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Abstract

A complete determination of the irreducible modules of specialized Hecke alge-
bras of type F4, with respect to specializations with equal parameters, was obtained
by Geck and Lux in [5]. A similar determination for specializations with v = u2

and v = u4 has been obtained by Bremke in [1]. In this paper, we determine the
irreducible modules for all remaining specializations other than those into fields of
characteristic 2 or 3, obtaining en route decompositions of the generic irreducible
modules under such specializations. We find that the decomposition matrices may
be expressed in lower uni-triangular form in all these cases.
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1 Introduction

Let A be the ring Z[u, u−1, v, v−1], where u and v are algebraically independent inde-
terminates and let H be the generic Hecke algebra over A of type F4. H = H(u, v) is
defined to be the associative A-algebra with generators Ti, i = 1, 2, 3, 4, and defining
relations T 2

i = u1 + (u− 1)Ti for i = 1, 2, T 2
i = v1 + (v − 1)Ti for i = 3, 4, TiTj = TjTi if

|i− j| > 1, TiTi+1Ti = Ti+1TiTi+1 for i = 1, 3 and T2T3T2T3 = T3T2T3T2.

With each homomorphism f :A→ F , where F is a field, there is an associated algebra
HF known as the specialized algebra with respect to f obtained by specializing u and v
to f(u) and f(v), respectively, in the field F . The specialized algebra with respect to the
homomorphism f is the F -algebra defined by a similar set of generators and relations
which are obtained from those above by replacing u and v throughout by ū = f(u) and
v̄ = f(v), respectively. It will be convenient to refer to this algebra either as HF (ū, v̄) or
HF . Where no confusion is likely to arise, we will use the same symbols Ti (i = 1, 2, 3, 4)
to refer to the generators of these algebras and refer to the specialization briefly by the
pair (ū, v̄).

It is the purpose of this paper to describe the irreducible HF -representations for all
specializations, where the field F has characteristic different from 2 and 3.

If K denotes the field of fractions of A, we will show that each irreducible HK-
representation has a realisation over A and describe how this module decomposes under
such specializations.

We will then obtain the following theorem as a simple consequence of these results.

Theorem 1 Let L be any algebraically closed field of characteristic 6= 2, 3 and let L0 be
the field of fractions of the image of A under the specialization f : A→ L. Then

(a) There is a well-defined decomposition map from the Grothendieck group of HK to
the Grothendieck group of HL.

(b) The irreducible HK-modules and the irreducible HL-modules can be arranged so
that the corresponding decomposition matrix has a lower uni-triangular shape. In
particular, its elementary divisors are all 1.

(c) The field L0 is a splitting field for HL0.

Proof of Part (a): HK is split semi-simple (see [4]). Furthermore, all irreducible HK-
representations can be realized over Z[u, v]. All but those of degrees 12 and 16 and
one of the degree 6 representations are so described in [7] and [8]. We are indebted to
Geck for explicit descriptions of the generic irreducible representations of degrees 12 and
16 with respect to the parameters u2 and v2. It was not difficult to derive from them
generic irreducible representations of degrees 12 and 16 of HK(u, v) realized over Z[u, v].
A similar, but easier, task dealt with the remaining degree 6 representation which, as
described in [7], was realized over Z[u, u−1, v].

The images of each element ofH under twoH-representations, which areHK-equivalent,
have the same characteristic polynomial. Hence, by an adaptation of the argument of
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[3, Theorem (82.1)], their specializations to HL-representations have the same composi-
tion factors. Thus, the decomposition map is well-defined and Part (a) is established.
We complete Parts (b) and (c) in Section 5.

Now, let F be an arbitrary field of characteristic 6= 2, 3 and let L be its algebraic
closure. The regular representation of HF (ū, v̄) contains all its irreducible representations
among its composition factors. Since this regular representation arises by specializing the
regular representation of HK(u, v), every irreducible representation of HF (ū, v̄) occurs
as a composition factor of the specialization of some generic irreducible representation.
By Theorem 1(a), a complete determination of the HL(ū, v̄)-irreducibles is achieved by
determining the composition factors of the specializations of irreducible representations
of H, one from each HK-equivalence class. We find these by finding the composition
factors of the specializations of these same generic irreducible representations over F and
establishing that they are absolutely irreducible.

A complete determination of the HF (ū, v̄)-irreducible modules and the decomposition
of the specialized generic irreducible modules has been carried our by Geck and Lux [5]
for the case v̄ = ū and by Bremke [1] for the cases v̄ = ū2 and v̄ = ū4.

Geck has observed (see [4, Lemma 1.2]) that when HF (ū, v̄) is semisimple, all generic ir-
reducible representations of HK(u, v) remain irreducible and pairwise inequivalent under
the given specialization. The semisimplicity of HF (ū, v̄) is equivalent to the simultaneous
nonvanishing of the elements cχ(u, v) of F , where χ ranges over the set of generic irre-
ducibles of HK(u, v) (see [6, Proposition 4.3]). cχ(u, v) are polynomials in Z[u, v] defined
by cχ(u, v) = P (u, v)/Dχ(u, v) where P (u, v) is the Poincare polynomial of HK(u, v) and
Dχ(u, v) is the generic degree of the representation χ (see [2, p.450]). It is straightfor-
ward to check that each of the polynomials cχ(u, v) is a product of factors taken from
the following 18 polynomials:

2, 3, u+ 1, v + 1, u+ v, u2 + u+ 1, u2 − u+ 1, v2 + v + 1,
v2 − v + 1, u2 + v2, u+ v2, u2 + v, uv + 1, u2v + 1, uv2 + 1,
u2v2 + 1, u2v2 − uv + 1, and u2 − uv + v2.

(1)

Also, each of these polynomials occurs at least once as a factor of some cχ(u, v). So,
semisimplicity of HF (ū, v̄) is equivalent to the simultaneous nonvanishing of the special-
izations of these 18 polynomials. It remains to consider the cases in which one or more
of these polynomials vanishes under specialization.

For the present paper, we exclude consideration of fields of characteristics 2 and 3.
These cases will be studied in a later paper. The remaining cases subdivide into two
classes, the first contains the 16 cases in which exactly one of the 16 non-constant poly-
nomials specializes to zero and the second contains the 45 cases in which more than one
of these polynomials specialize to zero.

2 Equivalent Specializations

To simplify our exposition, we note that certain pairs of specializations give rise to
isomorphic specialized algebras. Two such specializations will be said to be equivalent.
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For example, if T1, T2, T3 and T4 is a generating system for HF (ū, v̄) then T4, T3, T2

and T1 is a generating system for HF (v̄, ū). Clearly, HF (ū, v̄) ∼= HF (v̄, ū) as rings.

Also, −ūT−1
1 , −ūT−1

2 , −ūT−1
3 and −ūT−1

4 is a generating system for HF (ū, v̄) and
−ū−1T1, −ū−1T2, T3 and T4 is a generating system for HF (ū−1, v̄). Clearly, HF (ū, v̄) ∼=
HF (ū−1, v̄) as rings.

From the preceding remarks, we see that the specializations (ū, v̄), (ū−1, v̄), (ū, v̄−1),
(ū−1, v̄−1), (v̄, ū), (v̄−1, ū), (v̄, ū−1) and (v̄−1, ū−1) are equivalent to one another. Since the
algebras corresponding to equivalent specializations are isomorphic, it will be sufficient
to consider just one specialization from each equivalence class.

The 16 cases referred to in Section 1, in which exactly one of the non-constant poly-
nomials in (1) specializes to zero, split into 7 equivalence classes, from which we choose
the following representatives:

Case 1: ū = u, v̄ = −1. Case 2: ū = u, v̄ = ζ3. Case 3: ū = u, v̄ = ζ6.
Case 4: ū = u, v̄ = −u. Case 5: ū = u, v̄ = −u2. Case 6: ū = u, v̄ = ζ4u.
Case 7: ū = u, v̄ = ζ6u.

Here, ζn denotes a primitive nth root of 1 in F . If F contains mnth roots of 1 where
m and n are positive integers, we choose the notation so that ζmmn = ζn.

The results we obtain for these 7 cases will apply to any further specialization of u
which does not result in any more of the polynomials in (1) vanishing.

Of the remaining 45 cases referred to in Section 1, 26 are equivalent to those studied
by Bremke, 5 are equivalent to those studied by Geck and Lux and the remainder split
into 6 classes with representatives:

Case 8: ū = ζ6, v̄ = −1. Case 9: ū = ζ8, v̄ = ζ3
8 . Case 10: ū = ζ10, v̄ = ζ3

10.
Case 11: ū = ζ24, v̄ = ζ5

24. Case 12: ū = ζ6, v̄ = 1. Case 13: ū = ζ3, v̄ = −1.

In view of the detailed work of Bremke and Geck and Lux, we make no further mention
of the cases equivalent to those with v̄ = ū, ū2 or ū4.

3 Classes of Representations

If ρ is a representation of HF (ū, v̄), we can obtain representations of the algebras
corresponding to equivalent specializations by combining the following constructions:

(C1) ρ′(Ti) = −ūρ(T−1
i ), i = 1, 2; ρ′(Ti) = −v̄ρ(T−1

i ), i = 3, 4.
(C2) ρ′(Ti) = ρ(T5−i), i = 1, 2, 3, 4.
(C3) ρ′(Ti) = −ū−1ρ(Ti), i = 1, 2; ρ′(Ti) = ρ(Ti), i = 3, 4.

In (C1), ρ′ is also a representation of HF (ū, v̄). In (C2), ρ′ is a representation of
HF (v̄, ū). In (C3), ρ′ is a representation of HF (ū−1, v̄).

It is clear that any representation ρ′ arising in one of these ways has a decomposition
similar to that of ρ, in which the composition factors are obtained from those of ρ by the
same construction.

A representation ρ′′ will be said to be an associate of ρ if it is equivalent to the repre-
sentation ρ′ arising from ρ by construction (C1). This relation is symmetric.
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It will be useful to have a compact notation to describe the composition factors of a
module. For example, M = X : Y : Z will denote the fact that the module M has a
series of submodules 0 ⊆ V1 ⊆ V1 ⊆ V3 = M with V1

∼= X, V2/V1
∼= Y and V3/V2

∼= Z If
Y is a direct sum U + V , we will write M = X : U + V : Z.

Our listing of the irreducible modules of the generic Hecke algebra HK(u, v) follows
the order used by Kondo (see [2, p.413]) and in GAP (see [10]). We label the modules
M1, . . . , M25. To avoid cumbersome notation, we will use these labels to describe the
modules resulting from these under any specializations considered. The order of listing
differs from that used by Geck in [4] and by the second author in [7] and [8]. The two
orders of listing are related by an interchange of the parameters u and v.

For convenience, we provide the following table to help identify the representations.
The second row lists the degrees, the third and fourth the character values on T1 and T4

respectively.

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 1 1 1 2 2 2 2 4
u u −1 −1 2u −2 u− 1 u− 1 2u− 2
v −1 v −1 v − 1 v − 1 2 v −2 2 v − 2

M10 M11 M12 M13 M14 M15 M16 M17 M18

9 9 9 9 6 6 12 4 4
6u− 3 6u− 3 3u− 6 3u− 6 3u− 3 3u− 3 6u− 6 3u− 1 3u− 1
6 v − 3 3 v − 6 6 v − 3 3 v − 6 3 v − 3 3 v − 3 6 v − 6 3 v − 1 v − 3

M19 M20 M21 M22 M23 M24 M25

4 4 8 8 8 8 16
u− 3 u− 3 6u− 2 2u− 6 4u− 4 4u− 4 8u− 8

3 v − 1 v − 3 4 v − 4 4 v − 4 6 v − 2 2 v − 6 8 v − 8

This table does not distinguish M14 from M15. However, T1T4 has the character values
(2u− 1)v − (u− 2) and (u− 2)v − (2u− 1) in M14 and M15, respectively.

We note that the pairs of associated generic irreducible modules are: M1, M4; M2, M3;
M5, M6; M7, M8; M10, M13; M11, M12; M17, M20; M18, M19; M21, M22; M23, M24. The
remaining 5 modules are self-associates.

In the case of a representation ρ of the generic Hecke algebra HK(u, v), we can modify
constructions (C2) and (C3) to give representations of the same generic Hecke algebra
by interchanging the parameters u and v following (C2) and by substituting u−1 for
u following (C3). Using combinations of these constructions, the full set of generic
irreducible representations may be derived easily from M1, M5, M9, M12, M14, M16, M17,
M22 and M25. We use the explicit descriptions of M1, M5, M9, M14 and M17 given in [7,
pp.295-497] and the explicit descriptions of M12 and M22 given in [8, pp.48-49] We give
below the explicit descriptions of M16 and M25 referred to in the Introduction.

5



M16:

0 1 0 0 0 0 0 0 0 0 0 0
u u− 1 0 0 0 0 0 0 0 0 0 0
0 0 u 0 0 0 0 0 0 0 0 0
0 0 0 u− 1 −1 0 0 0 0 0 0 0
0 0 0 −u 0 0 0 0 0 0 0 0
−u −u 1 u −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 −3u −3u
0 0 0 0 0 0 0 u −3u 0 0 −3u
0 0 0 0 0 0 0 0 0 0 0 −u
0 0 0 0 0 0 0 0 0 −1 −3u 0
0 0 0 0 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 −1 0 0 u− 1




u 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1 0 0 0 0 0 0 0 0 0
0 0 u 0 0 0 0 0 0 0 0 0
−1 0 0 −1 0 0 0 0 0 0 0 0
−u 1 0 −u 0 1 0 0 0 0 0 0
1 u −1 −u2 u u− 1 0 0 0 0 0 0
0 0 0 0 0 0 u 0 0 0 0 0
0 0 0 0 0 0 u −1 3u 0 3u2 3u
0 0 0 0 0 0 0 0 u 0 u2 − u 1− u
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 u u− 1




v 0 0 0 0 0 0 0 0 0 0 0
0 v 0 0 0 0 0 0 0 0 0 0

u+ v u+ v −1 0 0 0 0 0 0 0 0 0
0 0 0 v 0 0 0 0 0 0 0 0
0 0 0 0 v 0 0 0 0 0 0 0

u+ v −v − 1 0 u+ v u− 1 −1 0 0 0 0 0 0
v 0 0 0 0 0 −1 0 0 u+ v 0 0
v v 0 3uv 0 0 0 −1 0 0 0 0
0 0 0 0 v 0 0 0 −1 0 1− u 0
0 0 0 0 0 0 0 0 0 v 0 0
0 0 0 0 0 0 0 0 0 0 v 0
0 0 0 v 0 0 0 0 0 0 u− 1 −1




−1 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 −1 1 0 0 −3u −3u
0 0 −1 0 0 0 0 0 3u 0 −3u −3u2

0 0 0 −1 0 0 0 0 0 −1 −u 1
0 0 0 0 −1 0 0 0 1 −u −2u 0
0 0 0 0 0 −1 1 −1 u 0 2u u+ 1
0 0 0 0 0 0 v 0 0 0 0 0
0 0 0 0 0 0 0 v 0 0 0 0
0 0 0 0 0 0 0 0 v 0 0 0
0 0 0 0 0 0 0 0 0 v 0 0
0 0 0 0 0 0 0 0 0 0 v 0
0 0 0 0 0 0 0 0 0 0 0 v
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M25:



−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
u u 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 u 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 u 0 0 −u 0 0 0 0 0 0 0 0
0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −u u 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −u 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 x 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 uy 1 u y
0 0 0 0 0 0 0 0 0 0 0 0 −u 0 0 x




u 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 u −u 0 u −u −u 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 u 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −u 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 u −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 u 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 u 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −u2 0 0 u 0
0 0 0 0 0 0 0 0 0 0 0 u −u 0 −1 −1




−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 v 0 0 0 0 −uz 0 0 1 1 0 0 0 0
0 0 0 v −z 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 v 0 ux 0 0 0 0 −x 0 0 −1
0 0 0 0 0 0 v −x 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 t v 0 0 0 0 0 0 0
0 −v 0 0 t 0 0 0 0 v 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
−uv 0 0 0 0 0 0 0 0 0 z z 0 v 0 0

0 −v 0 0 0 0 0 0 0 0 0 −z z 0 v s
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



7





v 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 v 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 v −v 0 0 0 0 0 0 v 0 0 0 0 0
0 0 0 v 0 0 0 0 0 0 0 v 0 0 0 0
0 0 0 0 v 0 v −uv 0 0 0 0 v 0 0 0
0 0 0 0 0 uv −uv −uv 0 0 0 0 0 v 0 0
0 0 0 0 u2v 0 −v uv 0 0 0 0 0 0 v 0
0 0 0 0 −uv −v −xv 0 0 0 0 0 0 0 0 v


where x = u− 1, y = u+ 1, z = u+ v, s = 1 + uv, and t = −2uv.

All the explicit descriptions above and those obtained from them by the modified
constructions are realized over the ring Z[u, v] with the exception of M15. But in the
case of M15, it is an elementary exercise to find an equivalent representation realized over
Z[u, v].

4 Known Results and General Techniques

In [7], complete decompositions have been found of all generic irreducible representa-
tions of degrees ≤ 4 under all specializations other than ū = v̄ = −1. These results are
contained in the details of the 13 cases referred to in the Introduction and listed in the
next section.

For each case, we adopted the following approach. A generic irreducible representation
was specialized over a finite field with a prime number of elements p. The GAP Meat-
Axe package (see [9]) provided a complete decomposition of this representation. From the
generators of the submodules provided by GAP we were able to determine elements which
generated corresponding submodules of the representation in all specializations allowed
by this case. In order to have a reasonable expectation that the decomposition over the
initial finite field would be similar to the general case, we selected primes p > 100.

For example, in Case 4, consider M12. We find that [0, 0, 0, 0, 0, u, 1, u, 1] generates
a 4-dimensional submodule U ∼= M9. U together with [0, 0, 0, 0, 0, 0, 0, u, 1] generates
an 8-dimensional submodule V with V/U ∼= M19. Also, U and [2u2,−u, 0, 0, 1, 0, 0, 1, 0]
generates a 5-dimensional submodule W with W/U ∼= M3. Thus, M12 = M9 : M19 +M3.
In this example, we can check that the factors given are indeed irreducible by consulting
[7].

For each of the representations of degree 6 or more and for each new representation
which appeared as a factor in some decomposition it was also necessary to verify its
irreducibility. The principal technique used for this was a version of Norton’s Criterion
for Irreducibility (see [9]) as explained by Geck and Lux in [5].
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The procedure required a matrix B in the algebra generated by the representation
with the following three properties: (i) the nullspace of B has dimension 1; (ii) the space
generated by a non-zero null vector of B under the action of the representation is the
whole space; (iii) the space generated by a non-zero null vector of the transpose of B
under the action of the transpose of the representation is the whole space. If such a
matrix B is found, the representation is irreducible. Since extension of the base field
in this case caused no change in the validity of (i), (ii) or (iii), this result guaranteed
absolute irreducibility.

For each representation to which we applied this technique, we found a suitable matrix
B which continued to have co-rank 1 for any further specialization consistent with the
case being studied. Moreover, under such specializations, the spaces referred to in (ii)
and (iii) above continued to have maximal dimension. So, the representations continued
to be absolutely irreducible under all such specializations.

For example, M22 remains irreducible in Case 3, with ū = u and v̄ = ζ6. We see
this by taking B to be the matrix ūv̄2 − v̄T1 + T2 − ūT4 + T1T4—here, we use Ti to
denote the matrix representing it. B is singular but has a minor with determinant
(2 − v̄) (ū + 1)4 (ū + v̄) (ū − v̄2). Since the characteristic is not 3 and ū 6= −1, −v̄
or v̄2—these three possibilities give cases equivalent to Case 8 and two of Bremke’s
cases—B has a null space of dimension 1 for all values of ū covered by this case. The
null space of B is spanned by v1 = [0, 0, 1, 1, 0, 0, 0, 0] and that of its transpose B′ by
v′1 = [0, 0,−(v̄ + 1),−ū(v̄ + 1), 0, 0, ū, ū2]. The set of vectors {v1, v1T1, v1T3, v1T1T3,
v1T3T4, v1T1T3T2, v1T1T3T2T3, v1T1T3T2T3T4} is independent so long as ū 6= −1, v̄ or v̄2.
The set of vectors {v′1, v′1T ′1, v′1T ′3, v′1T ′1T ′3, v′1T ′3T ′4, v′1T ′1T ′3T ′2, v′1T ′1T ′3T ′2T ′3, v′1T ′1T ′3T ′2T ′3T ′4}
is independent so long as ū 6= v̄ and the characteristic is not 2. Hence, Norton’s Criterion
has been satisfied for M22 for all values of ū covered by Case 3.

In the following section, we list the decompositions which occur in each case and give
generators for the proper submodules. However, we will omit details of the computations
similar to those used in the preceding example. For such details, the reader should
contact either of the authors by e-mail.

5 Details of the Thirteen Cases

In this section, we record the list of those generic irreducible modules which remain
irreducible under the various specializations and any isomorphisms arising between these
modules. We also record the decompositions of the remaining modules giving, in each
case, vectors generating the submodules which arise.

Since we can use the same generating vectors for each of a pair of associated generic
irreducible modules which decompose under specialization, we will record these vectors
in just one of the two cases.

In our decompositions, we introduce 22 new irreducible modules which we label M26,
. . . , M47 so that M2i and M2i+1 are associates for i = 13, . . . , 23.

For the remainder of the paper, we will use ω, i, ε, δ, ζ and η for ζ3, ζ4, ζ6, ζ8, ζ10 and
ζ24, respectively.
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Case 1 : ū = u, v̄ = −1. All generic irreducible modules, with the exception of M23

and M24, remain irreducible. We get the following isomorphisms: M1
∼= M2, M3

∼= M4,
M7
∼= M8, M10

∼= M11, M12
∼= M13, M14

∼= M15, M17
∼= M18, M19

∼= M20, and M23
∼= M24.

No other pair of generic irreducible modules are isomorphic to one another. We have the
decomposition M23 = M14 : M7. The vector [1, 1, 1, 0, 0, 0, 0, 0] generates a 6-dimensional
submodule isomorphic to M14.

Case 2 : ū = u, v̄ = ω. All generic irreducible modules, with the exception of M5,
M6, M9, M21, M22, and M25, remain irreducible and pairwise non-isomorphic. For the
remaining modules, we get the decompositionsM5 = M2 : M1, M6 = M4 : M3, M9 = M8 :
M7, M21 = M17 : M18, M22 = M20 : M19, and M25 = M23 : M24. The proper submodules
of M5, M9, M21, and M25 are generated by [1,−ω2], [1, 0,−ω2, 0], [0, 0, 0, ω, ω,−1,−1, 0],
and [0, 0, 0, 0, 0,−u, u, u, 0, 0, 0, 0, 0, ω, 0, 0], respectively.

Case 3 : ū = u, v̄ = ε. All generic irreducible modules, with the exception of M16, M23,
and M24, remain irreducible and pairwise non-isomorphic. For the remaining modules,
we get the decompositions M16 = M26 : M27, M23 = M27 : M7, and M24 = M26 : M8.

The following matrices give a realization of the new 6-dimensional representation M26:

u 0 0 0 0 0
−1 −1 0 0 0 0
0 0 u 0 0 0
ε 0 u− ε −1 −ε −ε
0 0 u 0 u− ε u− ε2

0 0 −u 0 ε ε2





0 1 0 0 0 0
u u− 1 0 0 0 0
0 0 −1 0 1 0

ε− 1 ε2 0 −1 −ε2 ε2

0 0 0 0 u 0
0 0 0 0 0 u




−1 0 1 0 0 0
0 0 0 −ε2 0 −ε2

0 0 ε 0 0 0
0 ε2 1 ε2 0 ε
0 0 u+ ε 0 −1 0
0 0 −1 0 0 −1





ε 0 0 0 0 0
0 ε 0 0 0 0
ε 0 −1 0 0 0
ε 0 0 −1 0 0
ε ε 0 0 −1 0
−ε −ε 0 0 0 −1


The proper submodules of M16 and M23 are generated by [0, 0,−(1 + ε)/3, 0, 0, 0, 0, 0,

u, 0,−u,−u2] and [0, 0, 0, 0, 0, 0, 1, 1], respectively.

Case 4 : ū = u, v̄ = −u. All generic irreducible modules, with the exception of M11,
M12, M15, M16, M17, and M20, remain irreducible and pairwise non-isomorphic. For the
remaining modules, we get the decompositions M11 = M9 : M18 + M2, M12 = M9 :
M19 + M3, M15 = M2 + M3 : M9, M16 = M18 : M9 : M19, M17 = M5 : M7, and
M20 = M6 : M8.

As remarked in the preceding section, [0, 0, 0, 0, 0, u, 1, u, 1], [0, 0, 0, 0, 0, 0, 0, u, 1], and
[2u2,−u, 0, 0, 1, 0, 0, 1, 0] generate the proper submodules of M12. The proper submod-
ules of M15 are generated by [−u, 0, 1, 0, 0, 0] and [0, u2, 0, 1,−u,−u]. Those of M16 are
generated by [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] and [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The proper sub-
module of M17 is generated by [0, 0, 0, 1].

Case 5 : ū = u, v̄ = −u2. All generic irreducible modules, with the exception of M10,
M13, M23, and M24, remain irreducible and pairwise non-isomorphic. For the remaining

10



modules, we get the decompositions M10 = M5 : M29, M13 = M6 : M28, M23 = M29 : M3,
and M24 = M28 : M2.

The following matrices give a realization of the new 7-dimensional representation M28:

u 0 0 0 0 0 0
−1 −1 0 0 0 0 0
0 0 u 0 0 0 0
0 0 −1 −1 0 0 0
1 0 −1 0 −1 0 0
0 0 1 0 0 0 1
0 0 −1 0 0 u u− 1





0 1 0 0 0 0 0
u u− 1 0 0 0 0 0
0 1 0 0 1 0 0
u u− 1 0 0 0 1 0
−u 0 u 0 u− 1 0 0
0 −u 0 u 0 u− 1 0
−1 −1 0 0 0 0 −1




−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 −u2 0 0 0 0
0 0 0 −u2 0 0 0
0 0 u− 1 −1 −1 0 0
0 0 −u 0 0 −1 0
0 0 −1 0 0 0 −1





−u2 0 0 0 0 0 0
0 −u2 0 0 0 0 0
−u2 0 −1 0 0 0 0

0 −u2 0 −1 0 0 0
0 −1 0 0 −1 0 0
−u 1− u 0 0 0 −1 0
u− 1 u− 1 0 0 0 0 −1


The proper submodules of M10 and M23 are generated by [u2,−u, 1, 0,−u2, 0, u, 0,−1]

and [0, 0, 0, 0, 0, 0, 1, 1], respectively.

Case 6 : ū = u, v̄ = iu. All generic irreducible modules, with the exception of M11, M12,
and M25, remain irreducible and pairwise non-isomorphic. For the remaining modules,
we get the decompositions M11 = M31 : M2, M12 = M30 : M3, and M25 = M30 : M31.

The following matrices give a realization of the new 8-dimensional representation M30:

−1 0 0 0 0 0 0 0
u u 0 0 u 0 0 u
0 0 −1 0 0 0 0 0
0 0 u u 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 1 + i u i i
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1





u 1 0 0 u+ 1 0 0 u+ i
0 −1 0 0 0 0 0 0
0 0 u 1 −1− i 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 i 0 −ui 0
0 0 0 0 −1 i u− 1 0
0 0 0 0 0 0 0 −1




i (u+ i) 0 0 0 −1 0 u −1
0 −1 0 0 0 0 0 0
i 0 ui 0 i 0 0 i
0 i 0 ui 0 0 0 0
0 0 0 0 ui 0 −u 0
0 1 0 0 0 ui i 0
0 0 0 0 0 0 −1 0
−ui 0 0 0 −ui 0 0 0





ui 0 u 0 1 0 0 0
0 ui 0 u 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 i ui 0 0
0 0 0 0 −i 0 ui 0
0 0 0 0 ui 0 0 ui


The proper submodules of M11 and M25 are generated by [1, 1, 0, 0, 0, 0, 0, 0, 0] and

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], respectively.

Case 7 : ū = u, v̄ = εu. All generic irreducible modules, with the exception of M14, M18,
and M19, remain irreducible and pairwise non-isomorphic. For the remaining modules,
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we get the decompositions M14 = M33 : M32, M18 = M32 : M2, and M19 = M33 : M3.

The new 3-dimensional representation M32 is the representation described in [7, Sect.
1.2.3].

The proper submodules of M14 and M18 are generated by [0,−u, 1,−u, 1, 0] and [1, 1, 0,
0], respectively.

Case 8 : ū = ε, v̄ = −1. All generic irreducible modules, with the exception of
M16, M21, M22, M23, and M24, remain irreducible. We get the following isomorphisms:
M1
∼= M2, M3

∼= M4, M7
∼= M8, M10

∼= M11, M12
∼= M13, M14

∼= M15, M17
∼= M18,

M19
∼= M20, and M23

∼= M24. No other pair of generic irreducible modules are isomorphic
to one another. For the remaining modules, we get the decompositions M16 = M34 : M35,
M21 = M35 : M5, M22 = M34 : M6, and M23 = M14 : M7.

The representation M34 is obtained by specializing u to −1 in M26 and applying con-
struction (C2).

The proper submodules of M16, M21 and M23 are generated by [0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1 + ε, 0] [0, 0, 0, 0, 0, 0, 1, 1], and [0, 0, 0, 0, 0, 0, 1, 1], respectively.

Case 9 : ū = δ, v̄ = δ3. All generic irreducible modules, with the exception of M10, M11,
M12, M13, M14, M16, M18, M19, and M25, remain irreducible and pairwise non-isomorphic.

For the remaining modules, we get the decompositions M10 = M9 : M17 + M1, M11 =
M31 : M2, M12 = M30 : M3, M13 = M9 : M20 + M4, M14 = M1 + M4 : M9, M16 = M20 :
M9 : M17, M18 = M8 : M5, M19 = M7 : M6, and M25 = M30 : M31.

The vectors [0, 0, 0, 0, 0, δ, 1, δ, 1], [0, 0, 2δ+1, 0,−2,−2, δ3−2,−δ3−2, 0], and [0, 0, 0, 0, 0,
0, 0, δ, 1] generate submodules of M10 of dimensions 4, 5, and 8 respectively, where the
4-dimensional module is a submodule of the other two submodules.

The vectors [1, 1, 1, 0, 0, 0] and [0, 1, 0, δ, 0, δ2] generate two submodules of M14, each of
dimension 1, and isomorphic to M1 and M4, respectively.

The vectors [−δ, 2, 1/(1 + δ),−(1 + δ),−δ, 1, 0, 0, 0, 0, 0, 0] and [0, 0, 0, 1, 1, 0, 0, 0, δ −
1, 0, 0, δ− 1] generate the proper submodules of M16 of dimensions 4 and 8, respectively.

The proper submodule of M18 is generated by [1, δ, 0, δ]. The proper submodules of
M11 and M25 can be obtained from the corresponding modules in Case 6 by specializing
u to δ in that case.

Case 10 : ū = ζ, v̄ = ζ3. All generic irreducible modules, with the exception of M10,
M11, M12, M13, M21, M22, M23, and M24, remain irreducible and pairwise non-isomorphic.

For the remaining modules, we get the decompositions M10 = M37 : M7, M11 =
M5 : M38, M12 = M6 : M39, M13 = M36 : M8, M21 = M37 : M2, M22 = M36 : M3,
M23 = M1 : M39, and M24 = M4 : M38.

The representation M36 is obtained by specializing u to ζ in M28 and applying con-
struction (C2). For M38 we apply construction (C3) to M28 and then specialize u to
ζ−1. Note that M38 may also be obtained from M36 by applying the field automorphism
ζ → ζ−3 followed by the constructions (C3) and (C2).

The proper submodules of M10, M11, M21, and M23 are generated by [1, 0, 0, 0, 0, 0, 0, 0,
−ζ3], [ζ2,−ζ, 1, 0,−ζ2, 0, ζ, 0,−1], [0, 0, 0, 0, 0, 0, 1, 1], and [−1 − ζ2, 1,−ζ2, 1 − ζ + ζ2 −
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ζ3, ζ, 1 + ζ2, ζ3 + ζ − 1, ζ3 − ζ2 − 1], respectively.

Case 11 : ū = η, v̄ = η5. All generic irreducible modules, with the exception of M10,
M13, M14, M18, M19, and M25, remain irreducible and pairwise non-isomorphic.

For the remaining modules, we get the decompositions M10 = M40 : M1, M13 = M41 :
M4, M14 = M33 : M32, M18 = M32 : M2, M19 = M33 : M3, and M25 = M40 : M41.

The representation M40 is obtained by specializing u to η−1 in M30 and applying con-
struction (C3).

The proper submodules of M10 and M25 are generated by [1, 1, 0, 0, 0, 0, 0, 0, 0] and
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−η, 1 + η, 1/(1 + η), 1, 0], respectively. The proper submodules
of M14 and M18 are obtained from the corresponding modules in Case 7 by specializing
u to η in that case.

Case 12 : ū = ε, v̄ = 1. All generic irreducible modules, with the exception of M14, M15,
M16, M17, M18, M19, M20, M21, and M22, remain irreducible and pairwise non-isomorphic.

For the remaining modules, we get the decompositions M14 = M44 : M45, M15 =
M43 : M42, M16 = M46 : M47, M17 = M1 : M43, M18 = M45 : M2, M19 = M44 : M3,
M20 = M4 : M42, M21 = M47 : M5, and M22 = M46 : M6.

The representation M42 is obtained by applying construction (C3) to M32 and then
specializing u to ε−1. M44 is obtained from M42 by keeping the first two generators and
replacing the last two by their negatives. M46 is obtained by specializing u to 1 in M26

and applying construction (C2). Note that M46 and M34 are both specializations of the
same HF (ε, v)-module.

The proper submodules of M14, M15, M16, M17, M18, and M21 are generated by [1, 0, 1,
−1, 0, 0], [0, 1, 1,−1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, u+ 1, 0], [u− 2, 3,−2, 1], [1, 1, 0, 0], and
[0, 0, 0, 0, 0, 0, 1, 1], respectively.

Case 13 : ū = ω, v̄ = −1. Only the generic irreducible modules M1, M5, M10, M16, and
M21 and their associates remain irreducible and pairwise non-isomorphic. M2, M11, and
their associates are the only other generic irreducible modules which remain irreducible
but we have the isomorphisms: M1

∼= M2, M3
∼= M4, M10

∼= M11 and M12
∼= M13. We

also have M7
∼= M8.

For the remaining modules, we get the decompositions M7 = M4 : M1, M9 = M6 : M5,
M14 = M33 : M32, M15 = M32 : M33, M17 = M1 : M32, M18 = M32 : M1, M19 = M33 : M4,
M20 = M4 : M33, M23 = M32 : M1 + M33 : M4, M24 = M33 : M4 + M32 : M1, and
M25 = M21 : M22.

The proper submodules of M7, M9, M14, M15, M17, M18, and M25 are generated by
[ω,−1], [ω,−1, 0, 0], [1, 2, 3, 1, 2, 0], [1, 0, 0, 0, 0, ω], [ω, 1, 0,−1], [1, 1, 0, 0], and [1,−ω, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], respectively.

M23 has submodules X and Y of dimensions 4 and 6, respectively, and such that
X ∩ Y has dimension 3. X ∩ Y , X and Y are generated by [ω, ω, 0, 0, ω, 0,−1,−1],
[0, ω2, 0, 0, 0, 1, 1, 1] and [0, 0, 0, 0, 0, 0, 1, 1] respectively.

Proof of Theorem 1 Concluded: For Part (b), it is sufficient to inspect the ex-
plicit decompositions obtained in this section and to rearrange the irreducible modules
appropriately.
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For Part (c), we note that each irreducible HL-representation has either been given
explicitly or described as arising from an explicit irreducible representation by means of
certain operations—the actions (C1), (C2) and (C3) of Section 3. In all of these cases,
the representations are realized over the field L0, the subfield of L generated by ū and v̄.
Thus, the irreducible HL-modules all have the form N ⊗L0 L where N is an irreducible
HL0-module.

Suppose that N ′ is an arbitrary irreducible HL0-module. Then N ′⊗L0 L has a quotient
module isomorphic to N ⊗L0 L for some irreducible HL0-module N . Thus,
HomHL

(N ′ ⊗L0 L,N ⊗L0 L) 6= 0. By Curtis and Reiner [3, (29.5)]), HomHL0
(N ′, N) 6= 0.

Since N and N ′ are both irreducible, N ∼= N ′ by Schur’s lemma. We conclude that all
irreducible HL0-modules are absolutely irreducible. Hence, L0 is a splitting field for HL0 .

6 Acknowledgements

The authors acknowledge the helpful suggestions, leading to an improved exposition,
made by the referee. They also acknowledge the helpful suggestions made by M.Geck
regarding earlier work on this topic by second author.

References

[1] K Bremke, The decomposition numbers of Hecke algebras of type F4 with unequal
parameters, Manuscripta Math., 83 (1994), 331–346.

[2] R W Carter, “Finite Groups of Lie Type : Conjugacy Classes and Complex Char-
acters”, Wiley, New York, 1985.

[3] C W Curtis and I Reiner, “Representation Theory of Finite Groups and Associative
Algebras”, Wiley, New York, 1962.

[4] M Geck, On the character values of Iwahori-Hecke algebras of exceptional type,
Proc. London Math. Soc., (3) 68 (1994), 51–76.

[5] M Geck and K Lux, The decomposition numbers of the Hecke algebra of type F4,
Manuscripta Math., 70 (1991), 285–306.

[6] M Geck and R Rouquier, Centers and Simple Modules for Iwahori-Hecke Algebra,
251–272. in “Finite reductive groups : Related Structures and Representations”
Marc Cabanes, (ed.) Birkhauser, Boston, 1996.

[7] C A Pallikaros, Some Decomposition Numbers of Hecke Algebras, J. Algebra, 187
(1997), 493–509.

[8] C A Pallikaros, A note on the representation theory of the Hecke algebra of type
F4, Glasgow Math. Journal, 39 (1997) 43–50.

[9] R A Parker, The Computer Calculation of Modular Characters (The Meat-Axe)
267–274, in “Computational Group Theory”, M D Atkinson (ed.), Academic Press,
London, 1984.

14



[10] M Schönert et al. GAP – Groups, Algorithms, and Programming. Lehrstuhl D für
Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, fifth
edition, 1995.

15


