
On subsequences and certain elements which
determine various cells in Sn

∗

T.P.McDonough† C.A.Pallikaros‡

14/12/2007

Abstract

We study the relation between certain increasing and decreasing
subsequences occurring in the row form of certain elements in the
symmetric group, following Schensted (Canad. J. Math., 13, 1961,
179–191) and Greene (Advances in Math., 14, 1974, 254–265), and
the Kazhdan-Lusztig cells (Invent. Math., 53, 1979, 165–184) of the
symmetric group to which they belong. We show that, in the two-
sided cell corresponding to a partition λ, there is an explicitly defined
element dλ, each of whose prefixes can be used to obtain a left cell by
multiplying the cell containing the longest element of the parabolic
subgroup associated with λ on the right. Furthermore, we show that
the elements of these left cells are those which possess increasing and
decreasing subsequences of certain types. The results in this paper
lead to efficient algorithms for the explicit descriptions of many left
cells inside a given two-sided cell, and the authors have implemented
these algorithms in GAP.

1 Introduction

In this paper, we will consider the symmetric group Sn, where n is an ar-
bitrary positive integer, viewing it as a permutation group on the symbols
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{1, . . . , n}, acting on the right, and as a Coxeter group with Coxeter system
(W, S) where W = Sn and S = {s1, . . . , sn−1}, where si is the transposi-

tion (i, i + 1). The corresponding Coxeter graph is
s1b s2b p p p sn−1b .

Moreover, W has the presentation 〈si : s2
i = 1, (sisi+1)

3 = 1 and (sisj)
2 =

1 for all i, j ∈ {1, . . . , n− 1} with |i− j| > 1〉.
For each subset J ⊆ S, the subgroup WJ generated by J is called a

standard parabolic subgroup of W . It has a Coxeter system (WJ , J). Its
length function lJ is that induced from l. It has a unique longest element
wJ . By tradition, w0 is written for wS.

Throughout the paper, λ will denote an arbitrary partition (λ1, . . . , λr) of
n with r parts, whose parts satisfy λ1 ≥ . . . ≥ λr. Corresponding to λ, there
is a standard parabolic subgroup of W whose Coxeter generator set J(λ) is
given by J(λ) = S\{sλ1 , sλ1+λ2 , . . . , sλ1+...+λr−1}.

Kazhdan and Lusztig [10] introduced three equivalence relations ∼L, ∼R

and ∼LR, the equivalence classes of which are called left cells, right cells and
two-sided cells, respectively.

It is observed in [4, Lemma 1.2] and [11, Lemma 3.3] that the left and
right cells containing wJ(λ) has a particularly simple description. We extend
this simple description to a selection of left and right cells in the same two-
sided cell as wJ(λ). Indeed, since for any left cell C, the set {x−1 : x ∈ C}
is a right cell, and conversely, we need only state the result for left cells.
Blessenohl and Jöllenbeck [2] describe a process, which they call the crochet
procedure, linking the left cells in a two-sided cell of Sn together. We show
that for certain explicitly defined left cells C and D in a two-sided cell, this
link takes the form of a right translation; that is, D = Cx for some explicitly
defined x ∈ W .

These results lead to efficient algorithms for the explicit descriptions of
many left cells inside a given two-sided cell. These algorithms have been
implemented in GAP [6] by the authors, from whom they may be obtained
on request.

2 Basic combinatorics of the symmetric group

In this section, we collect various basic definitions and results concerning W .
We will describe an element w of W in different forms: as a word in the
generators s1, . . . , sn−1, as products of disjoint cycles on 1, . . . , n, and in
two-row form in which an element in the lower row is the image under w of
an element in the upper row. If, in the latter form, the upper row consists
of the numbers 1, . . . , n in their natural increasing order, we will refer to
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the lower row as the row form of the permutation and write it in the form
[w1, . . . , wn]; that is, iw = wi. If U = (u1, . . . , ut) is any sequence with entries
in {1, . . . , n}, let Uw be the sequence (u1w, . . . , utw). We call Uw the image
of U via the action by w.

The longest element w0 of W is the permutation defined by i 7→ n+1− i.
More generally, the longest element wJ(λ) of WJ(λ) can be described in two-
row form by

wJ(λ) =

(
. . . λ̂i−1 + 1 . . . λ̂i λ̂i + 1 . . . λ̂i+1 . . .

. . . λ̂i . . . λ̂i−1 + 1 λ̂i+1 . . . λ̂i + 1 . . .

)
where λ̂0 = 0, λ̂r = n, and λ̂i = λi + λ̂i−1 for i = 1, . . . , r − 1. The conjugate
partition λ′ of λ is defined by λ′

i = |{j : λj ≥ i}| for i ≥ 1. We will denote
the number of parts of λ′ by r′. Thus, r′ = λ1 and r = λ′

1. We use the notions
of λ-diagram and λ-tableaux for a partition λ and associated terminology, in
common use—see, for example, Fulton [5] or Sagan [12]. In particular, a
λ-tableau is row-standard if it is increasing on rows, column-standard if it is
increasing on columns, and standard if it is increasing on rows and columns.
Also, if T is a λ-tableau, we refer to λ as the shape of T and denote it by
sh T .

Sn acts on the set of λ-tableaux in the obvious way—if w ∈ Sn, an entry i
is replaced by iw and tw denotes the tableau resulting from the action of w on
the tableau t. This action on λ-tableaux is the action by letter permutations
of Dipper and James [3, p.21]. If x, y ∈ W , we say that x is a prefix of y if
y = u1u2 . . . up where ui ∈ S for i = 1, . . . , p, p = l(y) and x = u1u2 . . . ur,
for some r ≤ p. The prefix relation corresponds to the weak Bruhat order in
[3].

Proposition 2.1 ([8, Proposition 2.1.1 and Lemma 2.2.1]) There is a special
set of right coset representatives XJ associated with each parabolic subgroup
WJ . An element of XJ is the unique element of minimum length in its coset.
Moreover, if w = vx where v ∈ WJ and x ∈ XJ then l(w) = l(v) + l(x).
Also, XJ = {w ∈ W : L(w) ⊆ S − J} where L(w) = {s ∈ S : l(sw) < l(w)}
and, if dJ denotes the longest element in XJ , then XJ is the set of prefixes
of dJ .

Dipper and James [3] characterise XJ(λ) as follows:

Lemma 2.2 ([3, Lemma 1.1]) XJ(λ) = {w ∈ W : tλw is row-standard}.

Two special λ-tableaux tλ and tλ are constructed as follows. Let tλ be
obtained by filling in the λ-diagram with 1, . . . , n by rows and let tλ be
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obtained by filling in the λ-diagram with 1, . . . , n by columns. We define an
element wλ ∈ Sn by tλwλ = tλ.

A further λ-tableau t̃λ is constructed as follows. Fill the λ-diagram with
the integers n, n− 1, . . . , 2, 1, filling the columns in order beginning at the
first, but filling each column from bottom to top. Then reverse the order of
the entries in each row. An element dλ of W is defined by tλdλ = t̃λ. We
define the element eλ by wλ = dλe

−1
λ .

For example, if λ = (4, 2, 2, 1), these tableaux are

tλ =

1 2 3 4
5 6
7 8
9

tλ =

1 5 8 9
2 6
3 7
4

t̃λ =

1 2 3 6
4 7
5 8
9

wλ = [1, 5, 8, 9, 2, 6, 3, 7, 4], dλ = [1, 2, 3, 6, 4, 7, 5, 8, 9] and eλ = [1, 4, 5, 9, 2, 7, 8,
3, 6].

Let YJ(λ) denote the set of prefixes of wλ. Dipper and James [3] give the
following characterisation of YJ(λ).

Lemma 2.3 ([3, Lemma 1.5].) The mapping u 7→ tλu is a bijection of the
set of prefixes of wλ and the set of standard λ-tableaux.

Corollary 2.4 dλ is a prefix of wλ.

We can modify the Dipper-James proof of Lemma 2.3 to obtain a similar
characterisation of the set ZJ(λ) of prefixes of dλ.

Lemma 2.5 The mapping u 7→ tλu is a bijection of the set of prefixes of dλ

and the set of those standard λ-tableaux which, when their row entries are
reversed, are column-standard.

Proof. Let t1 = tλwJ(λ). Let w ∈ W and suppose that tλw is standard and
t1w is column-standard. Let si be in the right descent set of w; that is,
l(wsi) < l(w). Then (i + 1)w−1 < iw−1.

Let i and i + 1 occur in the positions (a, b) and (a′, b′), respectively, of
tλw. That is, i is on row a and column b. Since tλw is standard, a′ > a or
b′ > b. Since (i + 1)w−1 and iw−1 occur in the positions (a′, b′) and (a, b),
respectively, of tλ, either a′ = a and b′ < b or a′ < a. Hence, a′ < a and
b′ > b. So, tλwsi is also standard.

In t1w, i and i + 1 are in positions (a, λa + 1 − b) and (a′, λa′ + 1 − b′),
respectively. Since t1w is column-standard and decreasing on rows, λa + 1−
b > λa′ + 1− b′. So, t1wsi is also column-standard.

By construction, tλdλ is standard and t1dλ is column-standard. If u is a
proper prefix of dλ, then us is a prefix of dλ for some s ∈ S with l(us) =
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l(u) + 1. By induction, tλus is standard and t1us is column-standard. By
the preceding paragraph, tλu is standard and t1u is column-standard.

Now suppose that u ∈ W , u 6= dλ, tλu is standard and t1u is column-
standard. Then there are integers i and j with 1 ≤ i, j ≤ n and j − i ≥ 2
such that i and j appear consecutively on a column of t1u. Let (al, bl) be
the position containing l, for l = i, . . . , j. Then bi = bj 6= bl if i < l < j.
Hence, for some k, i ≤ k < j, bk < bk+1. Since t1u is column-standard and
decreasing on rows, ak < ak+1. Hence, t1usk is column-standard.

In tλu, k and k+1 are in the positions (ak, λak
+1−bk) and (ak+1, λak+1

+
1 − bk+1), respectively. Since λak

− bk > λak+1
− bk+1 and tλu is standard,

tλusk is also standard.
Since ak < ak+1, l(usk) = l(u) + 1. By the inductive hypothesis, usk is a

prefix of dλ. Hence, u is a prefix of dλ.
It is immediate that the transpose t′ of a λ-tableau t is a λ′-tableau.

Moreover, t′ is standard if, and only if, t is standard. Furthermore, we have
the elementary lemma:

Lemma 2.6
(
tλ

)′
= tλ′, (tλ)

′ = tλ
′
and wλ = w−1

λ′ . Also, eλ is a prefix of
wλ′.

We proceed to examine various reduced decompositions of the longest
element w0 of W . First note that the tableau tλwλwJ(λ′) is obtained by filling
the λ-diagram with 1, . . . , n by columns from left to right, filling each column
from bottom to top. So, the tableau tλwλwJ(λ′)dλ′ is obtained by filling the
λ-diagram with 1, . . . , n by rows from bottom to top, filling each row from
left to right. It is immediate that the tableaux tλwλwJ(λ′) and tλwλwJ(λ′)dλ′

are row-standard. We can now establish the following decomposition of w0.

Lemma 2.7 w0 = wJ(λ)wλwJ(λ′)dλ′ and l(w0) = l(wJ(λ))+ l(wλ)+ l(wJ(λ′))+
l(dλ′).

Proof. Since w0 = (1, n)(2, n − 1) . . ., it is easy to see that (tλwJ(λ))w0 =
tλwλwJ(λ′)dλ′ . Hence, w0 = wJ(λ)wλwJ(λ′)dλ′ .

Now if w ∈ W we can complete any reduced expression for w to a reduced
expression for w0. Hence, l(w0) = l(wJ(λ)wλwJ(λ′)) + l(dλ′). Since tλwλwJ(λ′)

is row-standard, it follows from Lemma 2.2 that wλwJ(λ′) ∈ XJ(λ). Hence,
l(wJ(λ)wλwJ(λ′)) = l(wJ(λ)) + l(wλwJ(λ′)). Now tλ is row-standard. So wλ ∈
XJ(λ) from Lemma 2.2. Moreover, using Lemma 2.2 we see that w−1

λ ∈ XJ(λ′).
Hence l(wλwJ(λ′)) = l(wλ) + l(wJ(λ′)). This completes the proof.

For example let λ = (4, 2, 2, 1).

4 3 2 1
6 5
8 7
9

wJ(λ)−→
1 2 3 4
5 6
7 8
9

wλ−→
1 5 8 9
2 6
3 7
4

wJ(λ′)−→
4 7 8 9
3 6
2 5
1

dλ′−→
6 7 8 9
4 5
2 3
1
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Corollary 2.8 wλ is a distinguished WJ(λ)−WJ(λ′)-double coset representa-
tive.

Since w0 is an involution, the following result is an easy consequence of
Lemma 2.7.

Lemma 2.9 If w0 = d−1wJ(λ)wλwJ(λ′)e, for e, d ∈ W with l(w0) = l(d) +
l(wJ(λ)) + l(wλ) + l(wJ(λ′)) + l(e), then (i) d = w0d

−1
λ′ ew0; (ii) e is a prefix of

dλ′; and (iii) d is a prefix of dλ. In particular, dλ = w0d
−1
λ′ w0.

Conversely, if d is a prefix of dλ, we can find e ∈ W such that w0 =
d−1wJ(λ)wλ

wJ(λ′)e, with l(w0) = l(d) + l(wJ(λ)) + l(wλ) + l(wJ(λ′)) + l(e).

Proof. First note that l(d)+ l(e) = l(dλ′). From Lemma 2.7, wJ(λ)wλwJ(λ′) =
w0d

−1
λ′ . Hence, w0 = d−1w0d

−1
λ′ e. So d−1 = w0e

−1dλ′w0, from which (i)
follows.

Inverting the equation in Lemma 2.7, we get w0 = d−1
λ′ wJ(λ′)wλ′wJ(λ).

Replacing λ with λ′, we get w0 = d−1
λ wJ(λ)wλwJ(λ′). Hence, from (i), dλ =

w0d
−1
λ′ w0.
From dw0 = w0d

−1
λ′ e, we get l(d) = l(e−1dλ′). Since l(d) = l(dλ′)− l(e), e

is a prefix of dλ′ . This establishes (ii).
Inverting the given equation, we get w0 = e−1wJ(λ′)wλ′wJ(λ)d. By apply-

ing (ii), we see that d is a prefix of dλ.
For the converse, recall that w0 = d−1

λ wJ(λ)wλwJ(λ′) and l(w0) = l(dλ) +
l(wJ(λ)) + l(wλ) + l(wJ(λ′)). Let e = wJ(λ′)wλ′wJ(λ)dw0. Since d is a prefix of
dλ, l(d−1) + l(wJ(λ)) + l(wλ) + l(wJ(λ′)) = l(d−1wJ(λ)wλwJ(λ′)) = l(w0e

−1) =
l(w0)− l(e), as required.

The proofs of Lemmas 2.3 and 2.5 can be used to find reduced expressions
of all prefixes of wλ and dλ. We use the ideas in these proofs to determine the
lengths of wλ and dλ by establishing straightforward algorithms for producing
reduced expressions for these elements. We illustrate the algorithms with
examples in which λ = (4, 3, 3). These algorithms have been implemented in
GAP.

We first determine the length of dλ.

Proposition 2.10 l(dλ) = 1
2

∑r′

j=1(j − 1)λ′
j(λ

′
j − 1).

Proof. Let t1 be the tableau described in the proof of Lemma 2.5. In this
proof, we will order the positions in a tableau of shape λ by defining the k-th
position, for 1 ≤ k ≤ n, to be the position of k in the tableau t1dλ. For each
such k, let ik and jk denote the numbers of the row and column, respectively,
in which the k-th position occurs.
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For any tableau t of shape λ and any k with 1 ≤ k ≤ n, we form the
following partition of the positions of t: X(k) = {(ik, jk)}, that is the k-
th position; R1(k) = {(i′, j′) : (i′, j′) is a position of t and j′ > jk or j′ =
jk and i′ < ik}, R2(k) = {(i′, j′) : j′ < jk and i′ < ik}, and R3(k) = {(i′, j′) :
(i′, j′) is a position of t and i′ > ik and j′ ≤ jk or i′ = ik and j′ < jk}. This
division into regions is illustrated in Figure 1. Let r1(k), r2(k) and r3(k) de-
note the number of positions in regions R1(k), R2(k) and R3(k), respectively.

R1R2

R3

X

Figure 1

R2R1

R3

X

Figure 2

For each k, 1 ≤ k ≤ n, we construct a sequence of tableaux tk,p of shape
λ, where p runs from r2(k), . . . , 1, 0. The tableau tk,p is obtained by filling
the first k−1 positions with 1, . . . , k−1 in that order, putting k+p into the
k-th position, and filling the positions in R2(k)∪R3(k) with the elements of
the sequence k, k + 1, . . . , n, with k + p removed, filling the rows from top
to bottom, and filling each row from right to left. As constructed, each tk,p

is a column-standard tableau and reversing the elements in each row clearly
produces a standard tableau.

Associated with each tableau tk,p, there is a permutation gk,p defined by
t1g

k,p = tk,p. By Lemma 2.5, each gk,p is a prefix of dλ. Also, gn,0 = dλ since
tn,0 = t1dλ and g1,0 = 1 since t1,0 = t1.

The row-form of gk,p is obtained by writing in a single row the reversed
rows of tk,p, and placing the (i + 1)-th reversed row immediately to the right
of the i-th reversed row, for i = 1, 2, . . .

Since tk,psk+p−1 = tk,p−1, for 1 ≤ p ≤ r2(k), it is immediate that l(gk,p−1) =
l(gk,p)+ 1, as the entries k + p− 1 and k + p are the only differences between
the row-forms of gk,p−1 and gk,p, and k + p − 1 occurs before k + p in the
latter. Hence, l(gk,0) = l(gk,r2(k)) + r2(k).

In tableau tk,0, the first k positions are filled with 1, . . . , k in that order.
If the (k + 1)-th position is in the same column as the k-th position, then
jk+1 = jk and ik+1 = ik + 1. Since the positions of R2(k) ∪ R3(k) are
filled by the sequence k + 1, . . . , n, the entry in the (k + 1)-th position is
k+r2(k)+jk = k+1+ik(jk−1) = k+1+(ik+1−1)(jk+1−1) = k+1+r2(k+1).
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Hence, tk,0 = tk+1,r2(k+1) in this case. However, if the (k +1)-th position is in
a different column from the k-th position, then jk+1 = jk − 1 and ik+1 = 1.
Also, the entry in the (k + 1)-th position is k + 1 = k + 1 + r2(k + 1), since
r2(k + 1) = 0 in this case. So, we have tk,0 = tk+1,r2(k+1) in this case also.

Hence, l(dλ) = l(gn,0) = l(gn,r2(n)) + r2(n) = l(gn−1,0) + r2(n) = . . . =
l(g1,0)+

∑n
k=2 r2(k) =

∑n
k=1 r2(k), since l(g1,0) = 0 and r2(1) = 0. In general,

r2(k) = (i − 1)(j − 1) if i = ik and j = jk. Recalling that r′ = λ1 is the

total number of columns, we see that l(dλ) =
∑r′

j=1

∑λ′j
i=1(i − 1)(j − 1) =∑r′

j=1(j − 1)
(λ′j

2

)
. This completes the proof.

Note that we have obtained implicitly a reduced expression for dλ in the
course of the proof of Proposition 2.10. We make this explicit in the following
corollary.

Corollary 2.11 For each k such that 1 ≤ k ≤ n, let pk = sk+r2(k)−1 . . . sk,
where r2(k) is as defined in the proof of Proposition 2.10 and pk = 1 if
r2(k) = 0. Then dλ = p1p2 . . . pn and, if those pk which are equal to 1 are
ignored, this is a reduced expression for dλ.

We illustrate this algorithm for λ = (4, 3, 3). We display only the tableaux
of the form tk,0, where the k-th position is not on the first row or column,
since for the excluded positions, with k < n, tk,0 = tk+1,0. If the k-th position
is not in the first row or column, we record the reduced word mapping tk,0

to tk+1,0, that is, sk+r2(k)−1 . . . sk. The entry in the k-th position is given in
bold-face font.

4 3 2 1
7 6 5
10 9 8

s4s3−→
5 4 2 1
7 6 3
10 9 8

s7s6s5s4−→
6 5 2 1
8 7 3
10 9 4

s6−→
7 5 2 1
8 6 3
10 9 4

s8s7−→
8 5 2 1
9 6 3
10 7 4

Hence, dλ = s4s3s7s6s5s4s6s8s7 and l(dλ) = 9.
Now, we determine the length of wλ.

Proposition 2.12 l(wλ) = 1
2
n(n + 1)− 1

2

∑r′

j=1 jλ′
j(λ

′
j + 1).

Proof. In this proof, we will order the positions in a tableau of shape λ by
defining the k-th position, for 1 ≤ k ≤ n, to be the position of k in the
tableau tλ. For each such k, let ik and jk denote the numbers of the row and
column, respectively, in which the k-th position occurs.

For any tableau t of shape λ and any k with 1 ≤ k ≤ n, we form the
following partition of the positions of t: X(k) = {(ik, jk)}, that is the k-
th position; R1(k) = {(i′, j′) : (i′, j′) is a position of t and j′ < jk or j′ =
jk and i′ < ik}, R2(k) = {(i′, j′):(i′, j′) is a position of t and i′ < ik and j′ >
jk}, and R3(k) = {(i′, j′) : (i′, j′) is a position of t and i′ > ik and j′ ≥
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jk or i′ = ik and j′ > jk}. This division into regions is illustrated in Figure
2. Let r1(k), r2(k) and r3(k) denote the number of positions in regions R1(k),
R2(k) and R3(k), respectively.

For each k, 1 ≤ k ≤ n, we construct a sequence of tableaux tk,p of shape
λ, where p runs from r2(k), . . . , 1, 0. The tableau tk,p is obtained by filling
the first k−1 positions with 1, . . . , k−1 in that order, putting k+p into the
k-th position, and filling the positions in R2(k)∪R3(k) with the elements of
the sequence k, k + 1, . . . , n, with k + p removed, filling the rows from top
to bottom, and filling each row from left to right. As constructed, each tk,p

is a standard tableau.
Associated with each tableau tk,p, there is a permutation gk,p defined by

tλgk,p = tk,p. By Lemma 2.3, each gk,p is a prefix of wλ. Also, gn,0 = wλ since
tn,0 = tλ and g1,0 = 1 since t1,0 = tλ.

The row-form of gk,p is obtained by writing in a single row the rows of
tk,p, and placing the (i + 1)-th row immediately to the right of the i-th row,
for i = 1, 2, . . .

Since tk,psk+p−1 = tk,p−1, for 1 ≤ p ≤ r2(k), it is immediate that l(gk,p−1) =
l(gk,p)+ 1, as the entries k + p− 1 and k + p are the only differences between
the row-forms of gk,p−1 and gk,p, and k + p − 1 occurs before k + p in the
latter. Hence, l(gk,0) = l(gk,r2(k)) + r2(k).

In tableau tk,0, the first k positions are filled with 1, . . . , k in that order.
If the (k + 1)-th position is in the same column as the k-th position, then
jk+1 = jk and ik+1 = ik +1. Since the positions of R2(k)∪R3(k) are filled by
the sequence k+1, . . . , n, the entry in the (k+1)-th position is k+r2(k+1)+1.
Hence, tk,0 = tk+1,r2(k+1) in this case. However, if the (k +1)-th position is in
a different column from the k-th position, then jk+1 = jk + 1 and ik+1 = 1.
Also, the entry in the (k + 1)-th position is k + 1 = k + 1 + r2(k + 1), since
r2(k + 1) = 0 in this case. So, we have tk,0 = tk+1,r2(k+1) in this case also.

Hence, l(wλ) = l(gn,0) = l(gn,r2(n)) + r2(n) = l(gn−1,0) + r2(n) = . . . =
l(g1,0) +

∑n
k=2 r2(k) =

∑n
k=1 r2(k), since l(g1,0) = 0 and r2(1) = 0. In

general, r2(k) =
∑i−1

`=1(λ` − j) if i = ik and j = jk. Recalling that r′ = λ1

is the total number of columns, we see that l(wλ) =
r′∑

j=1

λ′j∑
i=1

i−1∑
`=1

(λ` − j) =

r′∑
j=1

λ′j∑
i=1

(λ′
j−i)(λi−j) =

r′∑
j=1

λ′
j

λ′j∑
i=1

(λi−j)−
r′∑

j=1

λ′j∑
i=1

i(λi−j) =
r′∑

j=1

λ′
j

r′∑
`=j+1

λ′
`−

1
2

r′∑
j=1

r′∑
`=j+1

λ′
`(λ

′
` +1) = 1

2
n2− 1

2

r′∑
j=1

λ′2
j − 1

2

r′∑
j=1

(j− 1)λ′
j(λ

′
j +1)= 1

2
n(n+1)−

1
2

∑r′

j=1 jλ′
j(λ

′
j + 1). This completes the proof.
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As in Proposition 2.10, we note that we have obtained implicitly a reduced
expression for wλ in the course of the proof of Proposition 2.12. We make
this explicit in the following corollary.

Corollary 2.13 For each k such that 1 ≤ k ≤ n, let pk = sk+r2(k)−1 . . . sk,
where r2(k) is as defined in the proof of Proposition 2.12 and pk = 1 if
r2(k) = 0. Then wλ = p1p2 . . . pn and, if those pk which are equal to 1 are
ignored, this is a reduced expression for wλ.

We illustrate this algorithm for λ = (4, 3, 3). As with the illustration of the
dλ-algorithm, we display only the tableaux of the form tk,0, noting that if the
k-th position is on the first row or last column then tk,0 = tk+1,0. If the k-th
position is not in the first row or last column, we record the reduced word
mapping tk,0 to tk+1,0, that is, sk+r2(k)−1 . . . sk. The entry in the k-th position
is given in bold-face font.

1 2 3 4
5 6 7
8 9 10

s4s3s2−→
1 3 4 5
2 6 7
8 9 10

s7s6s5s4s3−→
1 4 5 6
2 7 8
3 9 10

s6s5−→
1 4 6 7
2 5 8
3 9 10

s8s7s6−→
1 4 7 8
2 5 9
3 6 10

s8−→
1 4 7 9
2 5 8
3 6 10

s9−→
1 4 7 10
2 5 8
3 6 9

Hence, wλ = s4s3s2s7s6s5s4s3s6s5s8s7s6s8s9 and l(wλ) = 15.
We end this section with some immediate corollaries of the two preceding

propositions.

Corollary 2.14 (i) l(wλ) = 1
2
n(n + 1) − 1

2

∑r
i=1 iλi(λi + 1); (ii) l(dλ) =

1
2

∑r
i=1(i−1)λi(λi−1); and (iii) l(eλ) = 1

2
n(n+1)− 1

2

∑r
i=1((2i−1)λ2

i +λi).

Proof. To prove (i), it is sufficient to note that l(wλ) = l(wλ′). Hence,∑r
i=1 iλi(λi + 1) =

∑r′

j=1 jλ′
j(λ

′
j + 1). From this identity, together with

2
∑r

i=1 iλi =
∑r′

j=1 λ′
j(λ

′
j + 1) and

∑r
i=1 λi = n and the corresponding iden-

tities with λ and λ′ interchanged, (ii) follows. Finally, l(eλ) = l(wλ)− l(dλ);
and (iii) is immediate.

An immediate consequence of this corollary is that dλ = 1 if λ is a hook.
It is also easily shown that l(dλ) = l(wλ) if λ is a rectangle; and since dλ is
a prefix of wλ, it follows that dλ = wλ in this case.

3 Subsequences in the row form of a permu-

tation

Let w ∈ W . A decreasing cover of type λ for w is a list C of r disjoint
decreasing subsequences C1, . . . , Cr appearing in the row form of w so that
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the union of the elements in these subsequences is {1, . . . , n} and the sub-
sequences have lengths λ1, . . . , λr in some order. Similarly, we define an
increasing cover of type λ for w. For example, let w = [6, 5, 2, 1, 4, 3] ∈ S6.
Then, C = [(6, 5, 4, 3), (2, 1)] and C ′ = [(6, 5, 2, 1), (4, 3)] are decreasing cov-
ers of type (4, 2) for w and C ′′ = [(6, 4, 3), (5, 1), (2)] is a decreasing cover of
type (3, 2, 1) for w. Also, [(1, 4), (2, 3), (5), (6)] is an increasing cover of type
(2, 2, 1, 1) for w.

It is clear that there is a unique decreasing cover of type λ for wJ(λ).
The subsequences occurring in this cover are called the special decreasing
subsequences for wJ(λ). The i-th such subsequence is obtained by reversing

the sequence of consecutive integers from 1+
∑i−1

j=1 λj to
∑i

j=1 λj. We denote

this subsequence by P λ(i) and its j-th member by P λ(i, j). The row form of
wJ(λ) is obtained by placing the sequences P λ(1), . . . , P λ(r) in a row going
from left to right.

Lemma 3.1 If d ∈ XJ(λ), [P λ(i)d : i = 1, . . . , r] is a decreasing cover of type
λ for wJ(λ)d. Consequently, wJ(λ)d has row form

[ λ1d . . . 1d (λ1 + λ2)d . . . (λ1 + 1)d . . . nd . . . (n− λr + 1)d ] .

Proof. From Lemma 2.2, P λ(i)d is a decreasing sequence for i = 1, . . . , r.
For example, if λ = (4, 2, 2, 1) then d = [1, 2, 6, 8, 3, 5, 4, 9, 7] ∈ XJ(λ). The

row form of wJ(λ)d is [ 8 6 2 1 5 3 9 4 7 ]. The images of the special
decreasing subsequences for wJ(λ), via the action by d, are (8, 6, 2, 1), (5, 3),
(9, 4) and (7), and these form a decreasing cover of type (4, 2, 2, 1) for wJ(λ)d.
Note that the images of the special decreasing subsequences for wJ(λ), via
the action by d, are given by the rows of tλd, read in reverse order. Also,
since d ∈ YJ(λ) in this case, tλd is column-standard and its columns give an
increasing cover of type (4, 3, 1, 1) for wJ(λ)d.

In general, if y, w ∈ W , the row form of y−1w is obtained from the row
form of w by letting y act on the positions of that row.

With λ = (4, 2, 2, 1) and e = [1, 4, 5, 9, 2, 6, 3, 7, 8] ∈ XJ(λ),
e−1wJ(λ) = [ 4 6 8 3 2 5 7 9 1 ]

and the special decreasing subsequences for
wJ(λ) are

4 3 2 1
6 5

8 7
9

.

Note that the position of P λ(i, j) in the row form of e−1wJ(λ) is given by
the j-th entry of the i-th row of tλe. Also, since e ∈ YJ(λ) in this case, tλe
is column-standard. Moreover, the entries of e−1wJ(λ), whose positions form
a column of tλe, is an increasing subsequence. So e−1wJ(λ) has an increasing
cover of type (4, 3, 1, 1).

11



Proposition 3.2 Let d, e ∈ XJ(λ). (i) The position of P λ(i, j)d in the row
form of e−1wJ(λ)d is given by the j-th entry of the i-th row of tλe. (ii)
[P λ(i)d : 1 ≤ i ≤ r] is a decreasing cover of type λ for e−1wJ(λ)d. (iii) If
e ∈ YJ(λ) and d ∈ ZJ(λ) then the columns of tλe give the positions in the row
form of e−1wJ(λ)d corresponding to increasing subsequences and the resulting
increasing cover has type λ′.

Proof. (i) Let k be the position of P λ(i, j)d in the row form of e−1wJ(λ)d;
that is, ke−1wJ(λ)d = P λ(i, j)d. Then k = P λ(i, j)wJ(λ)e as required, since
P λ(i, j)wJ(λ) is the j-th entry of the i-th row of tλ.

(ii) From Lemma 3.1, P λ(i)d is a decreasing sequence. Since e ∈ XJ(λ),
the i-th row of tλe is an increasing sequence. The image of the latter sequence
under e−1wJ(λ)d is the former sequence. Hence, P λ(i)d is a decreasing se-
quence for e−1wJ(λ)d. The result follows.

(iii) Since tλe and tλwJ(λ)d are both column-standard and (tλe)(e−1wJ(λ)d) =
tλwJ(λ)d, the result follows.

With λ = (4, 2, 2, 1), d = [1, 2, 6, 8, 3, 5, 4, 9, 7] and e = [1, 4, 5, 9, 2, 6, 3, 7, 8]
we see that [(8, 6, 2, 1), (5, 3), (9, 4), (7)] is a decreasing cover of type λ. Com-
pare this with the rows of tλd. Compare also the positions of the members
of P λ(i) with the rows of tλe.

e−1wJ(λ)d = [ 8 5 9 6 2 3 4 7 1 ]

and the images of the special decreasing
subsequences for wJ(λ) via the action by d
are

8 6 2 1
5 3

9 4
7

.

Note that even though d, e ∈ YJ(λ) in this case, e−1wJ(λ)d does not have an
increasing cover of type (4, 3, 1, 1).

If w = [w1, . . . , wn] ∈ W and C = [C1, . . . , Cr] is an increasing or
decreasing cover for w, we define aw,C(i, k) to be the number of elements of Ci

occurring in the first k positions of w. For example, with w = [6, 5, 2, 1, 4, 3]
and C = [(6, 5, 4, 3), (2, 1)], we get aw,C(1, 3) = 2 and aw,C(2, 3) = 1.

Proposition 3.3 Let d ∈ XJ(λ), e ∈ YJ(λ) and w = e−1wJ(λ)d. If C denotes
the decreasing cover [P λ(i)d:i = 1, . . . , r] for w, then aw,C(i, k) ≥ aw,C(i+1, k)
for all i = 1, . . . , r − 1 and k = 1, . . . , n.

Proof. From Lemma 2.3, tλe is a standard tableau. Now let 1 ≤ k ≤ n.
Since tλe is standard, the positions corresponding to the entries 1, . . . , k form
a µ-diagram for some partition µ = (µ1, . . . , µs) of k and the corresponding
µ-tableau is standard. Since aw,C(i, k) = µi by Proposition 3.2(i), the result
now follows.
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Lemma 3.4 Let d ∈ ZJ(λ). Partition the row form of w = w−1
λ wJ(λ)d into

r′(= λ1) blocks so that, for j = 1, . . . , r′, the j-th block contains the λ′
j

elements from the (1 +
∑j−1

k=1 λ′
k)-th position to the (

∑j
k=1 λ′

k)-th position.
Then, each of these blocks is an increasing subequence of w.

Proof. Let e = wJ(λ′)ww0. From Lemma 2.9, l(w0) = l(d)+ l(wJ(λ))+ l(wλ)+
l(wJ(λ′))+l(e) and e is a prefix from dλ′ . Since dλ′ ∈ XJ(λ′), we get e ∈ XJ(λ′).

From Lemma 3.1, we see that in the row form of wJ(λ′)e = ww0, for i =

1, . . . , r′, the i-th block, containing the λ′
i elements from the (1+

∑i−1
j=1 λ′

j)-th

position to the (
∑i

j=1 λ′
j)-th position, forms a decreasing subsequence. Since

postmultiplication by w0 converts a decreasing subsequence to an increasing
subsequence, the result follows.

For example, let λ = (4, 3, 3). Then λ′ = (3, 3, 3, 1). We may take d =
s4s3s5s7 and e = s3s2s6s5s4. Then wJ(λ′)e = [ 5 3 1 7 6 2 9 8 4 10 ],
wJ(λ′)ew0 = [ 6 8 10 4 5 9 2 3 7 1 ] and w0 = d−1wJ(λ)wλwJ(λ′)e.

Corollary 3.5 Under the hypothesis of Lemma 3.4, P λ(i, j)d < P λ(i+1, j)d
if 1 ≤ i ≤ r − 1 and j ≤ λi+1.

Proof. Since tλ(w
−1
λ wJ(λ)d) = tλ(wJ(λ)d), the j-th increasing subsequence

of w−1
λ wJ(λ)d, referred to in Lemma 3.4, is the j-th column of the tableau

tλ(wJ(λ)d) and hence consists of P λ(1, j)d, . . . , P λ(λ′
j, j)d.

4 Translating cells

The Kazhdan-Lusztig cells of W may be characterised using the Robinson-
Schensted correspondence, which is a bijection of Sn to the set of pairs of
standard tableaux (P ,Q) of the same shape corresponding to partitions of
n. See Fulton [5] or Sagan [12] for a good description of this correspondence.
Denote this correspondence by w 7→ (P(w),Q(w)). Then Q(w) = P(w−1).
The following proposition characterises the cells in Sn; a proof may be found
in [1] or [7].

Proposition 4.1 ([1, Theorem A] or [7, Corollary 5.6]) If P is a fixed stan-
dard tableau then the set {w ∈ W : P(w) = P} is a left cell of W and the
set {w ∈ W : Q(w) = P} is a right cell of W . Conversely, every left cell
and every right cell arises in this way. Moreover, the two-sided cells are the
subsets of W of the form {w ∈ W : shP(w) is a fixed partition.}

In [1], the reader should note that Ariki considers permutations in Sn to act
on the left while, in this paper, they act on the right. This causes the left and

13



right cells to be interchanged with a consequent interchanging of the rôles of
the tableaux functions P and Q in some results.

In this section, we give an alternative characterisation of some of these
cells, describing their elements explicitly as reduced words formed using the
elements wλ and dλ defined above in Section 2. We also characterise these
cells in terms of certain increasing and decreasing covers which their elements
possess.

For the remainder of this section we assume that the partition λ is fixed
and we write P (i, j) and P (i) instead of P λ(i, j) and P λ(i), respectively.

Proposition 4.2 Let w = e−1wJ(λ)d, where e ∈ YJ(λ) and d ∈ ZJ(λ). In
applying the Robinson-Schensted insertion process to the row form of w, the
entry P (i, j)d, 1 ≤ i ≤ r and j ≤ λi, is first inserted at the top of the i-th
column. Subsequently, its position is unaffected by the insertion of P (i′, j′)d
with i′ 6= i and it is moved down the i-th column one place by the insertion
of P (i, j′′)d with j′′ > j.

Proof. Let t = tλwJ(λ)d. Since tλe is standard and (tλe)w = t, 1w = P (1, 1)d.
Hence, the first step in the Robinson-Schensted insertion process is to insert
P (1, 1)d at the top of the first column.

We proceed by induction on the number of elements inserted. Suppose
that P (i, j)d is the next element to be inserted, with (i, j) 6= (1, 1). If i = 1
then j > 1 and, since P (1)d is a decreasing subsequence of w, P (1, j− 1)d is
at the top of the first column and P (1, j)d < P (1, j − 1)d. Hence, P (1, j)d
is inserted at the top of the first column, pushing each other entry of that
column down one place.

If i > 1 then, since P (i − 1, j)d occurs to the left of P (i, j)d in w by
Proposition 3.3, P (i − 1, j)d has already been inserted. By induction, the
entry at the top of the (i−1)-th column is P (i−1, k)d for some k ≥ j, and i-th
column is empty or has top entry P (i, j−1)d according as j = 1 or j > 1. By
Proposition 3.2(ii) and Corollary 3.5, P (i − 1, k)d ≤ P (i − 1, j)d < P (i, j)d
and, if j > 1, P (i, j)d < P (i, j − 1)d. Hence, P (i, j)d is inserted at the
top of the i-th column. Also using Proposition 3.2(ii) and Corollary 3.5, for
m = 1, . . . , j − 1, P (i − 1, k − j + m)d ≤ P (i − 1, m)d < P (i, m)d. So, the
insertion of P (i, j)d pushes each other entry of the i-th column down one
place and affects no other entries.

Corollary 4.3 If e ∈ YJ(λ), d ∈ ZJ(λ) and w = e−1wJ(λ)d, then (i) P(w) =
tλ′d, (ii) Q(w) = tλ′e, and (iii) shP(w) = shQ(w) = λ′.

Proof. For (ii), note that in the recording tableau Q(w), the j-th entry in the
i-th column is the position of P (i, j)d in the row form of w. By Proposition
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3.2, this position is the j-th entry of the i-th row of tλe, which is the j-th
entry of the i-th column of tλ′e. Hence, Q(w) = tλ′e.

Part (i) is immediate from Proposition 4.2 and part (iii) follows from the
fact that both P(w) and Q(w) have the same shape as tλ′ .

We may now use Proposition 4.1 and Corollary 4.3 to extend [11, Lemma
3.3] to the left cells containing elements of the form wJ(λ)d where d ∈ ZJ(λ).
We observe that all these cells are obtained from the cell containing wJ(λ) by
‘translating’ with the element d. Using the results of Lemmas 2.3 and 2.5 and
the ideas contained in the proofs of Propositions 2.10 and 2.12, it is possible
to construct efficient algorithms for computing the prefixes of wλ and dλ,
which in turn can be used to compute the elements of the cells described in
the following theorem. An implementation of this computation in GAP can
be obtained from the authors.

Theorem 4.4 Let CJ(λ) = {e−1wJ(λ) : e is a prefix of wλ}, and let d be a
prefix of dλ. Then the left cell containing wJ(λ)d is the set CJ(λ)d = {cd : c ∈
CJ(λ)}.
Proof. From Proposition 4.1 and Corollary 4.3 the left cell containing wJ(λ)d
has |YJ(λ)| elements and contains the set {e−1wJ(λ)d : e ∈ YJ(λ)}, which clearly
has |YJ(λ)| elements.

For a given value of n, the number of cells covered by [11, Lemma 3.3]
is the number An of partitions of n, the total number of cells is the number
Cn of standard tableaux whose shapes are partitions of n, that is the number
of prefixes of wλ as λ runs over the partitions of n, and the number of cells
covered by Theorem 4.4 is the number Bn of prefixes of dλ as λ runs over the
partitions of n. We do not yet have a simple description of the number Bn,
but we have calculated it for small values of n by a simple GAP program.
As an indication of the improvement provided by Theorem 4.4, we give these
numbers in Table 1, together with the corresponding values of An and Cn.

n 3 4 5 6 7 8 9 10

An 3 5 7 11 15 22 30 42

Bn 3 6 9 22 35 88 183 428

Cn 4 10 26 76 232 764 2620 9496

Table 1

Since l(e−1wJ(λ)d) = l(e) + l(wJ(λ)) + l(d) for all prefixes e of wλ, where d
is a prefix of dλ, this theorem gives reduced expressions for all the elements
of certain cells. Because of Proposition 4.2, the Robinson-Schensted process
takes a simple form, since these elements have a very convenient decreas-
ing cover of type λ, namely [P λ(i)d : i = 1, . . . , r], in which each subse-
quence produces one column of the resulting P-tableau without affecting the

15



other columns. Moreover, by Proposition 3.2(iii), each of these elements has
an increasing cover of type λ′. In general, forming the Robinson-Schensted
tableaux from decreasing and increasing sequences is a complicated process—
see for example [12]. Trivially, the existence of a decreasing cover of type λ
does not guarantee a P-tableau of shape λ′. However, the existence of a
decreasing cover of type λ and an increasing cover of type λ′ guarantees a
P-tableau of shape λ′—see Schensted [13] and Greene [9]. Conversely, the
existence of a P-tableau of shape λ′ does not guarantee an increasing cover
of type λ′. For example, w = [2, 3, 6, 1, 4, 5] has P-tableau of shape (4, 2) but
no increasing cover of this type. Also, w0w has P-tableau of shape (2, 2, 1, 1)
but no decreasing cover of type (4, 2). Hence, the cells described in Theorem
4.4 are very special indeed.

Corollary 4.5 Let d ∈ ZJ(λ) and let w ∈ W . Then w ∼L wJ(λ)d if, and only
if, [P λ(i)d : i = 1, . . . , r] is a decreasing cover of type λ for w and there is
an increasing cover of type λ′ for w.

Proof. For the ‘only if’ part, we note that w = e−1wJ(λ)d for some e ∈ YJ(λ),
by Theorem 4.4. The statements regarding covers follows from Proposition
3.2.

For the ‘if’ part, note that if µ is the shape of the P-tableau for w, then µ
is dominated by λ′ and µ′ is dominated by λ, by [12, Theorem 3.5.3]. Hence,
µ = λ′. Recall that the i-th row of tλwJ(λ)d is P (i)d. Hence, tλwJ(λ)dw−1

is a row-standard tableau and, hence, is tλe for some e ∈ XJ(λ). So, w =
e−1wJ(λ)d.

Suppose that tλe is not standard. Then there is some column, say the j-th,
on which two consecutive elements x and y satisfy x > y. Let x be on the i-th
row and y on the (i + 1)-th row. Then xw = P (i, j)d and yw = P (i + 1, j)d.
Since y < x, the sequence (P (i+1, 1)d, . . . , P (i+1, j)d, P (i, j)d, . . . , P (i, λi)d)
is a decreasing sequence in w of length λi + 1. Hence, w has a decreasing
cover [Q(i)] of type ν, where νk = λk, for k = 1, . . . , i− 1, and νi = λi + 1.

Let [R(j)] be an increasing cover of w of type λ′. Where convenient,
we will consider the sequences Q(i) and R(j) as sets. It is immediate that
|Q(i) ∩ R(j)| ≤ 1. Let t = λi. Then |R(1) ∪ . . . ∪ R(t)| =

∑t
j=1 λ′

j =
it +

∑r
k=i+1 λk. As R(1) ∪ . . . ∪R(t) contains at most it elements in Q(1) ∪

. . . ∪Q(i), |R(1) ∪ . . . ∪ R(t)| ≤ it +
∑r

k=i+1 νk < it +
∑r

k=i+1 λk. With this
contradiction, we see that tλe is standard. Hence, e ∈ YJ(λ). So, w ∼L wJ(λ)d
by Theorem 4.4.
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