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Abstract

A complete determination of the irreducible modules of specialized Hecke alge-
bras of type F4, with respect to specializations with equal parameters, has been
obtained by M. Geck and K. Lux (1991, Manuscripta Math. 70, 285-306) for
all characteristics. A similar determination for specializations with v = u2 and
v = u4 has been obtained by K. Bremke (1994, Manuscripta Math. 83, 331-346).
In an earlier paper (1999, J.Algebra 218, 654-671), the authors determined the
irreducible modules for all remaining specializations other than those into fields of
characteristic 2 or 3, obtaining en route decompositions of the generic irreducible
modules under such specializations. In this paper, the corresponding results for
characteristic 2 or 3 are obtained. Again, it is found that the decomposition ma-
trices may be expressed in lower uni-triangular form in all these cases and that the
splitting fields are those generated by the images of the parameters.
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1 Introduction

In this paper, we continue the study of the irreducible representations of the special-
izations of the Hecke algebra of type F4. In our previous paper [8], we determined all
such representations where the characteristic of the underlying field was different from 2
and 3, apart from those already determined by Geck and Lux in [6] and Bremke in [1].
The work of Geck, Lux, and Bremke also deals with fields of characteristic 2 and 3. We
now determine the irreducible representations of all the remaining specializations.

We continue with the notation of [8]. Let A be the ring Z[u, u−1, v, v−1], where u
and v are algebraically independent indeterminates, and let H be the generic Hecke
algebra over A of type F4. H = H(u, v) is defined to be the associative A-algebra with
generators Ti, i = 1, 2, 3, 4, and defining relations T 2

i = u1 + (u − 1)Ti for i = 1, 2,
T 2

i = v1 + (v − 1)Ti for i = 3, 4, TiTj = TjTi if |i − j| > 1, TiTi+1Ti = Ti+1TiTi+1 for
i = 1, 3, and T2T3T2T3 = T3T2T3T2.

With each field F and each homomorphism f : A → F , there is an associated algebra
HF known as the specialized algebra with respect to f obtained by specializing u and v
to f(u) and f(v), respectively, in the field F . The specialized algebra with respect to the
homomorphism f is the F -algebra defined by a similar set of generators and relations
which are obtained from those above by replacing u and v throughout by ū = f(u) and
v̄ = f(v), respectively.

In [5, Theorem 3.3], Geck has shown that the decomposition matrix of any specialization
of a generic one-parameter Hecke algebra can be arranged into a lower uni-triangular
shape if the characteristic is either 0 or a good prime and concludes that all irreducible
representations of the specialization can be realized over the field generated by the image
of the parameter. See also [7, Theorem 4.2] for an alternative derivation of this result.
For type F4, all primes other than 2 and 3 are good.

In [9], complete decompositions have been found of all generic irreducible representa-
tions of degrees ≤ 4 under all specializations other than ū = v̄ = −1.

Combining the decomposition results of [1, 6, 9, 8] with the results below, we get the
following theorem.

Theorem Let L be any algebraically closed field and let L0 be the field of fractions of
the image of A under the specialization f : A→ L. Then

(a) There is a well-defined decomposition map from the Grothendieck group of HK to
the Grothendieck group of HL.

(b) The irreducible HK-modules and the irreducible HL-modules can be arranged so
that the corresponding decomposition matrix has a lower uni-triangular shape. In
particular, its elementary divisors are all 1.

(c) The field L0 is a splitting field for HL0.

This theorem has already been established for the cases considered in [1, 6] in these
papers. For all remaining cases with different parameters, but characteristic different
from 2 and 3, the theorem was established in [8]. For the cases with different parameters,

2



but characteristic equal to 2 or 3, we proceed as in [8] to obtain the absolutely irreducible
representations of the specializations and the decompositions of the specialized generic
irreducible representations, from which parts (a) and (b) follow. Morever, since we are
dealing with finite characteristic, the arguments of [3, Theorem (74.9)] show that the
Schur indices of all these absolutely irreducible representations are 1, from which part (c)
follows.

As in [8], we find that the specializations giving rise to non-semisimple algebrasHF (ū, v̄)
are those for which one or more of the following polynomials vanishes under specialization.

2, 3, u+ 1, v + 1, u+ v, u2 + u+ 1, u2 − u+ 1, v2 + v + 1,
v2 − v + 1, u2 + v2, u+ v2, u2 + v, uv + 1, u2v + 1, uv2 + 1,
u2v2 + 1, u2v2 − uv + 1, and u2 − uv + v2.

(1)

We also recall that, for a given choice of ū and v̄, the specializations (ū, v̄), (ū−1, v̄),
(ū, v̄−1), (ū−1, v̄−1), (v̄, ū), (v̄−1, ū), (v̄, ū−1), and (v̄−1, ū−1) are equivalent to one another
in the sense that the resulting algebras are all isomorphic to one another. So, we need
only deal with one such parameter pair from each equivalence class.

Moreover, there is no need to consider cases of the form v̄ = ū, already dealt with in
[6], or cases of the forms v̄ = ū2 and v̄ = ū4, already dealt with in [1].

Of the remaining cases to be considered, five are in characteristic 2 and eight are in
characteristic 3.

In characteristic 2, the cases are

Case 2.1: ū = u, v̄ = v. Case 2.2: ū = u, v̄ = 1. Case 2.3: ū = u, v̄ = ε.
Case 2.4: ū = u, v̄ = εu. Case 2.5: ū = ε, v̄ = 1.

where ω is a primitive cube root of 1. We use ε = ω2 rather than ω so that the cases
arising may be more easily related to the corresponding cases in [8]. Thus, Case 2.4 is
a specialization of Case 7 in [8], while Case 2.5 is a specialization of Cases 8 and 12.
Case 2.5 is also related to Case 13.

In characteristic 3, the cases are

Case 3.1: ū = u, v̄ = v. Case 3.2: ū = u, v̄ = −1. Case 3.3: ū = u, v̄ = 1.
Case 3.4: ū = u, v̄ = −u. Case 3.5: ū = u, v̄ = −u2. Case 3.6: ū = u, v̄ = iu.
Case 3.7: ū = δ, v̄ = δ3. Case 3.8: ū = ζ, v̄ = ζ3.

where i, δ, and ζ are primitive fourth, eighth and tenth roots of 1 and δ2 = i.

From [9], we have complete decompositions of all generic irreducible representations
of degrees ≤ 4 under all specializations other than ū = v̄ = −1. For the remaining
generic irreducible representations, we used the GAP3 Meat-Axe package (see [11, 12])
to decompose all thirteen specializations, by initially specializing further the cases with
an indeterminate parameter u into a field with p4 elements, where p is the characteristic.
It was straightforward to reconstruct a decomposition into irreducible representations of
each of the original specializations, in which the indeterminate u was not specialized fur-
ther. Moreover, we found that the irreducible components could be realized over the field
L0 generated by the images, ū and v̄, of the parameters. Indeed, with two exceptions, all
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the irreducible representations which occurred were equivalent to specializations of some
of the 47 representations described in [8]. For explicit realizations of these representa-
tions, see [9, 10, 8].

We continue with the notation of [8], referring to the representations M1, . . . , M47, of
which the first 25 correspond to the 25 irreducible representations of the generic Hecke
algebra, in the order used by Kondo (see [2, p.413]) and in GAP3 (see [12]).

The remaining two representations were constructed from two of the 47 using the
constructions described in [8, Sect. 3]. We give the details of the constructions in
Case 3.7 below and we will refer to these representations as M48 and M49.

We used Norton’s Irreducibility Criterion (see [11, 6]) to check for absolute irreducibil-
ity, using the same procedure as described in [8]. In many cases, an appropriate matrix
B could be found by specializing one found in our previous work. For these calculations,
we used GAP4 (see [4]) on account of the improved polynomial arithmetic.

We remind the reader that we use a compact notation to describe composition factors.
For example, M = X : Y : Z will denote the fact that the module M has a series of
submodules 0 ⊆ V1 ⊆ V2 ⊆ V3 = M with V1

∼= X, V2/V1
∼= Y and V3/V2

∼= Z. If Y is
also a direct sum U + V , we may write M = X : U + V : Z.

2 Decomposition Details

In the case of those generic irreducible representations which decompose non-trivially,
we record the decomposition giving, in each case, vectors generating the submodules
which arise. As in [8], we need only record this information for one of each pair of
associated representations. Recall that the associate ρ′ of a representation ρ of HF is
defined by ρ′(Ti) = −ūρ(T−1

i ) for i = 1, 2 and ρ′(Ti) = −v̄ρ(T−1
i ) for i = 3, 4. The

associate pairs among M1, . . . ,M49 are: M1, M4; M10, M13; M17, M20; Mn, Mn+1 for
n ∈ {2, 5, 7, 11, 18, 21, 23}, and M2n, M2n+1 for 13 ≤ n ≤ 24. The remaining five modules
are self-associates.

We record also any isomorphisms between generic irreducible representations which
remain irreducible under the specialization being considered. Thus, in each case, the
modules among M1, . . . , M25 which are not mentioned remain irreducible, inequivalent
to one another and inequivalent to all other irreducibles mentioned explicitly in that
case. Note, in particular, that M25 decomposes in all characteristic 2 cases and M16

decomposes in all characteristic 3 cases.

Characteristic 2.

Case 2.1 : ū = u, v̄ = v.

We have the decomposition M25 = M9 : M16.

The proper submodule of M25 is generated by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Case 2.2 : ū = u, v̄ = 1.

We get the isomorphisms M1
∼= M2, M3

∼= M4, M7
∼= M8, M10

∼= M11, M12
∼= M13,

M14
∼= M15, M17

∼= M18, and M19
∼= M20, and the decompositions M23 = M14 : M7,
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M24 = M14 : M7, and M25 = M9 : M16.

The proper submodules of M23 amd M25 are generated by [1, 1, 1, 0, 0, 0, 0, 0] and
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], respectively.

Case 2.3 : ū = u, v̄ = ε = ω2.

We get the decompositions M5 = M2 : M1, M6 = M4 : M3, M9 = M8 : M7, M16 =
M26 : M27, M21 = M17 : M18, M22 = M20 : M19, M23 = M27 : M7, M24 = M26 : M8, and
M25 = M7 : M8 : M27 : M26.

The proper submodules of M5, M9, M16, M21, and M23 are generated by [1, ε2],
[1, 0, ε2, 0], [1, 0, 0, 1 + u, ε2 + εu2, ε + ε2u, ε2 + u2, 0, 0, ε + ε2u + ε2u3, εu2, εu + εu2],
[0, uε + u, 0, uε, ε, 0, 0, 1], and [1, 1, 1, 0, 0, 0, 0, 0], respectively. Those of M25 are gen-
erated by [1, 0, 0, 0, 0, 0, 0, 0, ε, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], and
[0, 0, ε2 + εu, 0, 0, u, u, ε2u+ ε2u3, εu, 0, 0, 0, 0, 0, 0, 0].

Case 2.4 : ū = u, v̄ = εu.

We get the decompositions M14 = M33 : M32, M18 = M32 : M2, M19 = M33 : M3, and
M25 = M9 : M16.

The proper submodules ofM14, M18, andM25 are generated by [0, u, 1, u, 1, 0], [1, 1, 0, 0],
and [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], respectively.

Case 2.5 : ū = ε, v̄ = 1.

We get the isomorphisms M1
∼= M2, M3

∼= M4, M10
∼= M11, and M12

∼= M13, and the
decompositions M7 = M4 : M1, M8 = M4 : M1, M9 = M6 : M5, M14 = M42 : M43,
M15 = M43 : M42, M16 = M46 : M47, M17 = M1 : M43, M18 = M43 : M2, M19 = M42 : M3,
M20 = M4 : M42, M21 = M47 : M5, M22 = M46 : M6, M23 = M43 : M1 : M42 : M4,
M24 = M42 : M4 : M43 : M1, and M25 = M5 : M47 : M6 : M46.

The proper submodules of M7, M9, M14, M15, M16, M17, M18, and M21 are gen-
erated by [1, ω2], [1, ω2, 0, 0], [1, 0, 0, 0, ω, 1], [0, 0, ω, 1, 1, 1], [1, 0, 0, ω2, 0, 0, 0, 0, 0, 0, 0, 0],
[ω, 1, 0, 1], [1, 1, 0, 0], and [0, 0, 0, 0, 0, 0, 1, 1], respectively. Those of M23 are generated by
[1, 1, 0, 0, 1, 0, ω2, ω2], [0, 1, 0, 0, 0, ω, ω, ω], and [0, 0, 0, 0, 0, 0, 1, 1]. Those of M25 are gener-
ated by [1, ω, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, ω2, ω2, ω, 0, 0, 0, 0, 0, 0, 0, 0], and
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Characteristic 3.

Case 3.1 : ū = u, v̄ = v.

We have the decomposition M16 = M15 : M14. The proper submodule of M16 is
generated by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Case 3.2 : ū = u, v̄ = −1.

We get the isomorphisms M1
∼= M2, M3

∼= M4, M7
∼= M8, M10

∼= M11, M12
∼= M13,

M14
∼= M15, M17

∼= M18, and M19
∼= M20, and the decompositions M16 = M14 : M14,

M23 = M14 : M7, and M24 = M14 : M7.

The proper submodules of M16 and M23 are generated by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
and [0, 0, 0, 0, 0, 0, 1, 1], respectively.
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Case 3.3 : ū = u, v̄ = 1.

We get the decompositions M5 = M2 : M1, M6 = M4 : M3, M9 = M8 : M7, M16 =
M15 : M14, M21 = M17 : M18, M22 = M20 : M19, and M25 = M23 : M24.

The proper submodules of M5, M9, M16, M21, and M25 are generated by [1,−1],
[1, 0,−1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1,−1,−1, 0], and [0, 0, 0, 0, 0,−u, u, u, 0,
0, 0, 0, 0, 1, 0, 0], respectively.

Case 3.4 : ū = u, v̄ = −u.

We get the decompositions M11 = M9 : M2 : M32 : M2, M12 = M9 : M3 : M33 : M3,
M14 = M33 : M32, M15 = M2 + M3 : M9, M16 = M2 : M32 : M9 : M3 : M33, M17 = M5 :
M7, M18 = M32 : M2, M19 = M33 : M3, and M20 = M6 : M8.

The proper submodules of M14, M17, and M18 are generated by [0,−u, 1,−u, 1, 0],
[0, 0, 0, 1], and [1, 1, 0, 0], respectively. Those ofM11 are generated by [0, 0, 0, 0, 0, u, 1, u, 1],
[−u2,−u, 0, 0, 1, 0, 0, 1, 0] and [1, 1, 0, 0, 0, 0, 0, 0, 0]. Those of M15 are generated by
[−u, 0, 1, 0, 0, 0] and [0, u2, 0, 1,−u,−u]. Those of M16 are generated by [0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1,−u], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], and [0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0].

Case 3.5 : ū = u, v̄ = −u2.

We get the decompositions M10 = M5 : M29, M13 = M6 : M28, M16 = M15 : M14,
M23 = M29 : M3, and M24 = M28 : M2.

The proper submodules of M10, M16 and M23 are generated by [u2,−u, 1, 0,−u2, 0, u,
0,−1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], and [0, 0, 0, 0, 0, 0, 1, 1], respectively.

Case 3.6 : ū = u, v̄ = iu.

We get the decompositions M11 = M31 : M2, M12 = M30 : M3, M16 = M15 : M14, and
M25 = M30 : M31.

The proper submodules of M11, M16 and M25 are generated by [1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], respectively.

Case 3.7 : ū = δ, v̄ = δ3.

We get the decompositions M10 = M9 : M1 : M48 : M1, M11 = M31 : M2, M12 =
M30 : M3, M13 = M9 : M4 : M49 : M4, M14 = M1 + M4 : M9, M15 = M48 : M49,
M16 = M49 : M4 : M9 : M48 : M1, M17 = M1 : M48, M18 = M8 : M5, M19 = M7 : M6,
M20 = M4 : M49, and M25 = M30 : M31.

The proper submodules of M11, M15, M17, M18, and M25 are generated by [0, 0, 0, 0, 0,
0, 0, 1, δ], [0, 0, δ, 1, 1,−δ], [δ2, 1, 1, δ], [0, 0, 1, δ3], and [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
respectively. Those of M10 are generated by [0, 0, 0, 0, 0, δ, 1, δ, 1], [0, δ3, 0, 1, 0,−1, 0,
−δ2, δ3] and [0, 0, 0, 0, 0, 1, 0, 1, 0]. Those of M14 are generated by [1, 1, 1, 0, 0, 0] and
[0, 1, 0, δ, 0, δ2]. Those ofM16 are generated by [δ2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], [−δ3,−δ2,−1,
1,−δ3, δ2, 0, 0, 0, 0, 0, 0], [−δ, δ2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], and [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

The representation M48 is obtained from M32 (see [9, Sect. 1.2.3]) by multiplying the
third and fourth matrices by −δ3, and observing that ε = −1 in characteristic 3. This is
a combination of constructions (C2) and (C3) of [8, Sect. 3].
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Case 3.8 : ū = ζ, v̄ = ζ3.

We get the decompositions M10 = M37 : M7, M11 = M5 : M38, M12 = M6 : M39,
M13 = M36 : M8, M16 = M15 : M14, M21 = M37 : M2, M22 = M36 : M3, M23 = M1 : M39,
and M24 = M4 : M38.

The proper submodules of M10, M11, M16, M21, and M23 are generated by [1, 0, 0, 0, 0, 0,
0, 0,−ζ3], [ζ2,−ζ, 1, 0,−ζ2, 0, ζ, 0,−1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1], and
[−1−ζ2, 1,−ζ2, 1−ζ+ζ2−ζ3, ζ, 1+ζ2, ζ3+ζ−1, ζ3−ζ2−1], respectively. This concludes
the proof of the theorem.
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