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Abstract

Let H be the Hecke algebra of a Coxeter system (W,S), where W is a Weyl
group of type An, over the ring of scalars A = Z[q1/2, q−1/2], where q is an inde-
terminate. We show that the Specht module Sλ, as defined by Dipper and James
[6], is naturally isomorphic over A to the cell module of Kazhdan and Lusztig [14]
associated with the cell containing the longest element of a parabolic subgroup WJ

for appropriate J ⊆ S. We give the association between J and λ explicitly. We
introduce notions of the T -basis and C-basis of the Specht module and show that
these bases are related by an invertible triangular matrix over A. We point out the
connection with the work of Garsia and McLarnan [9] concerning the corresponding
representations of the symmetric group.

1 Introduction

In this paper we investigate the relations between the classical and the Kazhdan-Lusztig
representations of the symmetric groups and associated Hecke algebras. Using elementary
methods we give a self-contained proof that the Specht module Sλ, as defined by Dipper
and James in [6], is H-isomorphic to a module denoted by SwJ which is explicitly defined
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and is seen to afford the cell representation of [14] associated with the right cell containing
wJ when the scalars consist of the ring A = Z[q1/2, q−1/2], where q is an indeterminate. We
give the association between J and λ explicitly. We note that in [6], for each partition λ of
n+1, the ‘permutation‘ and ‘monomial‘ modules are defined as the modules generated by
the elements xλ and yλ of H,respectively. We construct a natural isomorphism between
the cell module and the corresponding Specht module using the modules xλH and yµH
for appropriate partitions λ and µ of n+ 1.

The standard basis of Sλ is given in [6]. We show how this basis relates to Young’s
natural representation. We also note that there is a natural basis of Sλ related to the
elements of the right cell containing wJ . The representing matrices obtained using this
basis are exactly the matrices of the corresponding cell representation. In this way we are
able to compare Young’s natural and the cell representation and show that these repre-
sentations are related by an invertible triangular matrix over A. We can give an explicit
description of the coefficients of this matrix in terms of Kazhdan-Lusztig polynomials.
We note that Garsia and McLarnan [9] have addressed this problem in the case of the
corresponding representations of the symmetric groups.

The GAP computational system (see [18] and [8]) and, in particular, the associated
CHEVIE package (see [11]) have been invaluable tools for this work.

2 Preliminary results

Let (W,S) be a Coxeter system corresponding to a Weyl group W and let l be the
associated length function. We recall some basic notions concerning Weyl groups and the
associated Hecke algebras. Where appropriate, we will give references to these notions in
[12] or [14]. Every result involving a ‘left-oriented’ object connected with a Weyl group or
Hecke algebra, e.g. a left transversal, a relation defined in terms of multiplication on the
left or a left module, has an analogous result involving the corresponding ‘right-oriented’
object. We shall freely translate results from the literature involving one orientation to
results involving the other.

2.1 For each element w ∈ W , the left descent set, L(w), and the right descent set, R(w),
are defined by L(w) := {s ∈ S : l(sw) < l(w)} and R(w) := {s ∈ S : l(ws) < l(w)}.

2.2 For each subset J ⊆ S, the subgroup WJ generated by J is called a standard
parabolic subgroup of W . It has a Coxeter system (WJ , J). Its length function lJ is that
induced from l. It has a unique longest element wJ . By tradition, w0 is written for wS.

2.3 Let x, y ∈ W . We say that x is a prefix of y if y = s1s2 . . . sp where si ∈ S for
i = 1, . . . , p, p = l(y) and x = s1s2 . . . sr, for some r ≤ p. The prefix relation corresponds
to the weak Bruhat order in [6].

2.4 There is a special set of right coset representatives XJ associated with each parabolic
subgroup WJ . An element of XJ is the unique element of minimum length in its coset.
Moreover, if w = vx where v ∈ WJ and x ∈ XJ then l(w) = l(v) + l(x). Also, XJ =
{w ∈ W : L(w) ⊆ S − J} and, if dJ denotes the longest element in XJ , then XJ is the
set of prefixes of dJ . (See [12, Proposition 2.1.1 and Lemma 2.2.1]).
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2.5 Let w ∈ W . If J ⊆ L(w) then w = wJx where x ∈ XJ . (See [12, Lemma 1.5.2]).
Conversely, if w = wJx where x ∈ W and l(w) = l(wJ)+l(x), then x ∈ XJ and J ⊆ L(w).
(See [4, Lemma 3.2]).

2.6 The Hecke algebra H corresponding to (W,S) and defined over the ring A =

Z[q
1
2 , q−

1
2 ], where q is an indeterminate, has a freeA-basis {Tw:w ∈ W} and multiplication

defined by the rules (i) TwTw′ = Tww′ if l(ww′) = l(w)+ l(w′) and (ii) (Ts+1)(Ts−q) = 0
if s ∈ S. The basis {Tw : w ∈ W} is called the T -basis of H. (See [14]).

2.7 H has a basis {Cw : w ∈ W}, the C-basis, whose terms have the form Cy =∑
x≤y

(−1)l(y)−l(x)q
1
2
l(y)−l(x)Px,y(q

−1)Tx, where Px,y(q) is a polynomial in q with integer co-

efficients of degree ≤ 1
2

(l(y)− l(x)− 1) if x < y and Py,y = 1. In the preceding sentence,
we use ≤ to denote the (strong) Bruhat partial order on W and we write x < y if x ≤ y
and x 6= y. If the degree of Px,y(q) is exactly 1

2
(l(y)− l(x)− 1), we write µ(x, y), and

µ(y, x), for its leading coefficient, which is a nonzero integer. For all other pairs x, y ∈ W ,
we set µ(x, y) = 0.

In [14, 2.3ac], the multiplication of C-basis elements by Ts, s ∈ S is described and is
as follows,

2.8 sx < x⇒ TsCx = −Cx and x < sx⇒ TsCx = qCx + q
1
2Csx +

∑
z<x, sz<z

µ(z, x)Cz.

xs < x⇒ CxTs = −Cx and x < xs⇒ CxTs = qCx + q
1
2Cxs +

∑
z<x, zs<z

µ(x, z)Cz.

There are two reflexive transitive relations (preorders), ≤L and ≤R, defined on W using
the C-basis. The preorder ≤L is generated by all statements of the form: x ≤L y
if Cx occurs with nonzero coefficient in the expression of TsCy in the C-basis, for some
s ∈ S. The preorder ≤R is defined similarly, taking CyTs instead of TsCy in the preceding
sentence.

A third preorder ≤LR is defined using the previous two preorders: x ≤LR y if there
is a sequence of elements x0 = x, x1, . . .xr = y of W such that for each integer i,
0 ≤ i ≤ r − 1, either xi ≤L xi+1 or xi ≤R xi+1.

∼L, ∼R and ∼LR are the equivalence relations generated by ≤L, ≤R and ≤LR, re-
spectively. Their equivalence classes are called left cells, right cells and two-sided cells,
respectively. It is immediate that two-sided cells are unions of left-cells which are also
unions of right cells.

We write x <L y if x ≤L y and x 6∼L y. The relations <R and <LR are defined similarly.
(See [14]).

2.9 Let YJ = wJXJ . If x ∈ W and x ≤R y for some y ∈ YJ then x ∈ YJ . Moreover,
YJ = {w ∈ W : w ≤R wJ} is a union of right cells. (see for example [15, 5.26.1])

For any subset J ⊆ S, let HJ denote the Hecke algebra corresponding to (WJ , J). From

[14, Theorem 1.1 and Lemma 2.6(vi)], we see that CwJ =
(
−q 1

2

)l(wJ )∑
y≤wJ (−q)−l(y)Ty.
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The right HJ -module CwJHJ has rank 1, since CwJTs = −CwJ for all s ∈ J . The
corresponding representation is described as the alternating representation in [6, §3] and
as the sign representation in [3, §67]. The right H-module CwJH is isomorphic to the
module induced from CwJHJ . It has an A-basis {CwJTd : d ∈ XJ}— it is clearly spanned
by these elements and they are independent over A since their ‘leading terms’ in the T -
basis of H have the form adTwJd where ad is invertible in A. We will refer to this basis as
the T -basis of CwJH and to any H-module of the form CwJH, and any module arising
from it by extending the scalars, as a monomial module. Note that in [2, page 314] an
induced monomial representation for a group is defined as any induced representation
from a one-dimensional representation of a subgroup.

Remark 2.10 There is an automorphism j of H defined by
(∑

y∈W ayTy

)
j

=
∑

y∈W ay (−q−1)
l(y)

Ty, where a 7→ a is the automorphism of A defined by q
1
2 7→ q−

1
2

(see [14, p.166]). This automorphism is used to relate the C-basis of H to another basis
{C ′w : w ∈ W} known as the C ′-basis, which may be defined by C ′w = (−1)l(w)Cwj.

As in the case of modules of the form CwJH, we see that {C ′wJTd : d ∈ XJ} is an
A-basis of C ′wJH. We will refer to this basis as the T -basis of C ′wJH.

In [19, Corollary 1.19], Xi obtains an A-basis for a module similar to the monomial module
CwJH. His result is equivalent to the following lemma—though the reader should note
that Xi uses the term C-basis for a basis which is different from the Kazhdan-Lusztig
C-basis in [14]. Since the proof is short, we include it for completeness.

Lemma 2.11 The module CwJH has an A-basis {Cy : y ≤R wJ}. We will refer to this
basis as the C-basis of CwJH.

Proof. Let Y = {Cy : y ∈ YJ}. If y ∈ YJ and s ∈ S then CyTs is an A-linear combination
of Cz, z ≤R y, from the definition of ≤R and 2.8. By 2.9, any such z is in YJ . Hence,
CwJH is in the A-linear span of Y .

We now show, using induction on the length of y ∈ Y , that Cy is in the A-linear span
of {CwJTd : d ∈ XJ}. Let y ∈ Y . Write y = wJe, with e ∈ XJ . If e = 1, the result is
trivial. Let e 6= 1 and write e = fs with f ∈ XJ , s ∈ S and l(e) = l(f) + 1. From 2.8, we

get CwJfTs = qCwJf + q
1
2CwJe +

∑
z<wJe, zs<z

a2(wJe, z)Cz, for suitable a2(x, z) ∈ A. Each

z in the right-hand sum with nonzero coefficient necessarily satisfies z ≤R wJe and hence
has the form wJg, for some g ∈ XJ , by 2.9. Moreover, l(g) < l(e). Hence, we can apply
the inductive hypothesis to all C-basis elements in this equation, other than CwJe and
this has a coefficient in A which is invertible. This completes the proof.

Remark 2.12 In a similar way, we find that the module C ′wJH has an A-basis {C ′y :y ≤R
wJ}. We will refer to this basis as the C ′-basis of C ′wJH. Morever, if x ≤L wJ , then
C ′x ∈ HC ′wJ so C ′xH is a homomorphic image of C ′wJH, a fact that we will need later on.

We now show that the change-of-basis matrix associated with the transition from the
C-basis of CwJH to the T -basis is, for a suitable ordering of the elements of the basis, a
triangular matrix over A which is invertible over A. We thank the referees for pointing
out to us that the polynomials gJe,d, which appear in the proof below, first appeared in
work of Deodhar [5]. See in particular [5, Proposition 3.4].
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Proposition 2.13 For each e ∈ XJ , CwJTe =
∑

d∈XJ , d≤e

gJe,dCwJd, where gJe,d denotes an

element of A, gJe,e is invertible in A and gJe,d = 0 if d, e ∈ XJ and d 6≤ e.

Proof. If e ∈ XJ , then wJe ≤R wJ so we can express CwJe in terms of the CwJTd, d ∈ XJ ,
in the following way: CwJe =

∑
d∈XJ ḡ

J
e,dCwJTd. We can be more precise about the coef-

ficients ḡJe,d. Using 2.7, and setting wJe = y, Cy =
∑

z≤y(−1)l(y)−l(z)q
1
2
l(y)−l(z)Pz,y(q

−1)Tz.
Also, z ≤ y if, and only if, z = y′d where y′ ∈ WJ and d ≤ e. From [14, (2.3g)],

Py′d,wJe(q) = PwJd,wJe(q) for any d ≤ e. Recall that CwJ =
(
−q 1

2

)l(wJ )∑
w∈WJ

(−q)−l(w)Tw.

Hence, Cy =
∑

d≤e(−1)l(e)−l(d)q
1
2
l(e)−l(d)PwJd,wJe(q

−1)CwJTd. So, we find that

ḡJe,d = (−1)l(e)−l(d)q
1
2
l(e)−l(d)PwJd,wJe(q

−1) if d ≤ e and ḡJe,d = 0 otherwise. Note, in partic-

ular, that ḡJe,d is in Z[q1/2, q−1/2] and ḡJe,e is invertible. By ordering the equations and the
entries with respect to the Bruhat order, the equations above may be rewritten in triangu-

lar form with invertible diagonal entries, CwJe =
∑

d∈XJ , d≤e

ḡJe,dCwJTd, for all e ∈ XJ . Thus,

we may invert this set of equations and get the equations CwJTe =
∑

d∈XJ , d≤e

gJe,dCwJd, for

e ∈ XJ , where gJe,d denotes an element of Z[q1/2, q−1/2], which can be described explicitly
in terms of the elements of the form ḡJe,d. We can extend the definition of gJe,d by setting
gJe,d = 0 if d, e ∈ XJ and d 6≤ e.

For w ∈ W , let Mw and M̂w denote the H-modules with A-bases {Cy : y ≤R w} and

{Cy : y <R w}, respectively, and let Sw = Mw/M̂w. Then Sw is a Kazhdan-Lusztig cell
module and affords the cell representation corresponding to the right cell containing w.
Note that CwH is a submodule of Mw. We see from Lemma 2.11 that, if w = wJ for
some J ⊆ S, then CwH = Mw.

Now clearly M̂wj is an H-submodule of Mwj. Define S•w=Mwj/M̂wj. Then S•w has
A-basis {C ′z + M̂wj : z ∼R w}.

It will be convenient on occasion to extend the scalars of the algebras under consider-
ation. Let R be any commutative ring with 1 and let A→ R be a ring homomorphism.
With each A-module M , we have an associated R-module R⊗AM , which we will denote
briefly as MR. In particular, we obtain an R-algebra HR and Kazhdan-Lusztig cell mod-
ules SR,w = R ⊗ Sw. Since j can be extended easily and uniquely to an automorphism

of HR, we see that the HR-module S•R,w is isomorphic to MR,wj/M̂R,wj. We will use F

to denote any field containing the field of fractions Q
(
q

1
2

)
of A, and assume that the

homomorphism A→ F is inclusion.

Remark 2.14 Suppose that x ∈ W and that x is a prefix of every y such that y ∼R x.
Then (i) CxH has a factor isomorphic to Sx and (ii) C ′xH has a factor isomorphic to
S•x. To see (i), let y ∼R x. Since x is a prefix of y, it is easy to prove, by induction
on the length of y, that Cy ∈ CxH + M̂x Hence, (CxH + M̂x)/M̂x is the A-span of

{Cy + M̂x : y ∼R x} = Sx. It follows that CxH has a factor isomorphic to Sx. (ii) may
be established in a similar way.

Proposition 2.15 For each w ∈ W , S•F,w and SF,w0w are isomorphic HF -modules.
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Proof. Let C ′ be the cell of W containing w. From [14, Corollary 3.2], we see that
the set C = {w0x : x ∈ C ′} is also a cell. We find a matrix representation β′ for the
representation of HF on S•F,w from the action of Ts on {C ′x : x ∈ C ′}. In a similar fashion
we find a matrix representation β for the representation of HF on SF,w0w from the action
of Ts on {Cx : x ∈ C}. The matrices Tsβ and Tsβ

′ are easily calculated and are seen to
be transposes of one another for each s ∈ S—note the similarity with the situation in the
proof of [15, Theorem 12.15] and [10, Corollary 2.8]. Since elements of W are conjugate
to their inverses, it follows from [12, 8.2.6] that the representations β and β′ have the
same trace function. As HF is split semisimple, the irreducible characters of HF form a
basis for the space of trace functions on HF (see [12, Exercise 7.4]). It follows that the
representations β and β′ are equivalent.

3 Cell modules and Specht modules

In this section, we will suppose that W is a Weyl group of type An. Let S = {s1, . . . , sn}

and let the corresponding Coxeter graph be
s1b s2b p p p snb . We can identify W

with the symmetric group Sn+1 by taking si to be the transposition (i, i + 1), for i =
1, . . . , n. In this case, the longest element of W is the permutation in which i 7→ n+2− i.

There is a natural bijection between the subsets J of S and the set of compositions of
n+1. Suppose that λ = (λ1, λ2, . . . , λr+1) is a composition of n+1. It will be convenient
to define an auxiliary sequence λ̂0, λ̂1, . . . , λ̂r+1. Set λ̂0 = 0, λ̂r+1 = n+ 1, λ̂i = λi + λ̂i−1

for i = 1, . . . , r and λr+1 = n+ 1− λ̂r. Then, the subset J(λ) of S which corresponds to
the composition λ of n+ 1 under this bijection is J(λ) = S − {sλ̂1

, sλ̂2
, . . . , sλ̂r}.

Now suppose that λ is a partition of n+1 with r+1 parts. We construct two tableaux tλ
and tλ of shape λ. If the cells are indexed by pairs (i, j) as usual, i being the row number
from the top and j the column number from the left, then tλ(i, j) := λ′1 + . . .+λ′j−1 + i =

λ̂′j−1 + i and tλ(i, j) := λ1 + . . . + λi−1 + j = λ̂i−1 + j for appropriate values of i and j.
Let tλ be the tableau of shape λ in which 1, 2, . . . , n+ 1 appear in order along successive
columns and let tλ be the tableau of shape λ in which 1, 2, . . . , n + 1 appear in order
along successive rows.

An element wλ of Sn+1 is defined by tλ(i, j)wλ = tλ(i, j) for appropriate values of
i and j.

The cells of W may be described in terms of the Robinson-Schensted correspondence.
See [17] for a good description of this correspondence. The correspondence is a bijection
of Sn+1 to pairs of standard tableaux (P,Q) of the same shape corresponding to partitions
of n+1, so that if w 7→ (P (w), Q(w)), then Q(w) = P (w−1). Note, in particular, that the
involutions are the elements w ∈ W for which Q(w) = P (w). If λ is a partition of n+ 1,
the pair of tableaux corresponding to wJ(λ) has the form (tλ′ , tλ′). Hence, the tableaux
corresponding to wJ(λ) have shape λ′, where λ′ denotes the partition conjugate to λ.

3.1 If P is a fixed standard tableau then the set {w ∈ W : P (w) = P} is a left cell
of W and the set {w ∈ W : Q(w) = P} is a right cell of W . See [14] and also [1] for
an alternative proof of this result. In [1], the reader should note that Ariki considers
permutations in Sn to act on the left while, in this paper, they act on the right. This
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causes the left and right cells to be interchanged with a consequent interchanging of the
rôles of the tableaux functions P and Q in some results.

Lemma 3.2 Let λ be a partition of n + 1. The element of Sn+1, which corresponds to
the pair of tableaux (tλ, tλ) under the Robinson-Schensted correspondence, is wJ(λ′)wλ′.

Proof. Let w[λ] be the element of Sn+1, which corresponds to the pair of tableaux (tλ, tλ).
Reversing the Robinson-Schensted process on the given pair of tableaux, we see that all
elements of the last column are removed, then all elements from the second last, and so
on.

w[λ] =

(
1 . . . λ̂′1 λ̂′1 + 1 . . . λ̂′2 . . . . . . λ̂′λ1−1 + 1 . . . λ̂′λ1

tλ(λ′1, 1) . . . tλ(1, 1) tλ(λ′2, 2) . . . tλ(1, 2) . . . . . . tλ(λ′λ1
, λ1) . . . tλ(1, λ1)

)
.

So w[λ]wλ =(
1 . . . λ̂′1 λ̂′1 + 1 . . . λ̂′2 . . . . . . λ̂′λ1−1 + 1 . . . λ̂′λ1

tλ(λ
′
1, 1) . . . tλ(1, 1) tλ(λ

′
2, 2) . . . tλ(1, 2) . . . . . . tλ(λ

′
λ1
, λ1) . . . tλ(1, λ1)

)
=

(
1 . . . λ̂′1 λ̂′1 + 1 . . . λ̂′2 . . . . . . λ̂′λ1−1 + 1 . . . λ̂′λ1

λ̂′1 . . . 1 λ̂′2 . . . λ̂′1 + 1 . . . . . . λ̂′λ1
. . . λ̂′λ1−1 + 1

)
= wJ(λ′).

Since wλ′ = w−1
λ , the result follows.

Lemma 3.3 (Compare [7, Lemma 1.2].) Let λ be a partition of n+ 1 and let
w = w0wJ(λ)wλ ∈ W . Then (i) wJ(λ)wλ ∈ YJ(λ), (ii) wJ(λ)d ∈ YJ(λ) for each prefix d of
wλ, (iii) wJ(λ)d is in the same right cell as wJ(λ) for each prefix d of wλ, (iv) the right
cell containing wJ(λ) is {wJ(λ)d : d is a prefix of wλ}, (v) w ∼L wJ(λ′), (vi) w is a prefix
of every element in the right cell containing it.

Proof. (i) From [6, Lemma 1.5], wλ ∈ XJ(λ).

(ii) If d is a prefix of wλ, then d ∈ XJ(λ) by [12, Lemma 2.2.1].

(iii) Take any prefix d of wλ. From [14, 2.3ef], wJ(λ)wλ ≤R wJ(λ)d ≤R wJ(λ).

We have seen above that wJ(λ) corresponds to the tableaux pair (tλ′ , tλ′). Since wJ(λ)wλ
corresponds to the tableaux pair (tλ

′
, tλ′), it follows from 3.1 that wJ(λ) ≤R wJ(λ)wλ.

Hence, wJ(λ)d ∼R wJ(λ).

(iv) Note that [6, Lemma 1.5] asserts that there are as many standard tableaux of
shape λ as there are prefixes of wλ. Since this is also the number of elements in the right
cell containing wJ(λ), by 3.1, we obtain the desired result using (iii).

(v) Let P and Q be tableaux as in the RS correspondence. From [17, Theorem 3.2.3]
and Lemma 3.2 we get P (w) = P (wJ(λ)wλ)

tr = P (wJ(λ′)). The result follows from 3.1.

(vi) It is immediate from (iv) and [14, Corollary 3.2] that the right cell containing w is
{wb : b a prefix of wλ′}. From [6, Lemma 4.1], in the case that λ is a partition, we can
deduce that w0 = wwλ′wJ(λ) with l(w0) = l(w) + l(wλ′) + l(wJ(λ)). The required result
now follows easily.
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As in [6, §3], define xλ =
∑

y∈WJ(λ)
Ty, yλ =

∑
w∈WJ(λ)

(−q)−l(w)Tw, the ‘permutation’

module Mλ = xλH and the Specht module Sλ = xλTwλyλ′H. Then xλ = q
1
2
l(wJ(λ))C ′wJ(λ)

and yλ =
(
−q− 1

2

)l(wJ(λ))

CwJ(λ)
. Also, CwJ(λ)

j =
(
−q− 1

2

)l(wJ(λ))

xλ = (−1)l(wJ(λ))C ′wJ(λ)
.

So MwJ(λ)
j = Mλ.

Lemma 3.4 Let λ be a partition of n + 1. Then the cell module SF,wJ(λ)
is the unique

common composition factor of the ‘permutation‘ module xλ′HF and the ‘monomial‘ mod-
ule yλHF . In particular, SF,wJ(λ)

is HF -isomorphic to the Specht module Sλ
′

F .

Proof. First recall that yλHF = CwJ(λ)
HF and xλ′HF = C ′wJ(λ′)

HF . With w defined

as in Lemma 3.3, w0w = wJ(λ)wλ ∼R wJ(λ). So, SF,wJ(λ)
= SF,wJ(λ)wλ . It now follows

from Proposition 2.15 that SF,wJ(λ)
∼= S•F,w as HF -modules. Using Lemma 3.3(vi) and

Remark 2.14 we get that S•F,w is a composition factor of C ′wHF and by Lemma 3.3(v)
and Remark 2.12 we get that C ′wHF is a homomorphic image of xλ′HF . We can deduce
that S•F,w and therefore SF,wJ(λ)

is a composition factor of xλ′HF . Moreover, by the way
it is defined, SF,wJ(λ)

is a composition factor of MF,wJ(λ)
= yλHF (see Lemma 2.11). Now

from [6, Lemma 4.1], in the case that λ is a partition, we get that xλ′HF and yλHF

have a unique common composition factor so the first statement of the Lemma follows.
To establish the second statement in the Lemma, note that Sλ

′
F = xλ′Twλ′yλHF is a

homomorphic image of yλHF and a submodule of xλ′HF .

We are now able to establish the isomorphism of the H-modules SwJ(λ)
and Sλ

′
, over the

scalars A, from which we can deduce a corresponding isomorphism over any commutative
ring of scalars with 1.

Theorem 3.5 If λ is a partition of n+ 1, then SwJ(λ)
∼= Sλ

′
as H-modules.

Proof. Define θ : MwJ(λ)
→ Sλ

′
by mθ = xλ′Twλ′m. Clearly, im θ = Sλ

′
. Next, we

show that M̂wJ(λ)
⊆ ker θ. For this purpose, we extend scalars from A to F . If we had

M̂wJ(λ)
6⊆ ker θ, then we would also have M̂F,wJ(λ)

6⊆ ker θF . This, in turn, implies that

the restriction of θF to M̂F,wJ(λ)
is non-zero. Since the image of θF is the simple HF -

module Sλ
′

F , we conclude that Sλ
′

F occurs as a composition factor of M̂F,wJ(λ)
, contrary

to Lemma 3.4. Thus, M̂wJ(λ)
⊆ ker θ. It then follows that the elements xλ′Twλ′Cw,

where w ∼R wJ(λ), form an F -spanning set of Sλ
′

F . Since dimF S
λ′
F = dimF SF,wJ(λ)

by
Lemma 3.4, the set {xλ′Twλ′Cw : w ∼R wJ(λ)} is linearly independent over F and hence

over A. Now, let r ∈ ker θ. Then r = m +
∑

w∼RwJ(λ)
αwCw for some m ∈ M̂wJ(λ)

and

αw ∈ A. Hence, 0 = rθ = mθ +
∑

w∼RwJ(λ)
αwCwθ =

∑
w∼RwJ(λ)

αw(Cwθ). But we have

already shown that {Cwθ : w ∼R wJ(λ)} is F -linearly independent, so αw = 0 for all such

w. Hence, r ∈ M̂wJ(λ)
, as desired. So, ker θ = M̂wJ(λ)

The isomorphism in the theorem is
now immediate.

This theorem provides us with a straightforward proof that Sλ
′
is a free A-module, a fact

already known in [6], since SwJ(λ)
is a free A-module by construction. If we had already

established this fact, the second part of the proof could have been shortened as follows.
The homomorphism θ induces a surjective H-module homomorphism θ̄ : SwJ(λ)

→ Sλ
′
,
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since SwJ(λ)
= MwJ(λ)

/M̂wJ(λ)
. Since both SwJ(λ)

and Sλ
′

are free A-modules of the same

rank, θ̄ is injective. Hence, θ̄ is the required isomorphism.

Corollary 3.6 Let R be any commutative ring with 1 and let A→ R be any ring homo-
morphism. If λ is a partition of n+ 1, then SR,wJ(λ)

∼= Sλ
′

R as HR-modules.

Proof. We need only observe that the isomorphism θ̄ in the proof of Theorem 3.5 extends
naturally to an isomorphism θ̄R : SR,wJ(λ)

→ Sλ
′

R .

Remark 3.7 By considering the induced isomorphism θ̄ in Theorem 3.5, it is immediate
that the set {xλ′Twλ′Cw : w ∼R wJ(λ)} is an A-basis of Sλ

′
– we call it the C-basis of Sλ

′
.

We note that by using different methods, Du in [7, 2.3(i)] proves that this is an A-basis
of the Specht module and calls it the canonical basis.

We also note that in [16] Mathas relates the Kazhdan-Lusztig cell module and the
corresponding Specht module in the special case of the group algebra.

4 The transition from the T -basis to the C-basis of

the Specht module

In this section, we again suppose that W is the Weyl group of type An and address in
the case of the Hecke algebra (see Theorem 4.1) the problem that Garsia and McLarnan
address in [9] in the case of the symmetric group and thus obtain a generalization of [9,
Theorem 5.3]. To achieve this we consider two different bases for the Specht module.

Following the discussion in the proof of Proposition 2.13 it will also be useful to have
the associated functions f̄λy,x = ḡλwJ(λ)y,wJ(λ)x

and fλy,x = gλwJ(λ)y,wJ(λ)x
defined for all x and

y with x ≤R wJ(λ) and y ≤R wJ(λ). Hence, for each e ∈ XJ ,

CwJ(λ)
Te =

∑
d∈XJ(λ), d a prefix of wλ

gλe,dCwJ(λ)d+
∑

d∈XJ(λ), d not a prefix of wλ

gλe,dCwJ(λ)d So, letting

y = wJ(λ)e, CwJ(λ)
TwJ(λ)y =

∑
x∼RwJ(λ)

fλy,xCx +
∑

x<RwJ(λ)
fλy,xCx. But xλ′Twλ′Cx = 0 for

all x <R wJ(λ) by Theorem 3.5. So, xλ′Twλ′CwJ(λ)
TwJ(λ)y =

∑
x∼RwJ(λ)

fλy,xxλ′Twλ′Cx.

From this last equation we get a system of equations by letting y run through the
elements of the right cell containing wJ(λ). Now fλy,y 6= 0 for all y ∼R wJ(λ) from
Proposition 2.13 so we can invert this system of equations and deduce that the set
{xλ′Twλ′CwJ(λ)

TwJ(λ)y : y ∼R wJ(λ)} which is the same as the set {xλ′Twλ′CwJ(λ)
Td :

d a prefix of wλ} is also a basis of Sλ
′

– we call it the T -basis of this module. We point
out that this last set is already proved to be a basis of Sλ

′
in the Standard Basis Theorem,

[6, Theorem 5.6].

It is clear from the above that the elements of the T -basis of Sλ
′

are indexed by the
elements in the right cell containing wJ(λ). We order the elements of this right cell with
respect to the Bruhat order and we let ρ be the matrix representation corresponding
to Sλ

′
with respect to this ordering of its T -basis. Keeping to the same ordering of

the elements of the cell containing wJ(λ), we also let σ be the matrix representation
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corresponding to this cell and Z be the change-of-basis matrix from the T -basis to the
C-basis of Sλ

′
It is also clear from the discussion above and the proof of Proposition 2.13

that Z is an invertible triangular matrix over A.

We also note that it is an immediate consequence of Theorem 3.5 that the representing
matrices of Sλ

′
, with respect to the C-basis of this module, are exactly the same as the

representing matrices of the cell representation corresponding to the cell containing wJ(λ)

and hence are given by the representation σ.

We sum up the above observations in the following theorem, using ρ, σ, Z and fλy,x as
defined above:

Theorem 4.1 The matrix representation ρ of the Specht module Sλ
′

with respect to its
standard basis and the matrix representation σ of the cell corresponding to this Specht
module are related by hσ = Z−1hρZ for all h ∈ H, where Z is a unitriangular matrix in
A with entries given by the fλy,x.

In Table 1, we give as an example the transition matrix for the representations corre-
sponding to the right cell {121, 1213, 12132, 12134, 121324, 1213243}.

Table 1: The transition matrix from the T -basis of S(3,1,1) to the C-basis

C121 C1213 C12132 C12134 C121324 C1213243

C121T∅ 1

C121T3 q q1/2

C121T32 q3/2 q

C121T34 q2 q3/2 q

C121T324 q5/2 q2 q2 q3/2

C121T3243 q3 q5/2 q2

Finally we explain how Theorem 4.1 relates to [9, Theorem 5.3] so for the discussion
that follows, we consider the specialization q1/2 7→ 1. We refer to James [13] for the
notation and for the basic results. The only change we make is that we write S̄λ and
M̄λ instead of Sλ and Mλ for the corresponding modules as defined in James [13], since
we are already using the symbols Sλ and Mλ for the submodules of the Hecke algebra in
the specialization under consideration.

Let λ be a partition of n+1 and let t be a λ-tableau. We define the elements ρt, κt and
et of the group algebra FSn+1 as follows. Let ρt =

∑
σ∈Rt σ, and κt =

∑
σ∈Ct sgn(σ)σ,

where Rt, Ct denote the row group and the column group of t, respectively, and let et be
the polytabloid {t}κt, where {t} denotes the tabloid defined by t. Recall that M̄λ is the
F -space spanned by the tabloids and that S̄λ is the F -space spanned by the polytabloids.

Following [13, pp.16,17], let θ : ρtFSn+1 → M̄λ be the mapping defined by ρtπ 7→ {t}π,
for π ∈ Sn+1. This is clearly a well-defined FSn+1-isomorphism from the right ideal
ρtFSn+1 onto M̄λ. Restricting θ to the right ideal ρtκtFSn+1 gives an isomorphism onto
S̄λ.

Consider now the special case t = tλ. Then ρtλ = xλ and κtλwλ = yλ′ . Hence,
wλκtλwλw

−1
λ = κtλ since κtπ = π−1κtπ for all π ∈ Sn+1. So, ρtλκtλ = xλwλyλ′w−1

λ
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and ρtλκtλFSn+1 = xλwλyλ′w−1
λ FSn+1 = xλwλyλ′FSn+1 = Sλ. That is, Sλθ = S̄λ. Now,

Sλ = xλwλyλ′FSn+1 and the set {xλwλyλ′d : d a prefix of wλ′} is the T -basis of Sλ as
defined above.

But {d : d a prefix of wλ′} = {w−1
λ d : d a prefix of wλ} since wλ′ = w−1

λ . Hence,
the T -basis of Sλ can be written as {xλwλyλ′w−1

λ d : d a prefix of wλ} = {ρtλκtλd :
d a prefix of wλ}. Now, for d a prefix of wλ, (ρtλκtλd)θ = {t}κtλd = etλd = etλd and
{etλd : d a prefix of wλ} = {et : t a standard λ-tableau}. This last basis is the basis of
S̄λ which gives Young’s natural representation (see [13, p.114 and Lemma 8.4]).

It is clear from the above argument that the representing matrices of Sλ with respect
to the T -basis, suitably ordered, are the same as the matrices for Young’s natural rep-
resentation for S̄λ = Sλθ. Combining this with the fact that the representing matrices
with respect to the C-basis of the Specht module are exactly the representing matri-
ces of the corresponding cell representation we can conclude that Theorem 4.1 gives a
generalization to [9, Theorem 5.3].
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