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Abstract

We find explicit PD-sets for partial permutation decoding of the gener-
alized Reed-Muller codes Ry, (2(p — 1),3) from the affine geometry designs
AG3,1(Fp) of points and lines in dimension 3 over the prime field of order p,
using the information sets found in [8].
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1 Introduction

In [7] we found s-PD-sets (see Definition 1) for s = 2 and 3 for partial permutation
decoding for the p-ary codes of affine planes of prime order p; this was extended to
projective planes. Since PD-sets are dependent on specific information sets for the
codes, we were able to deal with the plane case by using information sets deduced
from the bases found by Moorhouse [12]. Using new information sets found in [8],
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we extended these results to the codes from the designs of points and hyperplanes
of affine and projective geometries of prime order, obtaining 2-PD-sets. We now
use these information sets to find s-PD-sets for s = 2 and 3 for the p-ary codes of
the affine geometry designs AGs 1 (F,) of points and lines in 3-dimensional affine
space AG3(F,) over the field F,. We prove the following theorem:

Theorem 1 Let D be the 2-(p®,p,1) design AGs:1(F,) of points and lines in the
affine space AG3(IF,), where p is a prime, and let C = Ry, (2(p—1),3) be the p-ary
code of D. Then C' is a [p?, %p(5p2 +1),pl, code with information set

3
T = {(ir,iz,i3) | ix €Fp, 1<k <3, > ip <2(p—1)}. (1)
k=1

Let T be the translation group of AGs(Fy), let D be the group of invertible diagonal
3 x 3 matrices, and let Z be the group of scalar matrices. For each d € F, with
d # 0, let pu(d) be the associated dilatation. Corresponding to the information set
T, the code C has a 2-PD-set of the form T UTu(d) of size 2p® for p > 5 and for
some d € Fy, and the group TD is a 3-PD-set for C of size p(p—1)3 forp>T1.
(In fact, for the 2-PD-set, we can choose d = (p —1)/2.)

It should be noted that, when elements of F,, occur in an inequality, they are being
treated as integers in the interval [0,p — 1].

The proof of the theorem will follow in Section 3, after a section on some basic
results, definitions and background. In Section 4 we obtain a new 3-PD-set for the
p-ary code AGy1(F,) of points and lines in the affine plane AG>(F)) over the field
F,.

2 Background

An incidence structure D = (P, B,Z), with point set P, block set B and incidence
T is a t-(v, k, A) design, if |P| = v, every block B € B is incident with precisely
k points, and every t distinct points are together incident with precisely A blocks.
The code C,,(D) of D over the finite field IF,,, is the space spanned by the incidence
vectors of the blocks over F,, and is thus a subspace of ]FZ:, the full vector space of
functions from P to F,,.

The notation [n, k,d], will denote a linear code C of length n, dimension k, and
minimum weight d, over the field F,. A generator matrix for the code is a k x n
matrix made up of a basis for C. The dual code C* is the orthogonal subspace
under the standard inner product (,), i.e. C*+ = {v € FI'|(v,¢) = 0 for all ¢ € C}.
A check matrix for C is a generator matrix H for C; the syndrome of a vector
yelFyis H yT'. Two linear codes of the same length and over the same field are
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isomorphic if they can be obtained from one another by permuting the coordinate
positions. (See Huffman [6] for related, more general, concepts of isomorphisms of
codes.) Any linear code is isomorphic to a code with generator matrix in so-called
standard form, i.e. the form [I}, | A]; a check matrix then is given by [~AT | I,,_4].
The first k& coordinates are the information symbols (or set) and denoted by
Z, and the last n — k coordinates are the check symbols, denoted by C. An
automorphism of a code C is an isomorphism from C to C. The automorphism
group will be denoted by Aut(C).

For any finite field I, of order g, the set of points and r-dimensional subspaces
of an m-dimensional projective geometry forms a 2-design which we will denote
by PG, »(Fq). Similarly, the set of points and r-dimensional flats of an m-
dimensional affine geometry forms a 2-design, AGmn,,»(Fq). The automorphism
groups of these designs (and codes) are the full projective or affine semi-linear
groups, PI'L,4+1(F,) or AI'L,,(F,), and are always 2-transitive on points. If ¢ = p®
where p is a prime, the codes of these designs are over I, and are subfield subcodes
of the generalized Reed-Muller codes: see [1, Chapter 5] for a full treatment. The
dimension and minimum weight is known in each case: see [1, Theorem 5.7.9].

Permutation decoding was first developed by MacWilliams [10] and involves
finding a set of automorphisms of a code called a PD-set. The method is described
fully in MacWilliams and Sloane [11, Chapter 15] and Huffman [6, Section 8]. We
extend the concept of PD-sets to s-PD-sets for s-error-correction in [7], as in the
following definition. This coincides with the use of the term s-PD-set in Kroll and
Vincenti [9].

Definition 1 If C is a t-error-correcting code with information set I and check
set C, then a PD-set for C' is a set S of automorphisms of C' which is such that
every t-set of coordinate positions is moved by at least one member of S into C.

For s <t an s-PD-set is a set S of automorphisms of C which is such that every
s-set of coordinate positions is moved by at least one member of S into C.

That a PD-set will fully use the error-correction potential of the code follows easily
and is proved in Huffman [6, Theorem 8.1], and that an s-PD-set will correct s
errors follows in a similar manner. The algorithm for permutation decoding is given
in [6, 11] or see [7]. Such sets might not exist at all, and the property of having a
PD-set will not, in general, be invariant under isomorphism of codes, i.e. it depends
on the choice of Z and C. Furthermore, there is a bound on the minimum size of S
(see [5],[13], or [6]). This bound can be adapted to one for s-PD-sets by replacing
in the formula for the bound, the variable ¢, that denotes full error-correction, by
s < t for correction of s errors.

To obtain PD-sets, a generator matrix for the code needs to be in standard form,
and thus the question of what points to take as information symbols arises.

We use the notation of [1, Chapter 5] or [2] for generalized Reed-Muller codes: (see
[1, Definition 5.4.1]):
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Definition 2 Let V = FJ" be the vector space of m-tuples, for m > 1, over I,
where ¢ = p' and p is a prime. For any p such that 0 < p < m(q—1), the pt-order
generalized Reed-Muller code Ry, (p,m) is the subspace of F} (with basis the
characteristic functions of vectors in V) of all m-variable polynomial functions
(reduced modulo x! — x;) of degree at most p. Thus

m
Ry, (p,m) = (z{a - alr |0<iy <qg—1, for L<k <m, sz < p).
k=1

These codes are thus codes of length ¢ and the codewords are obtained by eval-

uating the m-variable polynomials in the subspace at all the points of the vector
space V = F".

The code Ry, ((m — 1)(p — 1),m) is the p-ary code of the affine geometry design
AG,,1(Fp) of points and lines in affine space AG,,(F,): see [1, Theorem 5.7.9].
Here we take m = 3, in which case Ry, (2(p — 1),3) is a [p®, p(5p® + 1), pp, code
over IF,,.

The information set we will be using was found in [8, Theorem 1,Corollary 2]:

Result 1 If p is a prime, the code Ry, (v, m) has information set

T ={(i1,...im) | ix €Fp, 1<k <m, > ig < v} (2)
k=1

3 Proof of theorem

Before proving the theorem, we establish some notation. We will use 7 with an
appropriate argument to denote translations in F, and AG3(F,). Thus, 7(w) :
v— v+ w If w= (w,ws,ws), where w1, ws, w3 € F,,, we will also write 7(w) as
T(w1, w2, ws). For di,ds, ds € F,\{0}, let 6(d1) denote the mapping vy +— dyvq, for
vy € F), and let §(dy,dz,ds) denote the mapping (vi,ve,vs) — (dyv1,dave, d3vs),
for v1,v9,v3 € Fp.

We begin the proof of Theorem 1 by establishing that there is a 2-PD-set of the
stated form. Let C denote the check set of C' corresponding to the information set

Z, where
3

T = {(ir,ip,i3) | ix €Fp, 1<k <3, Y i <2(p— 1)}
k=1
as in Equation (1). Let P’ and Q" be two points. By a translation 7/, we can take
Q' to @ =(0,0,0) and P’ to P = (a,b,c).
Ifa,b<(p—3)/2,let w=(p—1—a,p—1—b,e) where e = p—1 or p—2 according
as ¢ # 1 or ¢ = 1. Clearly, Pr(w) = (p — 1,p—1,c+¢e) € C as ¢+ e # 0. Also,
p—1l—a+p—1—-b>p+1lande>p—2. So, Qr(w) eC.
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Ifa,b > (p+3)/2,let w=(p—1,p—1,e) where e = p—1—cor p—2— c according
asc#p—1orc=p—1. Then, Qr(w) = (p—1,p—1,e) € C as e # 0. Since
Pr(w)=(a—1,b—1,c+e)anda+b—2>p+1land c+e>p—2, Pr(w) €C.
Ifa<(p-3)/2,b> (p—1)/2,and c= (p—1)/2,let w = (p—1—a,p—1,(p—1)/2).
Clearly, Q7(w) € C. Also, Pr(w)=(p—-1,b—1,p—1) €C.
Ifa<(p+1)/2,b>(p+3)/2,andc=(p+1)/2,letw=(p—1—a,p—1,p—1).
Clearly, Q7(w) € C. Also, Pr(w) = (p—1,b—1,(p—1)/2). Since b—1 > (p+1)/2,
Pr(w) €C.

Ifa>((p+5/2andb=c=(p—-1)/2let w=(p—1,p—1,p+ 2 — a). Clearly,
Q7(w) € C. Also, Pr(w) =(a—1,(p—3)/2,3(p+1)/2 —a) €C.
Ifa<(p—5)/2andb=c=(p+1)/2let w=((p+3)/2,(p—3)/2,p—1). Clearly,
Q7(w) € C. Also, P1(w) = (a+(p+3)/2,p—1, (p—1)/2). Since (p+3)/2 < a < p—1,
Pr(w) €C.

These arguments can be applied to any permutation of the coordinates. So, in these
cases, we can find a translation 7”7 so that P'7'7”,Q'7'7" € C. Hence, the only cases
that remain are when at least two of a, b and ¢ are in {(p —1)/2,(p + 1)/2} and,
if there is a remaining one, it is in {(p — 3)/2, (p + 3)/2}.

If p > 7, then none of 2a, 2b and 2¢ are in {(p —3)/2,(p —1)/2,(p +1)/2,(p +
3)/2}. The preceding arguments show the existence of a translation 7 for which
P'r'5(2)r" and Q'7'6(2)7" arein C. If p =5 or p = 7, we can apply the same argu-
ment to a(p—1)/2, b(p—1)/2, and ¢(p—1)/2, even though the sets {a(p—1)/2,b(p—
1)/2,c(p—1)/2} and {(p—3)/2, (p—1)/2, (p+1)/2, (p+3)/2} overlap. Hence, in these
cases, there is a translation 7" for which P'7'6((p — 1)/2)7",Q'7'6((p — 1)/2)7" €
C.

Since the translations form a normal subgroup of the automorphism group of
AG3(F,), we can write 7/6(d)7"” = 76(d), for some translation 7. Hence, we have
shown that T'UTd(d) is a 2-PD-set for C with d chosen as in the preceding para-
graph. In fact, we could take d = (p — 1)/2 in all cases; the details are straightfor-
ward but would lengthen the proof. This completes the proof of the first part of
the theorem.

Next, we show that T'D, the group generated by T and D, where D = {6(d;, d2,d3) |
dy,d2,ds € F,\{0}}, is a 3-PD-set for C.

A translation can take any three points to the triple X = (0,0,0), P = (a,b,¢), Q =
(d, e, f) where not all of a, b, ¢, d, e, f are 0 and (a, b, c) # (d, e, f). A point (a, b, c) is
in the check set C if, and only if, a+b+c > 2p—1. The theme of the proof is to show
that, by a non-zero multiplication and an addition on each coordinate position, the
three entries (either [0, a,d], [0,b,¢€] or [0,c¢, f]) in that position can be moved to
three elements of IF,, corresponding to integers in the interval [(2p — 1)/3,p — 1].
If, in the i-th coordinate position, the multiplication is by d; and the addition is
wj, then this mapping as effected by an element §(dy,ds, ds)7(wy, ws,ws) of DT
(= T'D) necessarily maps the triple X, P and @ into C.
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This approach needs to be modified for p = 13 and fails to work for p = 7. In
the case p = 7, we have checked the result with simple computer programs using
Magma [3] and GAP [4].

We deal first with some easy cases. If all three entries are 0, then 7(p — 1) has the
desired effect; that is, 7(p—1) acting on the entries maps [0, 0, 0] to [p—1,p—1,p—1].
If two entries are 0 and one is nonzero, say [0,0,d], then §(d~!)7(p — 2) has the
desired effect. Thus, we need only consider triples with one 0 and two nonzero
elements. These may be mapped, by a suitable nonzero multiplication, to [0, 1, g],
where 1 < g<p-1.

We now subdivide the proof into two cases, according as p = 1 (mod 6) or p =5
(mod 6). We write p = 6m + 1 in the former case and p = 6m + 5 in the latter.
Note that m > 1 in both cases, since p > 7.

Case 1: p = 6m + 1. In this case, (2p — 1)/3 < 4m + 1. Since we do not consider
p =T here, m > 2.

F1<g<2m-—1,[0,1,g9]7(4m+1)=[dm+1,4m +2,4m+1+g] and 4m + 1 <
dm+14g<6m.If4m+3 < g<6m,0,1,g]7(6m —1) =[6m —1,6m,g— 2] and
dm+1<g—-2<6m—2.

If 2m + 2 < g < 3m, [0,1,g]0(2)7(6m — 2) = [6m — 2,6m,2g — 3] and 4m + 1 <
2g—3 < 6m—3.If3m+1 < g < 4m, [0,1,¢]6(2)7(4dm+1) = [dm+1,4m+3,2g—2m]
and 4m + 2 < 2g — 2m < 6m.

This leaves just four values of g to consider, viz. ¢ = 2m,2m + 1,4m + 1,4m + 2.
Noting that 4m + 4 < 6m, for g = 2m + 1, [0,1,¢]6(3)7(4m + 1) = [4m + 1,4m +
4,4m + 3] and for g = 4m + 1, [0,1,9]6(3)7(4m + 1) = [4m + 1,4m + 4,4m + 2].
For the other two values of g, we require 6m — 4 > 4m + 1; that is, m > 3, i.e.
p>19.If g = 2m, [0,1,4]0(3)7(6m — 3) = [6m — 3,6m,6m — 4]. If g = 4m + 2,
[0,1,9]6(3)7(6m —4) = [6m — 4,6m — 1,6m].

We now deal with the last two values of g when p = 13 (m = 2). For g = 4, note that
[0,1,4]7(8) = [8,9,12], [0,1,4]6(9)7(12) = [12,8,9] and [0, 1,4]5(3)7(8) = [9, 12, 8].
For any coordinate column of this type, we can choose a mapping in which one of
the entries is 8 (= 4m) while the others are > 4m + 1. Moreover, the 4m entry
can be made to appear in the image of any one of our triple of points X, P and
Q. Similarly, for g = 10, [0, 1, 10]6(3)7(8) = [8, 11, 12], [0, 1, 10]6(12)7(9) = [9, 8, 12]
and [0,1,10]7(11) = [11, 12, 8§].

We can thus arrange that the image of each of the points X, P and @ has at most
one entry equal to 4m while the others are > 4m + 1. Hence, these images lie in C.
This completes the proof of Case 1.

Case 2: p = 6m + 5. In this case, (2p —1)/3 =4m + 3 and m > 1.
fF1<g<2m+1,[0,1,9]7(4m+3) =[4dm+3,4m +4,4m + 3 + g] and 4m + 3 <

dm+3+g < 6m+4. If dm+5 < g < 6m+4, [0, 1, g]7(6m+3) = [6m+3, 6m+4, g—2]
anddm+3<g—2<6m+ 2.
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If2m+3 < g <3m+2,0,1,¢]62)7(6m + 2) = [6m + 2,6m + 4,29 — 3] and
dm+3<29-3<6m+1.13m+3<g<4m+3,[0,1,¢9]6(2)7(4dm + 3) =
[4m+3,4m +5,29g —2m — 2] and dm +4 <29 — 2m — 2 < 6m + 4.
This leaves just two values of g to consider. If g = 2m + 2, [0,1, g]6(3)7(4m + 3) =
[Am~+3,4m+6,4m+4]. If g = 4m+4, [0, 1, g]d(3)7(4m+3) = [4m+3, 4m+6, 4m~+5].
This completes the proof of Case 2 and the proof of the theorem.

We illustrate the method of proof for the 3-PD-sets with an example for p =
19 = 6m + 1 where m = 3 and 4m + 1 = 13. Suppose our three points have
been mapped by a translation 7/ to the points (0,0,0), (2,11,5), (3,10,7). For
the first coordinate triple [0, 2, 3], the map 6(10) takes this to the standard form
[0,1,11] and the map §(2)7(13) takes this to the triple to [13, 15, 16]. For the second
coordinate triple [0, 11, 10], the map 6(7) takes it to [0, 1, 13] and the map 6(3)7(13)
to this to the triple [13,16, 14]. For the third coordinate triple [0,5,7], the map
5(4) takes this to [0,1,9] and the map 6(2)7(16) to this to the triple [16, 18, 15].
Note that 6(10)§(2) = 6(1), §(7)6(3) = 6(2) and §(4)6(2) = 6(8). Thus, the the
element 7/6(1,2,8)7(13,13,16) of T'D will take our original three points to the
points (13,13,16),(15, 16, 18),(16, 14, 15), all of which are in the check set C.

Note: These codes have high rate > .83. The worst-case time-complexity for the
decoding algorithm using an s-PD-set of size z on a code of length n and dimension
k is O(nkz), as a simple counting argument shows.

4 Affine planes

In [7, Proposition 4.5] we found 3-PD-sets of size 2p?(p — 1) for the codes from the
affine planes AG51(F,), using an information set different from the one we have
used in Theorem 1. We show that this can be improved to p?(p — 1) using the set
7 of Equation 1. This further leads to (m + 1)-PD-sets for the codes of the designs
AG m—1(Fp), using [8, Proposition 4]

Proposition 1 Let p be a prime. Let D be the design AG21(Fp) of points and
lines in the affine plane AG2(Fy) and let C' = Ry, (p—1,2) be the p-ary code of D.
With information set

2
I ={(i1,i2) |t €Fp, 1 <k <2 sz <p-—1},
k=1

the group TZ, where T 1is the translation group and Z is the group of scalar matri-
ces, is a 3-PD-set for C for p > 17, of size p?(p — 1).

Proof: We extend our notation 7 and p for translations and dilatations, as used
in Theorem 1, to affine planes. Thus Z = {u(a) |a € Fp, a #0}. Let H =TZ.
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Any three distinct points may be mapped by a translation to a triple of the form
X =(0,0), P = (q,7), @ = (s,t) where (¢q,7) # (0,0), (s,t) # (0,0) and (g,7) #
(s,t); in particular, ¢ # s or r # t. We may assume that ¢ # s. The case r # t
may be dealt with in a similar manner. We will show how to find maps in T'Z that
move such triples into the check set C.

Since q # s, some element of Z will fix X and map P and @ into a pair P’ and Q’
of the form (a,b), (a4 1,d), for some a,b,d, where 0 <a <p—2.Ifa > (p+1)/2,
w(p—1) will fix X and map (a, b) to (p—a,p—>b) and (a+1,d) to (p—a—1, p—d); that
is, to a similar triple with a < (p—3)/2. Hence, we may assume that a < (p—1)/2.
In this case, p—a —2 > (p — 3)/2. The mapping 7(p —a — 2,u) maps X, P’ and Q’
to(p—a—2,u), (p—2,u+b)and (p—1,u+d), whichareinCifa+2<u<p-—1
andu & {p—b,p—b+1,p—d}. Since a+2 < (p+3)/2, there are at least (p—3)/2
integers in the interval [a+ 2, p — 1] of which at most 3 must be excluded. If p > 11,
there is at least one value of v meeting these constraints.

The only case that remains is p = 7. We can apply the argument of the preceding
paragraph if a = 0 or a = 1. We are left with a = 2 and a = 3.

The triple X, P’ and @' is mapped by 7(5 — a,6) into C if b # 1 or 2 and d # 1.
Ifd=1, 7(5 —a,5) or 7(6,4) maps the triple into C according as b # 2 or b = 2.
Ifo=1,7(5—a,5), 7(3,4) or 7(6,4) maps the triple into C according as d # 2,
d=2anda=2ord=2anda=3.Ifb=2and a =2, 7(3,4) or u(6)7(1,6) maps
the triple into C according as d # 3 or d = 3. If b = 2 and a = 3, u(3)7(1,6) or
1(3)7(3,5) maps the triple into C according as d # 5 or d = 5.

This completes the proof of the proposition. l

Note: 1. We exclude p = 5 since the code is only 2-error-correcting.

2. Using [8, Proposition 4], we can now construct (m + 1)-PD-sets of size p™(p—1)
for AG,, m—1(Fp), the design of points and hyperplanes in AG,,(F,), for m > 2, p
prime.
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