On relations between the classical and the Kazhdan-Lusztig representations of symmetric groups and associated Hecke algebras*

T.P.McDonough \dagger
Department of Mathematics, University of Wales, Aberystwyth SY23 3BZ, United Kingdom
C.A.Pallikaros ${ }^{\ddagger}$
Department of Mathematics and Statistics, University of Cyprus, P.O.Box 20537, 1678 Nicosia, Cyprus

14th January, 2005

Abstract

Let H be the Hecke algebra of a Coxeter system (W, S), where W is a Weyl group of type A_{n}, over the ring of scalars $A=\mathbf{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$, where q is an indeterminate. We show that the Specht module S^{λ}, as defined by Dipper and James [6], is naturally isomorphic over A to the cell module of Kazhdan and Lusztig [14] associated with the cell containing the longest element of a parabolic subgroup W_{J} for appropriate $J \subseteq S$. We give the association between J and λ explicitly. We introduce notions of the T-basis and C-basis of the Specht module and show that these bases are related by an invertible triangular matrix over A. We point out the connection with the work of Garsia and McLarnan [9] concerning the corresponding representations of the symmetric group.

1 Introduction

In this paper we investigate the relations between the classical and the Kazhdan-Lusztig representations of the symmetric groups and associated Hecke algebras. Using elementary methods we give a self-contained proof that the Specht module S^{λ}, as defined by Dipper and James in [6], is H-isomorphic to a module denoted by $S_{w_{J}}$ which is explicitly defined

[^0]and is seen to afford the cell representation of [14] associated with the right cell containing w_{J} when the scalars consist of the ring $A=\mathbf{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$, where q is an indeterminate. We give the association between J and λ explicitly. We note that in [6], for each partition λ of $n+1$, the 'permutation' and 'monomial' modules are defined as the modules generated by the elements x_{λ} and y_{λ} of H,respectively. We construct a natural isomorphism between the cell module and the corresponding Specht module using the modules $x_{\lambda} H$ and $y_{\mu} H$ for appropriate partitions λ and μ of $n+1$.
The standard basis of S^{λ} is given in [6]. We show how this basis relates to Young's natural representation. We also note that there is a natural basis of S^{λ} related to the elements of the right cell containing w_{J}. The representing matrices obtained using this basis are exactly the matrices of the corresponding cell representation. In this way we are able to compare Young's natural and the cell representation and show that these representations are related by an invertible triangular matrix over A. We can give an explicit description of the coefficients of this matrix in terms of Kazhdan-Lusztig polynomials. We note that Garsia and McLarnan [9] have addressed this problem in the case of the corresponding representations of the symmetric groups.
The GAP computational system (see [18] and [8]) and, in particular, the associated CHEVIE package (see [11]) have been invaluable tools for this work.

2 Preliminary results

Let (W, S) be a Coxeter system corresponding to a Weyl group W and let l be the associated length function. We recall some basic notions concerning Weyl groups and the associated Hecke algebras. Where appropriate, we will give references to these notions in [12] or [14]. Every result involving a 'left-oriented' object connected with a Weyl group or Hecke algebra, e.g. a left transversal, a relation defined in terms of multiplication on the left or a left module, has an analogous result involving the corresponding 'right-oriented' object. We shall freely translate results from the literature involving one orientation to results involving the other.
2.1 For each element $w \in W$, the left descent set, $L(w)$, and the right descent set, $R(w)$, are defined by $L(w):=\{s \in S: l(s w)<l(w)\}$ and $R(w):=\{s \in S: l(w s)<l(w)\}$.
2.2 For each subset $J \subseteq S$, the subgroup W_{J} generated by J is called a standard parabolic subgroup of W. It has a Coxeter system $\left(W_{J}, J\right)$. Its length function l_{J} is that induced from l. It has a unique longest element w_{J}. By tradition, w_{0} is written for w_{S}.
2.3 Let $x, y \in W$. We say that x is a prefix of y if $y=s_{1} s_{2} \ldots s_{p}$ where $s_{i} \in S$ for $i=1, \ldots, p, p=l(y)$ and $x=s_{1} s_{2} \ldots s_{r}$, for some $r \leq p$. The prefix relation corresponds to the weak Bruhat order in [6].
2.4 There is a special set of right coset representatives X_{J} associated with each parabolic subgroup W_{J}. An element of X_{J} is the unique element of minimum length in its coset. Moreover, if $w=v x$ where $v \in W_{J}$ and $x \in X_{J}$ then $l(w)=l(v)+l(x)$. Also, $X_{J}=$ $\{w \in W: L(w) \subseteq S-J\}$ and, if d_{J} denotes the longest element in X_{J}, then X_{J} is the set of prefixes of d_{J}. (See [12, Proposition 2.1.1 and Lemma 2.2.1]).
2.5 Let $w \in W$. If $J \subseteq L(w)$ then $w=w_{J} x$ where $x \in X_{J}$. (See [12, Lemma 1.5.2]). Conversely, if $w=w_{J} x$ where $x \in W$ and $l(w)=l\left(w_{J}\right)+l(x)$, then $x \in X_{J}$ and $J \subseteq L(w)$. (See [4, Lemma 3.2]).
2.6 The Hecke algebra H corresponding to (W, S) and defined over the ring $A=$ $\mathbf{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$, where q is an indeterminate, has a free A-basis $\left\{T_{w}: w \in W\right\}$ and multiplication defined by the rules (i) $T_{w} T_{w^{\prime}}=T_{w w^{\prime}}$ if $l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)$ and (ii) $\left(T_{s}+1\right)\left(T_{s}-q\right)=0$ if $s \in S$. The basis $\left\{T_{w}: w \in W\right\}$ is called the T-basis of H. (See [14]).
2.7 H has a basis $\left\{C_{w}: w \in W\right\}$, the C-basis, whose terms have the form $C_{y}=$ $\sum_{x \leq y}(-1)^{l(y)-l(x)} q^{\frac{1}{2} l(y)-l(x)} P_{x, y}\left(q^{-1}\right) T_{x}$, where $P_{x, y}(q)$ is a polynomial in q with integer coefficients of degree $\leq \frac{1}{2}(l(y)-l(x)-1)$ if $x<y$ and $P_{y, y}=1$. In the preceding sentence, we use \leq to denote the (strong) Bruhat partial order on W and we write $x<y$ if $x \leq y$ and $x \neq y$. If the degree of $P_{x, y}(q)$ is exactly $\frac{1}{2}(l(y)-l(x)-1)$, we write $\mu(x, y)$, and $\mu(y, x)$, for its leading coefficient, which is a nonzero integer. For all other pairs $x, y \in W$, we set $\mu(x, y)=0$.

In [14, 2.3ac], the multiplication of C-basis elements by $T_{s}, s \in S$ is described and is as follows,
$2.8 s x<x \Rightarrow T_{s} C_{x}=-C_{x}$ and $x<s x \Rightarrow T_{s} C_{x}=q C_{x}+q^{\frac{1}{2}} C_{s x}+\sum_{z<x, s z<z} \mu(z, x) C_{z}$.
$x s<x \Rightarrow C_{x} T_{s}=-C_{x}$ and $x<x s \Rightarrow C_{x} T_{s}=q C_{x}+q^{\frac{1}{2}} C_{x s}+\sum_{z<x, z s<z} \mu(x, z) C_{z}$.
There are two reflexive transitive relations (preorders), \leq_{L} and \leq_{R}, defined on W using the C-basis. The preorder \leq_{L} is generated by all statements of the form: $x \leq_{L} y$ if C_{x} occurs with nonzero coefficient in the expression of $T_{s} C_{y}$ in the C-basis, for some $s \in S$. The preorder \leq_{R} is defined similarly, taking $C_{y} T_{s}$ instead of $T_{s} C_{y}$ in the preceding sentence.
A third preorder $\leq_{L R}$ is defined using the previous two preorders: $x \leq_{L R} y$ if there is a sequence of elements $x_{0}=x, x_{1}, \ldots x_{r}=y$ of W such that for each integer i, $0 \leq i \leq r-1$, either $x_{i} \leq_{L} x_{i+1}$ or $x_{i} \leq_{R} x_{i+1}$.
\sim_{L}, \sim_{R} and $\sim_{L R}$ are the equivalence relations generated by \leq_{L}, \leq_{R} and $\leq_{L R}$, respectively. Their equivalence classes are called left cells, right cells and two-sided cells, respectively. It is immediate that two-sided cells are unions of left-cells which are also unions of right cells.

We write $x<_{L} y$ if $x \leq_{L} y$ and $x \not \chi_{L} y$. The relations $<_{R}$ and $<_{L R}$ are defined similarly. (See [14]).
2.9 Let $Y_{J}=w_{J} X_{J}$. If $x \in W$ and $x \leq_{R} y$ for some $y \in Y_{J}$ then $x \in Y_{J}$. Moreover, $Y_{J}=\left\{w \in W: w \leq_{R} w_{J}\right\}$ is a union of right cells. (see for example [15, 5.26.1])

For any subset $J \subseteq S$, let H_{J} denote the Hecke algebra corresponding to $\left(W_{J}, J\right)$. From [14, Theorem 1.1 and Lemma 2.6(vi)], we see that $C_{w_{J}}=\left(-q^{\frac{1}{2}}\right)^{l\left(w_{J}\right)} \sum_{y \leq w_{J}}(-q)^{-l(y)} T_{y}$.

The right H_{J}-module $C_{w_{J}} H_{J}$ has rank 1, since $C_{w_{J}} T_{s}=-C_{w_{J}}$ for all $s \in J$. The corresponding representation is described as the alternating representation in $[6, \S 3]$ and as the sign representation in $[3, \S 67]$. The right H-module $C_{w_{J}} H$ is isomorphic to the module induced from $C_{w_{J}} H_{J}$. It has an A-basis $\left\{C_{w_{J}} T_{d}: d \in X_{J}\right\}$ - it is clearly spanned by these elements and they are independent over A since their 'leading terms' in the T basis of H have the form $a_{d} T_{w_{J} d}$ where a_{d} is invertible in A. We will refer to this basis as the T-basis of $C_{w_{J}} H$ and to any H-module of the form $C_{w_{J}} H$, and any module arising from it by extending the scalars, as a monomial module. Note that in [2, page 314] an induced monomial representation for a group is defined as any induced representation from a one-dimensional representation of a subgroup.

Remark 2.10 There is an automorphism j of H defined by $\left(\sum_{y \in W} a_{y} T_{y}\right) j$ $=\sum_{y \in W} \bar{a}_{y}\left(-q^{-1}\right)^{l(y)} T_{y}$, where $a \mapsto \bar{a}$ is the automorphism of A defined by $q^{\frac{1}{2}} \mapsto q^{-\frac{1}{2}}$ (see [14, p.166]). This automorphism is used to relate the C-basis of H to another basis $\left\{C_{w}^{\prime}: w \in W\right\}$ known as the C^{\prime}-basis, which may be defined by $C_{w}^{\prime}=(-1)^{l(w)} C_{w} j$.
As in the case of modules of the form $C_{w_{J}} H$, we see that $\left\{C_{w_{J}}^{\prime} T_{d}: d \in X_{J}\right\}$ is an A-basis of $C_{w_{J}}^{\prime} H$. We will refer to this basis as the T-basis of $C_{w_{J}}^{\prime} H$.

In [19, Corollary 1.19], Xi obtains an A-basis for a module similar to the monomial module $C_{w_{J}} H$. His result is equivalent to the following lemma-though the reader should note that Xi uses the term C-basis for a basis which is different from the Kazhdan-Lusztig C-basis in [14]. Since the proof is short, we include it for completeness.

Lemma 2.11 The module $C_{w_{J}} H$ has an A-basis $\left\{C_{y}: y \leq_{R} w_{J}\right\}$. We will refer to this basis as the C-basis of $C_{w_{J}} H$.

Proof. Let $Y=\left\{C_{y}: y \in Y_{J}\right\}$. If $y \in Y_{J}$ and $s \in S$ then $C_{y} T_{s}$ is an A-linear combination of $C_{z}, z \leq_{R} y$, from the definition of \leq_{R} and 2.8. By 2.9, any such z is in Y_{J}. Hence, $C_{w_{J}} H$ is in the A-linear span of Y.
We now show, using induction on the length of $y \in Y$, that C_{y} is in the A-linear span of $\left\{C_{w_{J}} T_{d}: d \in X_{J}\right\}$. Let $y \in Y$. Write $y=w_{J} e$, with $e \in X_{J}$. If $e=1$, the result is trivial. Let $e \neq 1$ and write $e=f s$ with $f \in X_{J}, s \in S$ and $l(e)=l(f)+1$. From 2.8, we get $C_{w_{J} f} T_{s}=q C_{w_{J} f}+q^{\frac{1}{2}} C_{w_{J} e}+\sum_{z<w_{J} e, z s<z} a_{2}\left(w_{J} e, z\right) C_{z}$, for suitable $a_{2}(x, z) \in A$. Each z in the right-hand sum with nonzero coefficient necessarily satisfies $z \leq_{R} w_{J} e$ and hence has the form $w_{J} g$, for some $g \in X_{J}$, by 2.9. Moreover, $l(g)<l(e)$. Hence, we can apply the inductive hypothesis to all C-basis elements in this equation, other than $C_{w_{J} e}$ and this has a coefficient in A which is invertible. This completes the proof.

Remark 2.12 In a similar way, we find that the module $C_{w_{J}}^{\prime} H$ has an A-basis $\left\{C_{y}^{\prime}: y \leq_{R}\right.$ $\left.w_{J}\right\}$. We will refer to this basis as the C^{\prime}-basis of $C_{w_{J}}^{\prime} H$. Morever, if $x \leq_{L} w_{J}$, then $C_{x}^{\prime} \in H C_{w_{J}}^{\prime}$ so $C_{x}^{\prime} H$ is a homomorphic image of $C_{w_{J}}^{\prime} H$, a fact that we will need later on.

We now show that the change-of-basis matrix associated with the transition from the C-basis of $C_{w_{J}} H$ to the T-basis is, for a suitable ordering of the elements of the basis, a triangular matrix over A which is invertible over A. We thank the referees for pointing out to us that the polynomials $g_{e, d}^{J}$, which appear in the proof below, first appeared in work of Deodhar [5]. See in particular [5, Proposition 3.4].

Proposition 2.13 For each $e \in X_{J}, C_{w_{J}} T_{e}=\sum_{d \in X_{J}, d \leq e} g_{e, d}^{J} C_{w_{J} d}$, where $g_{e, d}^{J}$ denotes an element of $A, g_{e, e}^{J}$ is invertible in A and $g_{e, d}^{J}=0$ if $d, e \in X_{J}$ and $d \not \leq e$.

Proof. If $e \in X_{J}$, then $w_{J} e \leq_{R} w_{J}$ so we can express $C_{w_{J} e}$ in terms of the $C_{w_{J}} T_{d}, d \in X_{J}$, in the following way: $C_{w_{J} e}=\sum_{d \in X_{J}} \bar{g}_{e, d}^{J} C_{w_{J}} T_{d}$. We can be more precise about the coefficients $\bar{g}_{e, d}^{J}$. Using 2.7, and setting $w_{J} e=y, C_{y}=\sum_{z \leq y}(-1)^{l(y)-l(z)} q^{\frac{1}{2} l(y)-l(z)} P_{z, y}\left(q^{-1}\right) T_{z}$. Also, $z \leq y$ if, and only if, $z=y^{\prime} d$ where $y^{\prime} \in W_{J}$ and $d \leq e$. From [14, (2.3g)], $P_{y^{\prime} d, w_{J} e}(q)=P_{w_{J} d, w_{J} e}(q)$ for any $d \leq e$. Recall that $C_{w_{J}}=\left(-q^{\frac{1}{2}}\right)^{\bar{l}\left(w_{J}\right)} \sum_{w \in W_{J}}(-q)^{-l(w)} T_{w}$. Hence, $\quad C_{y}=\sum_{d \leq e}(-1)^{l(e)-l(d)} q^{\frac{1}{2} l(e)-l(d)} P_{w_{J} d, w_{J} e}\left(q^{-1}\right) C_{w_{J}} T_{d}$. So, we find that $\bar{g}_{e, d}^{J}=(-1)^{l(e)-l(d)} q^{\frac{1}{2} l(\bar{e})-l(d)} P_{w_{J} d, w_{J} e}\left(q^{-1}\right)$ if $d \leq e$ and $\bar{g}_{e, d}^{J}=0$ otherwise. Note, in particular, that $\bar{g}_{e, d}^{J}$ is in $Z\left[q^{1 / 2}, q^{-1 / 2}\right]$ and $\bar{g}_{e, e}^{J}$ is invertible. By ordering the equations and the entries with respect to the Bruhat order, the equations above may be rewritten in triangular form with invertible diagonal entries, $C_{w_{J} e}=\sum_{d \in X_{J}, d \leq e} \bar{g}_{e, d}^{J} C_{w_{J}} T_{d}$, for all $e \in X_{J}$. Thus, we may invert this set of equations and get the equations $C_{w_{J}} T_{e}=\sum_{d \in X_{J}, d \leq e} g_{e, d}^{J} C_{w_{J} d}$, for $e \in X_{J}$, where $g_{e, d}^{J}$ denotes an element of $Z\left[q^{1 / 2}, q^{-1 / 2}\right]$, which can be described explicitly in terms of the elements of the form $\bar{g}_{e, d}^{J}$. We can extend the definition of $g_{e, d}^{J}$ by setting $g_{e, d}^{J}=0$ if $d, e \in X_{J}$ and $d \not \leq e$.

For $w \in W$, let M_{w} and \hat{M}_{w} denote the H-modules with A-bases $\left\{C_{y}: y \leq_{R} w\right\}$ and $\left\{C_{y}: y<_{R} w\right\}$, respectively, and let $S_{w}=M_{w} / \hat{M}_{w}$. Then S_{w} is a Kazhdan-Lusztig cell module and affords the cell representation corresponding to the right cell containing w. Note that $C_{w} H$ is a submodule of M_{w}. We see from Lemma 2.11 that, if $w=w_{J}$ for some $J \subseteq S$, then $C_{w} H=M_{w}$.

Now clearly $\hat{M}_{w} j$ is an H-submodule of $M_{w} j$. Define $S_{w}^{\bullet}=M_{w} j / \hat{M}_{w} j$. Then S_{w}^{\bullet} has A-basis $\left\{C_{z}^{\prime}+\hat{M}_{w} j: z \sim_{R} w\right\}$.

It will be convenient on occasion to extend the scalars of the algebras under consideration. Let R be any commutative ring with 1 and let $A \rightarrow R$ be a ring homomorphism. With each A-module M, we have an associated R-module $R \otimes_{A} M$, which we will denote briefly as M_{R}. In particular, we obtain an R-algebra H_{R} and Kazhdan-Lusztig cell modules $S_{R, w}=R \otimes S_{w}$. Since j can be extended easily and uniquely to an automorphism of H_{R}, we see that the H_{R}-module $S_{R, w}^{\bullet}$ is isomorphic to $M_{R, w} j / \hat{M}_{R, w} j$. We will use F to denote any field containing the field of fractions $\mathbf{Q}\left(q^{\frac{1}{2}}\right)$ of A, and assume that the homomorphism $A \rightarrow F$ is inclusion.

Remark 2.14 Suppose that $x \in W$ and that x is a prefix of every y such that $y \sim_{R} x$. Then (i) $C_{x} H$ has a factor isomorphic to S_{x} and (ii) $C_{x}^{\prime} H$ has a factor isomorphic to S_{x}^{\bullet}. To see (i), let $y \sim_{R} x$. Since x is a prefix of y, it is easy to prove, by induction on the length of y, that $C_{y} \in C_{x} H+\hat{M}_{x}$ Hence, $\left(C_{x} H+\hat{M}_{x}\right) / \hat{M}_{x}$ is the A-span of $\left\{C_{y}+\hat{M}_{x}: y \sim_{R} x\right\}=S_{x}$. It follows that $C_{x} H$ has a factor isomorphic to S_{x}. (ii) may be established in a similar way.

Proposition 2.15 For each $w \in W, S_{F, w}^{\bullet}$ and $S_{F, w_{0} w}$ are isomorphic H_{F}-modules.

Proof. Let \mathcal{C}^{\prime} be the cell of W containing w. From [14, Corollary 3.2], we see that the set $\mathcal{C}=\left\{w_{0} x: x \in \mathcal{C}^{\prime}\right\}$ is also a cell. We find a matrix representation β^{\prime} for the representation of H_{F} on $S_{F, w}^{\bullet}$ from the action of T_{s} on $\left\{C_{x}^{\prime}: x \in \mathcal{C}^{\prime}\right\}$. In a similar fashion we find a matrix representation β for the representation of H_{F} on $S_{F, w_{0} w}$ from the action of T_{s} on $\left\{C_{x}: x \in \mathcal{C}\right\}$. The matrices $T_{s} \beta$ and $T_{s} \beta^{\prime}$ are easily calculated and are seen to be transposes of one another for each $s \in S$ - note the similarity with the situation in the proof of [15, Theorem 12.15] and [10, Corollary 2.8]. Since elements of W are conjugate to their inverses, it follows from [12, 8.2.6] that the representations β and β^{\prime} have the same trace function. As H_{F} is split semisimple, the irreducible characters of H_{F} form a basis for the space of trace functions on H_{F} (see [12, Exercise 7.4]). It follows that the representations β and β^{\prime} are equivalent.

3 Cell modules and Specht modules

In this section, we will suppose that W is a Weyl group of type A_{n}. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and let the corresponding Coxeter graph be $\begin{array}{cc}s_{1} & s_{2} \\ 0 & \cdots\end{array} \underbrace{s_{n}}_{0}$. We can identify W with the symmetric group S_{n+1} by taking s_{i} to be the transposition $(i, i+1)$, for $i=$ $1, \ldots, n$. In this case, the longest element of W is the permutation in which $i \mapsto n+2-i$.
There is a natural bijection between the subsets J of S and the set of compositions of $n+1$. Suppose that $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r+1}\right)$ is a composition of $n+1$. It will be convenient to define an auxiliary sequence $\hat{\lambda}_{0}, \hat{\lambda}_{1}, \ldots, \hat{\lambda}_{r+1}$. Set $\hat{\lambda}_{0}=0, \hat{\lambda}_{r+1}=n+1, \hat{\lambda}_{i}=\lambda_{i}+\hat{\lambda}_{i-1}$ for $i=1, \ldots, r$ and $\lambda_{r+1}=n+1-\hat{\lambda}_{r}$. Then, the subset $J(\lambda)$ of S which corresponds to the composition λ of $n+1$ under this bijection is $J(\lambda)=S-\left\{s_{\hat{\lambda}_{1}}, s_{\hat{\lambda}_{2}}, \ldots, s_{\hat{\lambda}_{r}}\right\}$.

Now suppose that λ is a partition of $n+1$ with $r+1$ parts. We construct two tableaux t_{λ} and t^{λ} of shape λ. If the cells are indexed by pairs (i, j) as usual, i being the row number from the top and j the column number from the left, then $t_{\lambda}(i, j):=\lambda_{1}^{\prime}+\ldots+\lambda_{j-1}^{\prime}+i=$ $\hat{\lambda}_{j-1}^{\prime}+i$ and $t^{\lambda}(i, j):=\lambda_{1}+\ldots+\lambda_{i-1}+j=\hat{\lambda}_{i-1}+j$ for appropriate values of i and j. Let t_{λ} be the tableau of shape λ in which $1,2, \ldots, n+1$ appear in order along successive columns and let t^{λ} be the tableau of shape λ in which $1,2, \ldots, n+1$ appear in order along successive rows.

An element w_{λ} of S_{n+1} is defined by $t^{\lambda}(i, j) w_{\lambda}=t_{\lambda}(i, j)$ for appropriate values of i and j.

The cells of W may be described in terms of the Robinson-Schensted correspondence. See [17] for a good description of this correspondence. The correspondence is a bijection of S_{n+1} to pairs of standard tableaux (P, Q) of the same shape corresponding to partitions of $n+1$, so that if $w \mapsto(P(w), Q(w))$, then $Q(w)=P\left(w^{-1}\right)$. Note, in particular, that the involutions are the elements $w \in W$ for which $Q(w)=P(w)$. If λ is a partition of $n+1$, the pair of tableaux corresponding to $w_{J(\lambda)}$ has the form $\left(t_{\lambda^{\prime}}, t_{\lambda^{\prime}}\right)$. Hence, the tableaux corresponding to $w_{J(\lambda)}$ have shape λ^{\prime}, where λ^{\prime} denotes the partition conjugate to λ.
3.1 If P is a fixed standard tableau then the set $\{w \in W: P(w)=P\}$ is a left cell of W and the set $\{w \in W: Q(w)=P\}$ is a right cell of W. See [14] and also [1] for an alternative proof of this result. In [1], the reader should note that Ariki considers permutations in S_{n} to act on the left while, in this paper, they act on the right. This
causes the left and right cells to be interchanged with a consequent interchanging of the rôles of the tableaux functions P and Q in some results.

Lemma 3.2 Let λ be a partition of $n+1$. The element of S_{n+1}, which corresponds to the pair of tableaux $\left(t^{\lambda}, t_{\lambda}\right)$ under the Robinson-Schensted correspondence, is $w_{J\left(\lambda^{\prime}\right)} w_{\lambda^{\prime}}$.

Proof. Let $w^{[\lambda]}$ be the element of S_{n+1}, which corresponds to the pair of tableaux $\left(t^{\lambda}, t_{\lambda}\right)$. Reversing the Robinson-Schensted process on the given pair of tableaux, we see that all elements of the last column are removed, then all elements from the second last, and so on.

So $w^{[\lambda]} w_{\lambda}=$

$$
\begin{aligned}
& \left(\begin{array}{cccccccccc}
1 & \ldots & \hat{\lambda}_{1}^{\prime} & \hat{\lambda}_{1}^{\prime}+1 & \ldots & \hat{\lambda}_{2}^{\prime} & \ldots & \ldots & \hat{\lambda}_{\lambda_{1}-1}^{\prime}+1 & \ldots \\
t_{\lambda_{1}}^{\prime} \\
t_{\lambda}\left(\lambda_{1}^{\prime}, 1\right) & \ldots & t_{\lambda}(1,1) & t_{\lambda}\left(\lambda_{2}^{\prime}, 2\right) & \ldots & t_{\lambda}(1,2) & \ldots & \ldots & t_{\lambda}\left(\lambda_{\lambda_{1}}^{\prime}, \lambda_{1}\right) & \ldots
\end{array} t_{\lambda}\left(1, \lambda_{1}\right)\right) ~\left(\lambda_{1}\right) \\
& =\left(\begin{array}{ccccccccccc}
1 & \ldots & \hat{\lambda}_{1}^{\prime} & \hat{\lambda}_{1}^{\prime}+1 & \ldots & \hat{\lambda}_{2}^{\prime} & \ldots & \ldots & \hat{\lambda}_{\lambda_{1}-1}^{\prime}+1 & \ldots & \hat{\lambda}_{\lambda_{1}}^{\prime} \\
\hat{\lambda}_{1}^{\prime} & \ldots & 1 & \hat{\lambda}_{2}^{\prime} & \ldots & \hat{\lambda}_{1}^{\prime}+1 & \ldots & \ldots & \hat{\lambda}_{\lambda_{1}}^{\prime} & \ldots & \hat{\lambda}_{\lambda_{1}-1}^{\prime}+1
\end{array}\right)=w_{J\left(\lambda^{\prime}\right)} .
\end{aligned}
$$

Since $w_{\lambda^{\prime}}=w_{\lambda}^{-1}$, the result follows.
Lemma 3.3 (Compare [7, Lemma 1.2].) Let λ be a partition of $n+1$ and let $w=w_{0} w_{J(\lambda)} w_{\lambda} \in W$. Then (i) $w_{J(\lambda)} w_{\lambda} \in Y_{J(\lambda)}$, (ii) $w_{J(\lambda)} d \in Y_{J(\lambda)}$ for each prefix d of w_{λ}, (iii) $w_{J(\lambda)} d$ is in the same right cell as $w_{J(\lambda)}$ for each prefix d of w_{λ}, (iv) the right cell containing $w_{J(\lambda)}$ is $\left\{w_{J(\lambda)} d: d\right.$ is a prefix of $\left.w_{\lambda}\right\}$, (v) $w \sim_{L} w_{J\left(\lambda^{\prime}\right)}$, (vi) w is a prefix of every element in the right cell containing it.

Proof. (i) From [6, Lemma 1.5], $w_{\lambda} \in X_{J(\lambda)}$.
(ii) If d is a prefix of w_{λ}, then $d \in X_{J(\lambda)}$ by [12, Lemma 2.2.1].
(iii) Take any prefix d of w_{λ}. From [14, 2.3ef], $w_{J(\lambda)} w_{\lambda} \leq_{R} w_{J(\lambda)} d \leq_{R} w_{J(\lambda)}$.

We have seen above that $w_{J(\lambda)}$ corresponds to the tableaux pair $\left(t_{\lambda^{\prime}}, t_{\lambda^{\prime}}\right)$. Since $w_{J(\lambda)} w_{\lambda}$ corresponds to the tableaux pair $\left(t^{\lambda^{\prime}}, t_{\lambda^{\prime}}\right)$, it follows from 3.1 that $w_{J(\lambda)} \leq_{R} w_{J(\lambda)} w_{\lambda}$. Hence, $w_{J(\lambda)} d \sim_{R} w_{J(\lambda)}$.
(iv) Note that [6, Lemma 1.5] asserts that there are as many standard tableaux of shape λ as there are prefixes of w_{λ}. Since this is also the number of elements in the right cell containing $w_{J(\lambda)}$, by 3.1, we obtain the desired result using (iii).
(v) Let P and Q be tableaux as in the RS correspondence. From [17, Theorem 3.2.3] and Lemma 3.2 we get $P(w)=P\left(w_{J(\lambda)} w_{\lambda}\right)^{t r}=P\left(w_{J\left(\lambda^{\prime}\right)}\right)$. The result follows from 3.1.
(vi) It is immediate from (iv) and [14, Corollary 3.2] that the right cell containing w is $\left\{w b: b\right.$ a prefix of $\left.w_{\lambda^{\prime}}\right\}$. From [6, Lemma 4.1], in the case that λ is a partition, we can deduce that $w_{0}=w w_{\lambda^{\prime}} w_{J(\lambda)}$ with $l\left(w_{0}\right)=l(w)+l\left(w_{\lambda^{\prime}}\right)+l\left(w_{J(\lambda)}\right)$. The required result now follows easily.

As in $[6, \S 3]$, define $x_{\lambda}=\sum_{y \in W_{J(\lambda)}} T_{y}, y_{\lambda}=\sum_{w \in W_{J(\lambda)}}(-q)^{-l(w)} T_{w}$, the 'permutation' module $M^{\lambda}=x_{\lambda} H$ and the Specht module $S^{\lambda}=x_{\lambda} T_{w_{\lambda}} y_{\lambda^{\prime}} H$. Then $x_{\lambda}=q^{\frac{1}{2} l\left(w_{J(\lambda)}\right)} C_{w_{J(\lambda)}}^{\prime}$ and $y_{\lambda}=\left(-q^{-\frac{1}{2}}\right)^{l\left(w_{J(\lambda)}\right)} C_{w_{J(\lambda)}}$. Also, $C_{w_{J(\lambda)}} j=\left(-q^{-\frac{1}{2}}\right)^{l\left(w_{J(\lambda)}\right)} x_{\lambda}=(-1)^{l\left(w_{J(\lambda))}\right.} C_{w_{J(\lambda)}}^{\prime}$. So $M_{w_{J(\lambda)}} j=M^{\lambda}$.

Lemma 3.4 Let λ be a partition of $n+1$. Then the cell module $S_{F, w_{J(\lambda)}}$ is the unique common composition factor of the 'permutation' module $x_{\lambda^{\prime}} H_{F}$ and the 'monomial' module $y_{\lambda} H_{F}$. In particular, $S_{F, w_{J(\lambda)}}$ is H_{F}-isomorphic to the Specht module $S_{F}^{\lambda^{\prime}}$.

Proof. First recall that $y_{\lambda} H_{F}=C_{w_{J(\lambda)}} H_{F}$ and $x_{\lambda^{\prime}} H_{F}=C_{w_{J_{\left(\lambda^{\prime}\right)}}^{\prime}} H_{F}$. With w defined as in Lemma 3.3, $w_{0} w=w_{J(\lambda)} w_{\lambda} \sim_{R} w_{J(\lambda)}$. So, $S_{F, w_{J(\lambda)}}=S_{F, w_{J(\lambda)} w_{\lambda}}$. It now follows from Proposition 2.15 that $S_{F, w_{J(\lambda)}} \cong S_{F, w}^{\bullet}$ as H_{F}-modules. Using Lemma 3.3(vi) and Remark 2.14 we get that $S_{F, w}^{\bullet}$ is a composition factor of $C_{w}^{\prime} H_{F}$ and by Lemma 3.3(v) and Remark 2.12 we get that $C_{w}^{\prime} H_{F}$ is a homomorphic image of $x_{\lambda^{\prime}} H_{F}$. We can deduce that $S_{F, w}^{\bullet}$ and therefore $S_{F, w_{J(\lambda)}}$ is a composition factor of $x_{\lambda^{\prime}} H_{F}$. Moreover, by the way it is defined, $S_{F, w_{J(\lambda)}}$ is a composition factor of $M_{F, w_{J(\lambda)}}=y_{\lambda} H_{F}$ (see Lemma 2.11). Now from [6, Lemma 4.1], in the case that λ is a partition, we get that $x_{\lambda^{\prime}} H_{F}$ and $y_{\lambda} H_{F}$ have a unique common composition factor so the first statement of the Lemma follows. To establish the second statement in the Lemma, note that $S_{F}^{\lambda^{\prime}}=x_{\lambda^{\prime}} T_{w_{\lambda}} y_{\lambda} H_{F}$ is a homomorphic image of $y_{\lambda} H_{F}$ and a submodule of $x_{\lambda^{\prime}} H_{F}$.

We are now able to establish the isomorphism of the H-modules $S_{w_{J(\lambda)}}$ and $S^{\lambda^{\prime}}$, over the scalars A, from which we can deduce a corresponding isomorphism over any commutative ring of scalars with 1 .

Theorem 3.5 If λ is a partition of $n+1$, then $S_{w_{J(\lambda)}} \cong S^{\lambda^{\prime}}$ as H-modules.
Proof. Define $\theta: M_{w_{J(\lambda)}} \rightarrow S^{\lambda^{\prime}}$ by $m \theta=x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} m$. Clearly, $\operatorname{im} \theta=S^{\lambda^{\prime}}$. Next, we show that $\hat{M}_{w_{J(\lambda)}} \subseteq \operatorname{ker} \theta$. For this purpose, we extend scalars from A to F. If we had $\hat{M}_{w_{J(\lambda)}} \nsubseteq \operatorname{ker} \theta$, then we would also have $\hat{M}_{F, w_{J(\lambda)}} \nsubseteq \operatorname{ker} \theta_{F}$. This, in turn, implies that the restriction of θ_{F} to $\hat{M}_{F, w_{J(\lambda)}}$ is non-zero. Since the image of θ_{F} is the simple $H_{F^{-}}$ module $S_{F}^{\lambda^{\prime}}$, we conclude that $S_{F}^{\lambda^{\prime}}$ occurs as a composition factor of $\hat{M}_{F, w_{J(\lambda)}}$, contrary to Lemma 3.4. Thus, $\hat{M}_{w_{J(\lambda)}} \subseteq \operatorname{ker} \theta$. It then follows that the elements $x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{w}$, where $w \sim_{R} w_{J(\lambda)}$, form an F-spanning set of $S_{F}^{\lambda^{\prime}}$. Since $\operatorname{dim}_{F} S_{F}^{\lambda^{\prime}}=\operatorname{dim}_{F} S_{F, w_{J(\lambda)}}$ by Lemma 3.4, the set $\left\{x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{w}: w \sim_{R} w_{J(\lambda)}\right\}$ is linearly independent over F and hence over A. Now, let $r \in \operatorname{ker} \theta$. Then $r=m+\sum_{w \sim_{R} w_{J(\lambda)}} \alpha_{w} C_{w}$ for some $m \in \hat{M}_{w_{J(\lambda)}}$ and $\alpha_{w} \in A$. Hence, $0=r \theta=m \theta+\sum_{w \sim_{R} w_{J(\lambda)}} \alpha_{w} C_{w} \theta=\sum_{w \sim_{R} w_{J(\lambda)}} \alpha_{w}\left(C_{w} \theta\right)$. But we have already shown that $\left\{C_{w} \theta: w \sim_{R} w_{J(\lambda)}\right\}$ is F-linearly independent, so $\alpha_{w}=0$ for all such w. Hence, $r \in \hat{M}_{w_{J(\lambda)}}$, as desired. So, $\operatorname{ker} \theta=\hat{M}_{w_{J(\lambda)}}$ The isomorphism in the theorem is now immediate.

This theorem provides us with a straightforward proof that $S^{\lambda^{\prime}}$ is a free A-module, a fact already known in [6], since $S_{w_{J(\lambda)}}$ is a free A-module by construction. If we had already established this fact, the second part of the proof could have been shortened as follows. The homomorphism θ induces a surjective H-module homomorphism $\bar{\theta}: S_{w_{J(\lambda)}} \rightarrow S^{\lambda^{\prime}}$,
since $S_{w_{J(\lambda)}}=M_{w_{J(\lambda)}} / \hat{M}_{w_{J(\lambda)}}$. Since both $S_{w_{J(\lambda)}}$ and $S^{\lambda^{\prime}}$ are free A-modules of the same rank, $\bar{\theta}$ is injective. Hence, $\bar{\theta}$ is the required isomorphism.

Corollary 3.6 Let R be any commutative ring with 1 and let $A \rightarrow R$ be any ring homomorphism. If λ is a partition of $n+1$, then $S_{R, w_{J(\lambda)}} \cong S_{R}^{\lambda^{\prime}}$ as H_{R}-modules.

Proof. We need only observe that the isomorphism $\bar{\theta}$ in the proof of Theorem 3.5 extends naturally to an isomorphism $\bar{\theta}_{R}: S_{R, w_{J(\lambda)}} \rightarrow S_{R}^{\lambda^{\prime}}$.

Remark 3.7 By considering the induced isomorphism $\bar{\theta}$ in Theorem 3.5, it is immediate that the set $\left\{x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{w}: w \sim_{R} w_{J(\lambda)}\right\}$ is an A-basis of $S^{\lambda^{\prime}}$ - we call it the C-basis of $S^{\lambda^{\prime}}$. We note that by using different methods, Du in [7, 2.3(i)] proves that this is an A-basis of the Specht module and calls it the canonical basis.

We also note that in [16] Mathas relates the Kazhdan-Lusztig cell module and the corresponding Specht module in the special case of the group algebra.

4 The transition from the T-basis to the C-basis of the Specht module

In this section, we again suppose that W is the Weyl group of type A_{n} and address in the case of the Hecke algebra (see Theorem 4.1) the problem that Garsia and McLarnan address in [9] in the case of the symmetric group and thus obtain a generalization of [9, Theorem 5.3]. To achieve this we consider two different bases for the Specht module.
Following the discussion in the proof of Proposition 2.13 it will also be useful to have the associated functions $\bar{f}_{y, x}^{\lambda}=\bar{g}_{w_{J(\lambda)} y, w_{J(\lambda)} x}^{\lambda}$ and $f_{y, x}^{\lambda}=g_{w_{J(\lambda)} y, w_{J(\lambda)} x}^{\lambda}$ defined for all x and y with $x \leq_{R} w_{J(\lambda)}$ and $y \leq_{R} w_{J(\lambda)}$. Hence, for each $e \in X_{J}$,

$$
C_{w_{J(\lambda)}} T_{e}=\sum_{d \in X_{J(\lambda)}, d \text { a prefix of } w_{\lambda}} g_{e, d}^{\lambda} C_{w_{J(\lambda) d} d}+\sum_{d \in X_{J(\lambda)}, d \text { not a prefix of } w_{\lambda}} g_{e, d}^{\lambda} C_{w_{J(\lambda)} d} \text { So, letting }
$$

$y=w_{J(\lambda)} e, C_{w_{J(\lambda)}} T_{w_{J(\lambda) y}}=\sum_{x \sim_{R} w_{J(\lambda)}} f_{y, x}^{\lambda} C_{x}+\sum_{x<{ }_{R} w_{J(\lambda)}} f_{y, x}^{\lambda} C_{x}$. But $x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{x}=0$ for all $x<_{R} w_{J(\lambda)}$ by Theorem 3.5. So, $x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{w_{J(\lambda)}} T_{w_{J(\lambda)} y}=\sum_{x \sim_{R} w_{J(\lambda)}} f_{y, x}^{\lambda} x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{x}$.
From this last equation we get a system of equations by letting y run through the elements of the right cell containing $w_{J(\lambda)}$. Now $f_{y, y}^{\lambda} \neq 0$ for all $y \sim_{R} w_{J(\lambda)}$ from Proposition 2.13 so we can invert this system of equations and deduce that the set $\left\{x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{w_{J(\lambda)}} T_{w_{J(\lambda)} y}: y \sim_{R} w_{J(\lambda)}\right\}$ which is the same as the set $\left\{x_{\lambda^{\prime}} T_{w_{\lambda^{\prime}}} C_{w_{J(\lambda)}} T_{d}\right.$: d a prefix of $\left.w_{\lambda}\right\}$ is also a basis of $S^{\lambda^{\prime}}$ - we call it the T-basis of this module. We point out that this last set is already proved to be a basis of $S^{\lambda^{\prime}}$ in the Standard Basis Theorem, [6, Theorem 5.6].
It is clear from the above that the elements of the T-basis of $S^{\lambda^{\prime}}$ are indexed by the elements in the right cell containing $w_{J(\lambda)}$. We order the elements of this right cell with respect to the Bruhat order and we let ρ be the matrix representation corresponding to $S^{\lambda^{\prime}}$ with respect to this ordering of its T-basis. Keeping to the same ordering of the elements of the cell containing $w_{J(\lambda)}$, we also let σ be the matrix representation
corresponding to this cell and Z be the change-of-basis matrix from the T-basis to the C-basis of $S^{\lambda^{\prime}}$ It is also clear from the discussion above and the proof of Proposition 2.13 that Z is an invertible triangular matrix over A.

We also note that it is an immediate consequence of Theorem 3.5 that the representing matrices of $S^{\lambda^{\prime}}$, with respect to the C-basis of this module, are exactly the same as the representing matrices of the cell representation corresponding to the cell containing $w_{J(\lambda)}$ and hence are given by the representation σ.

We sum up the above observations in the following theorem, using ρ, σ, Z and $f_{y, x}^{\lambda}$ as defined above:

Theorem 4.1 The matrix representation ρ of the Specht module $S^{\lambda^{\prime}}$ with respect to its standard basis and the matrix representation σ of the cell corresponding to this Specht module are related by $h \sigma=Z^{-1} h \rho Z$ for all $h \in H$, where Z is a unitriangular matrix in A with entries given by the $f_{y, x}^{\lambda}$.

In Table 1, we give as an example the transition matrix for the representations corresponding to the right cell $\{121,1213,12132,12134,121324,1213243\}$.

Table 1: The transition matrix from the T-basis of $S^{(3,1,1)}$ to the C-basis

	C_{121}	C_{1213}	C_{12132}	C_{12134}	C_{121324}	$C_{1213243}$
$C_{121} T_{\emptyset}$	1					
$C_{121} T_{3}$	q	$q^{1 / 2}$				
$C_{121} T_{32}$		$q^{3 / 2}$	q			
$C_{121} T_{34}$	q^{2}	$q^{3 / 2}$		q		
$C_{121} T_{324}$		$q^{5 / 2}$	q^{2}	q^{2}	$q^{3 / 2}$	
$C_{121} T_{3243}$				q^{3}	$q^{5 / 2}$	q^{2}

Finally we explain how Theorem 4.1 relates to [9, Theorem 5.3] so for the discussion that follows, we consider the specialization $q^{1 / 2} \mapsto 1$. We refer to James [13] for the notation and for the basic results. The only change we make is that we write \bar{S}^{λ} and \bar{M}^{λ} instead of S^{λ} and M^{λ} for the corresponding modules as defined in James [13], since we are already using the symbols S^{λ} and M^{λ} for the submodules of the Hecke algebra in the specialization under consideration.
Let λ be a partition of $n+1$ and let t be a λ-tableau. We define the elements ρ_{t}, κ_{t} and e_{t} of the group algebra $F S_{n+1}$ as follows. Let $\rho_{t}=\sum_{\sigma \in R_{t}} \sigma$, and $\kappa_{t}=\sum_{\sigma \in C_{t}} \operatorname{sgn}(\sigma) \sigma$, where R_{t}, C_{t} denote the row group and the column group of t, respectively, and let e_{t} be the polytabloid $\{t\} \kappa_{t}$, where $\{t\}$ denotes the tabloid defined by t. Recall that \bar{M}^{λ} is the F-space spanned by the tabloids and that \bar{S}^{λ} is the F-space spanned by the polytabloids.
Following [13, pp.16,17], let $\theta: \rho_{t} F S_{n+1} \rightarrow \bar{M}^{\lambda}$ be the mapping defined by $\rho_{t} \pi \mapsto\{t\} \pi$, for $\pi \in S_{n+1}$. This is clearly a well-defined $F S_{n+1}$-isomorphism from the right ideal $\rho_{t} F S_{n+1}$ onto \bar{M}^{λ}. Restricting θ to the right ideal $\rho_{t} \kappa_{t} F S_{n+1}$ gives an isomorphism onto \bar{S}^{λ}.

Consider now the special case $t=t^{\lambda}$. Then $\rho_{t^{\lambda}}=x_{\lambda}$ and $\kappa_{t^{\lambda} w_{\lambda}}=y_{\lambda^{\prime}}$. Hence, $w_{\lambda} \kappa_{t \lambda} w_{\lambda} w_{\lambda}^{-1}=\kappa_{t^{\lambda}}$ since $\kappa_{t \pi}=\pi^{-1} \kappa_{t} \pi$ for all $\pi \in S_{n+1}$. So, $\rho_{t \lambda} \kappa_{t^{\lambda}}=x_{\lambda} w_{\lambda} y_{\lambda^{\prime}} w_{\lambda}^{-1}$
and $\rho_{t^{\lambda}} \kappa_{t^{\lambda}} F S_{n+1}=x_{\lambda} w_{\lambda} y_{\lambda^{\prime}} w_{\lambda}^{-1} F S_{n+1}=x_{\lambda} w_{\lambda} y_{\lambda^{\prime}} F S_{n+1}=S^{\lambda}$. That is, $S^{\lambda} \theta=\bar{S}^{\lambda}$. Now, $S^{\lambda}=x_{\lambda} w_{\lambda} y_{\lambda^{\prime}} F S_{n+1}$ and the set $\left\{x_{\lambda} w_{\lambda} y_{\lambda^{\prime}} d: d\right.$ a prefix of $\left.w_{\lambda^{\prime}}\right\}$ is the T-basis of S^{λ} as defined above.
But $\left\{d: d\right.$ a prefix of $\left.w_{\lambda^{\prime}}\right\}=\left\{w_{\lambda}^{-1} d: d\right.$ a prefix of $\left.w_{\lambda}\right\}$ since $w_{\lambda^{\prime}}=w_{\lambda}^{-1}$. Hence, the T-basis of S^{λ} can be written as $\left\{x_{\lambda} w_{\lambda} y_{\lambda^{\prime}} w_{\lambda}^{-1} d: d\right.$ a prefix of $\left.w_{\lambda}\right\}=\left\{\rho_{t^{\lambda}} \kappa_{t^{\lambda}} d\right.$: d a prefix of $\left.w_{\lambda}\right\}$. Now, for d a prefix of $w_{\lambda},\left(\rho_{t^{\lambda}} \kappa_{t^{\lambda}} d\right) \theta=\{t\} \kappa_{t^{\lambda}} d=e_{t^{\lambda}} d=e_{t^{\lambda} d}$ and $\left\{e_{t^{\lambda} d}: d\right.$ a prefix of $\left.w_{\lambda}\right\}=\left\{e_{t}: t\right.$ a standard λ-tableau $\}$. This last basis is the basis of \bar{S}^{λ} which gives Young's natural representation (see [13, p. 114 and Lemma 8.4]).
It is clear from the above argument that the representing matrices of S^{λ} with respect to the T-basis, suitably ordered, are the same as the matrices for Young's natural representation for $\bar{S}^{\lambda}=S^{\lambda} \theta$. Combining this with the fact that the representing matrices with respect to the C-basis of the Specht module are exactly the representing matrices of the corresponding cell representation we can conclude that Theorem 4.1 gives a generalization to [9, Theorem 5.3].

Acknowledgements.

We acknowledge with gratitude the help and encouragement given by Meinolf Geck for the research leading to this paper. We also thank the referees for useful comments and information regarding sources, of which we had not been aware.

References

[1] S. Ariki, Robinson-Schensted correspondence and left cells, Advanced studies in Pure Mathematics 28, 2000, Combinatorial methods in Representation Theory pp.1-20
[2] C. W. Curtis and I. Reiner, "Representation Theory of Finite Groups and Associative Algebras", Wiley, New York, 1962.
[3] C. W. Curtis and I. Reiner, "Methods of Representation Theory, I \& II", Wiley, New York, 1981/1987.
[4] V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math., 39, (1977), 187-198.
[5] V. V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111, (1987), 483-506.
[6] R. Dipper and G. D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc., (3), 52, (1986), 20-52.
[7] J. Du, A new proof for the canonical bases of type A, Algebra Colloquium, 6:4, (1999), 377-383.
[8] The GAP Group, Lehrstuhl D für Mathematik, RWTH Aachen, Germany and School of Mathematical and Computational Sciences, University of St. Andrews,

Scotland. "GAP - Groups, Algorithms, and Programming, Version 4", 1997. http://www-gap.dcs.st-and.ac.uk/~gap/
[9] A. M. Garsia and T. J. McLarnan, Relations between Young's Natural and the Kazhdan-Lusztig representations of S_{n}, Advances in Math. 69, (1988), 32-92.
[10] M. Geck, Constructible characters leading coefficients and left cells for finite Coxeter groups with unequal parameters, Representation Theory 6, (2002), 1-30. (electronic)
[11] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE - A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput., 7, (1996), 175-210.
[12] M. Geck and G. Pfeiffer, "Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras" Clarendon Press, Oxford, 2000.
[13] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, 682, Springer, Berlin, 1978.
[14] D. A. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math, 53 (1979) 165-184.
[15] G. Lusztig, "Characters of reductive groups over a finite field", Ann. of Math. Stud., vol.107, Princeton University Press, 1984.
[16] A. Mathas, Some Generic Representations, W-Graphs and Duality, J. Algebra, 170, (1994), 322-353.
[17] B. Sagan, The Symmetric group, Representations, Combinatorial Algorithms and Symmetric Functions, Springer, 2000.
[18] M. Schönert et al., "GAP - Groups, Algorithms, and Programming," 5th ed., Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995.
[19] N. Xi, "Representations of Affine Hecke Algebras", Lecture Notes in Mathematics, 1587, Springer, Berlin, 1991.

[^0]: *The authors thank the University of Cyprus, the University of Wales Aberystwyth and the London Mathematical Society for supporting this research through exchange visits between the University of Cyprus and the University of Wales Aberystwyth.
 ${ }^{\dagger}$ E-mail: tpd@aber.ac.uk
 \ddagger E-mail: pallikar@ucy.ac.cy

