 861ζ + 1529)ξ2 + (360ζ3 + 3845ζ2 + 13663ζ + 16154)ξ +

4(ζ + 4)(4ζ + 13)(5ζ + 17)(5ζ + 18)). Hence, we may take kx = 5x+ 8.

Writing λ = x+500+η, we get ∆ = −4(ηζ+496ζ+η+492)ξ4−8(9ηζ2 +4462ζ2 +39ηζ+

19290ζ+ 26η+ 12732)ξ3−4(121ηζ3 + 59957ζ3 + 923ηζ2 + 456586ζ2 + 2006ηζ+ 988603ζ+

904η+438518)ξ2−4(360ηζ4 +178271ζ4 +3916ηζ3 +1936266ζ3 +14612ηζ2 +7205107ζ2 +

20128ηζ+9859876ζ+5328η+2513116)ξ−(1600ηζ5+791719ζ5+22519ηζ4+11126276ζ4+

118922ηζ3 + 58611863ζ3 + 279691ηζ2 + 137170342ζ2 + 248980ηζ + 120335060ζ + 5084η+
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x λx kx x λx kx x λx kx x λx kx x λx kx

2 501 18 3 86 16 4 1081 15 5 148 16 6 117 17

7 116 18 8 128 19 9 149 20 10 184 21 11 81 23

12 59 25 13 50 27 14 45 29 15 43 31 16 41 33

17 40 35 18 40 37 19 40 39 20 40 41 21 40 43

22 40 45 23 41 47 24 41 49 25 42 51 26 43 53

27 43 55 28 44 57 29 45 59 30 46 61

Table 2: smaller values for λx and kx in Theorem 3.4

x v k λ r b
2 71 14 39 210 1065
3 39 12 22 76 247
3 45 15 42 132 396
3 55 15 63 243 891

x v k λ r b
3 57 15 30 120 456
3 60 15 14 59 236
6 33 15 35 80 176

Table 3: parameters of the possible designs in Theorem 3.4 with k ≤ kx.

6248). So, we may take λx = x + 500. In most cases, we can find smaller values for λx

and kx than are given by these general formulas. Table 2 contains such smaller values

for λx and kx.

We now consider all values of k satisfying k ≥ 2x+1, k ≥ x+4 and k ≤ kx and all values of

λ satisfying λ ≥ x+1, λ ≤ k(k−1)/2 and λ ≤ −G(k, x)/F (k, x), if F (k, x) < 0. For each

such choice we determine ∆ and, if it is a perfect square, determine the two corresponding

rational numbers
−b1 ±

√
∆

2a1

which are possible values for r. Corresponding value for v

and b are then determined. There are ten such parameter sets meeting all the basic

integrality requirements, v ≥ 2k and the Calderbank requirements. Of these ten, three

satisfy the equation b = v(v − 1)/2. From [26, Theorems 3.16 and 9.5], there are no

designs corresponding to these parameter sets. The remaining eight parameter sets are

listed in Table 3.

Next, we take a fixed x satisfying 2 ≤ x ≤ 30 and a fixed λ satisfying x + 5 ≤ λ ≤ λx.

We show that for most such pairs (λ, x) we can put an upper bound on the value of k for

which a design exists. Again, we do this by showing that ∆ < 0 for sufficiently large k.

In this case, λF (k, x) + G(k, x) = −4((λ − x − 4)(x − 1) − 4)k4 + 8x(x + 3)(λ − x −
2)k3 − 4x(x + 3)((x + 2)(λ − x − 5) + (2x + 7))k2 − 4x2(x + 3)2k + λx2(x + 3)2. If

(λ− x− 4)(x− 1) > 4 then we can find kλ,x such that λF (k, x) +G(k, x) < 0, and hence

∆ < 0, when k ≥ kλ,x. We now consider the pairs (λ, x) for which (λ− x− 4)(x− 1) > 4

and 2 ≤ x ≤ 30; in detail, these are λ = x+ 5 and x ≥ 6, λ = x+ 6 and x ≥ 5, λ = x+ 7

10



x v k λ r b
2 101 20 19 100 505
2 110 20 38 218 1199
2 115 20 54 324 1863
2 116 20 57 345 2001
2 125 20 57 372 2325
2 134 20 30 210 1407
2 161 23 33 240 1680
3 63 18 17 62 217
3 69 18 30 120 460
3 72 18 34 142 568
3 91 21 18 81 351
3 101 21 21 105 505
3 111 21 14 77 407
3 144 27 12 66 352
4 43 16 40 112 301
4 46 16 72 216 621
4 49 16 45 144 441
5 56 20 19 55 154

x v k λ r b
5 65 20 19 64 208
6 42 18 51 123 287
6 45 18 34 88 220
6 57 21 25 70 190
6 61 21 21 63 183
6 171 36 14 68 323
8 41 20 57 120 246
9 42 21 60 123 246
9 177 45 15 60 236
12 66 30 29 65 143
12 77 33 24 57 133
12 99 36 20 56 154
12 144 45 20 65 208
12 155 45 18 63 217
12 1065 120 17 152 1349
15 78 36 30 66 143
15 405 81 20 101 505
28 325 100 33 108 351

Table 4: parameters of the possible designs in Theorem 3.4 with k ≤ kλ,x,

excluding Table 3 entries.

and x ≥ 4, λ = x+ 8 and x ≥ 3, λ ≥ x+ 9 and x ≥ 2. For each such pair we determine

a suitable kλ,x. The following choices for kλ,x are appropriate: kx+5,x = 6x + 309 when

x ≥ 6, kx+6,x = 4x + 109 when x ≥ 4, kx+7,x = 3x + 81 when x ≥ 3, kx+8,x = 3x + 44

when x ≥ 3, and kλ,x = 3x + 133 when x ≥ 2 and x + 9 ≤ λ ≤ λx. For each such pair

(λ, x), we determine all possible parameter sets with 2x + 1 ≤ k ≤ kλ,x meeting all the

basic integrality requirements, v ≥ 2k and the Calderbank requirements. There are 39

such sets, excluding those that have appeared already in Table 3. Three of these fail

since some parameters of the corresponding strongly regular graph are not integers. The

remaining 36 are listed in Table 4.

The pairs (λ, x), where 2 ≤ x ≤ 30 and λ satisfying x + 5 ≤ λ ≤ λx, which failed the

inequality (λ − x − 4)(x − 1) > 4 are (λ, x) = (7, 2), (8, 2), (9, 2), (10, 2), (8, 3), (9, 3),

(9, 4) and (10, 5).

We are unable to determine if the number of standard parameter sets corresponding to the

exceptional pairs in Theorem 3.4 is finite, although computational investigations suggest

that such sets are rare. For (8, 2) and (9, 4), we found parameter sets which passed all

our tests; namely, (1001, 65, 8, 125, 1925) with x = 2 and (4642, 154, 9, 273, 8229) with

x = 4.

Similarly, computations for each of the four cases λ = x+ 1, . . . , λ = x+ 4, with x ≥ 0,

suggest that the number of standard parameter sets is rare, but we have been unable to
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show that this number is finite in any of these cases. In each case, we found at least one

standard parameter set which passed all our tests.

We end with an observation concerning certain quasi-symmetric designs whose inter-

section numbers are 0 and 3. Lam and Tonchev [10] classified all affine 2 − (27, 9, 4)

designs. We show below that their result classifies all quasi-symmetric designs with these

parameters. We need the following theorem of Majumdar [12].

Theorem 3.5 (Majumdar). Let A and B be distinct blocks of a 2-(v, k, λ) design D of

order n = r−λ. Then |A∩B| ≥ k−n. Moreover, if |A∩B| = k−n, then for any block

C of D, other than A or B, |C ∩ A| = |C ∩B|.

Proposition 3.6. Let D be a quasi-symmetric 2−(27, 9, 4)design. Then x = 0 and y = 3

and D is an affine resolvable design.

Proof. The parameters of D are v = 27, b = 39, r = 13, k = 9, λ = 4. Using Lemma 2.3,

part (iii), x < 92/27 = 3. So x = 0, 1, or 2. From Lemma 2.1, part(v), we get 19xy −
54(x+ y) + 162 = 0. Hence, y = 3, 108/35 or 27/8 according as x = 0, 1 or 2.

So D has intersection numbers x = 0 and y = 3. From Lemma 2.1, part (iii), a = 36.

That is, each block of D meets 36 blocks in 3 points. Since r = 13 = k + λ, if A and

B are disjoint blocks Majumdar’s Theorem 3.5 implies that every other block is either

disjoint from both A and B or meets each of A and B in 3 points. Simple counting

arguments show that (i) given any two disjoint blocks A and B, there is a unique block

disjoint from A and B and (ii) any point not on a given block A lies on a unique block

B which is disjoint from A. It follows that D is resolvable and in fact affine.

4 Triangle-free quasi-symmetric designs

In this last section, some results on triangle-free quasi-symmetric designs are given. This

is a topic which is of current interest. In a recent preprint, Klin and Woldar[9] remark

in their paper “A further hope is that our text will help to promote future investigations

of such extremely rare objects as primitive strongly regular graphs with no triangles”.

Recall that a strongly regular graph Γ is primitive, if both Γ and its complement Γ

are connected. Both the block graph of a quasi-symmetric design and the complement

of this graph are strongly regular. So quasi-symmetric designs whose block graph and

its complement are connected give rise to primitive strongly regular graphs. So earlier

papers, such as [1], [25], [18], [11], [19], [20], [21], [22], and [23] may be viewed under this

wider umbrella.

Pawale [21], proved the following result:
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Theorem 4.1. Let D be a proper quasi-symmetric with parameters (v, b, r, k, λ;x, y) with

x 6= 0 and z = y − x = 1. Then D is a design with parameters in (1), (2) as follows or

D is a complement of one of the designs in (1).

(1): v = (m+ 1)(m+ 2)/2, b = (m+ 2)(m+ 3)/2, r = m+ 3, k = m+ 1, λ = 2,

x = 1, y = 2, and m = 2, 3, . . ..

(2): v = 5, b = 10, r = 6, k = 3, λ = 3, and x = 1, y = 2.

Note that designs in (1) are residuals of biplanes and the design in (2) is an embeddable

trivial design.

Triangle free quasi-symmetric designs (i.e. those for which the block graph has no trian-

gles, or equivalently the design has no three distinct blocks such that any two of them

intersect in x points), with x = 0 were first studied by Baartmans and Shrikhande [1],

and then by Limaye, Sane, and Shrikhande [11]. Shrikhande [25] and Pawale [20] in-

vestigated triangle-free quasi-symmetric designs with x ≥ 1. In [25, Lemma 2.5] it was

asserted that for such quasi-symmetric designs λ satisfies a quadratic equation of the

form Aλ2 + Bλ + C = 0, where A,B, and C are certain polynomial functions in k with

coefficients involving x and y. Using this lemma, it was concluded in [25, Theorem 2.9]

that if y is larger than a certain function of x for such quasi-symmetric designs then there

are only finitely many such designs. However, the expressions for A, B, and C had some

errors, which were corrected by Pawale in [20, Lemma 3.1] where he obtained a stronger

result than that claimed in [25, Theorem 2.9].

Lemma 4.2 ([20, Lemma 3.1]). Let D be a triangle-free quasi-symmetric design with

standard parameter set (v, b, r, k, λ;x, y). Then Aλ2 +Bλ+ C = 0, where

A = k
(
k3y − x2(x2 − xy + y2) + k(x3 + 2x2y − xy2 + y3) + k2(x3 − y2(1 + y)

+xy(−1 + 3y)− x2(1 + 3y))
)
;

B = −2k4y2 + x3y(−2x+ y)− k2(2x4 − 5xy3 − x3(1 + y) + y3(1 + y)

+3x2y(1 + 3y)) + kx(−4x2y2 + 3xy2(1 + y)− y3(1 + y) + x3(1 + 4y))

+k3y(−2x3 + x2(3 + 6y) + x(−1 + 3y − 6y2) + 2(y + y3));

C = (−1 + k)(k − y)y(−2x2 + ky + xy)2.

Theorem 4.3 ([20, Theorem 3.2]). For a fixed positive integer y, there exist only finitely

many quasi-symmetric triangle-free designs with the larger intersection number y.

Meyerowitz, Sane, and Shrikhande[18] investigated quasi-symmetric designs using MAC-

SYMA.

Triangle-free quasi-symmetric 3-designs are completely classified in Pawale [19]:
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Theorem 4.4. Let D be a quasi-symmetric 3-design with intersection numbers x and y

(0 ≤ x < y < k). Then D is triangle-free if and only if D is a Hadamard 3-design or D
has parameter set (v, k, λ), where v = (λ + 2)(λ2 + 4λ + 2) + 1 and k = λ2 + 3λ + 2, or

D is a complement of one of these designs.

Pawale [20] characterized triangle-free quasi-symmetric 2-designs with x 6= 0 and k =

2y − x as being a trivial design with v = 5 and k = 3. He also showed that triangle-free

quasi-symmetric designs with λ = y, or λ = y − 1 do not exist.

Pawale also remarks that there is strong reason to believe that triangle-free quasi-

symmetric designs with x 6= 0 do not exist. In support of this belief, Pawale in [21],

proves that triangle-free quasi-symmetric designs with y− x = 2 do not exist and estab-

lished the following bound when y − x = z ≥ 1.

Theorem 4.5 ([21, Theorem 4.1]). Let D be a triangle-free quasi-symmetric design with

standard parameter set (v, b, r, k, λ;x, y) and v ≥ 2k. Let z = y − x. Then x ≤ z + z2.

Theorem 4.6. There are no proper triangle-free quasi-symmetric designs with non-zero

intersection numbers x and y with y = x+ 3.

Proof. Let D be a triangle-free quasi-symmetric design with standard parameter set

(v, b, r, k, λ;x, x + 3). We may assume v ≥ 2k. By Lemma 2.3(iv), k > 2x. By Theo-

rem 4.5, x ≤ 12.

By Lemma 4.2, λ is a solution of the quadratic Aλ2 + Bλ + C = 0, where A, B and

C are as described in that lemma. Since A, B and C are integers, the discriminant

D0 = B2 − 4AC is the square of an integer. However, D0 = DE2 where

D = −k5(12x+ 36) + k4(37x2 + 120x+ 468)− k3(40x3 + 144x2 + 90x+ 432)

+k2(18x4 + 72x3 − 54x2 − 324x+ 81)− k(4x5 + 12x4 − 18x3 − 108x2 − 162x)

+x6 − 18x4 + 81x2

and E = x2 + 2kx+ 6k.

When k = x+ 11 + ζ, D = −(12x+ 36)ζ5 − (23x2 + 720x+ 1512)ζ4 − (12x3 + 1036x2 +

15378x + 23400)ζ3 − (396x3 + 15006x2 + 146094x + 153567)ζ2 − (2844x3 + 78352x2 +

586350x + 298782)ζ − 12x2(12 − x)(27x + 325) − (41195x2 + 631686(x − 1) + 142725)

and this is clearly negative when 1 ≤ x ≤ 12 and ζ ≥ 0. Recall that k > y = x + 3.

The remaining cases 1 ≤ x ≤ 12, max(2x + 1, x + 4) ≤ k ≤ x + 10 are now examined

one by one. In a few cases D < 0, e.g. D = −187964 when (x, k) = (4, 14). In most

cases D is a non-square positive integer, e.g.
√
D = 168

√
22 when (x, k) = (3, 7). In the

remaining cases (x, k) = (1, 7), (1, 8), (2, 8), (3, 13), (4, 10) and (5, 11), the roots of the

quadratic equation Aλ2 +Bλ+C = 0 are {−25/11, 48/7}, {578/83,−4}, {35/4,−7/2},
{624/37, 63/4}, {−121/23, 63/5}, and {−169/29, 160/11}, respectively. Consequently, D
does not exist.
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