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Abstract

We classify all line spreads S21 in PG(5, 2) of a special kind, namely
those which are book spreads. We show that up to isomorphism there
are precisely nine different kinds of book spreads and describe the
automorphism groups which stabilize them. Most of the main results
are obtained in two independent ways, namely theoretically and by
computer.
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1 Introduction

A line spread in the projective space PG(5, q) consists of a set of q4 + q2 + 1
lines which partition the points of the space. The task of classifying all line
spreads in PG(5, q) is an extremely formidable one, and certainly requires
computer help even for low values of q. Line spreads in PG(5, 2) were consid-
ered in [13], where, with computer assistance, 131044 inequivalent spreads
were found. Most of these spreads have very little symmetry and presum-
ably their properties do not warrant further consideration. Indeed, see [13,
Table I], as many as 128474 different kinds of line spreads in PG(5, 2) have
trivial automorphism group!

In this paper we classify all line spreads S21 in PG(5, 2) of a special kind,
namely those which are book spreads. We claim that book spreads are some
of the most interesting kinds of spreads. For since their lines partition not
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only the whole projective space, but also subspaces covering it, they have rich
automorphism groups and are therefore a suitable type of spreads to study
for higher parameters, for which computer classification is not possible.

In PG(5, 2) there are no other spreads which partition at least five 3-
dimensional subspaces, book spreads account for 9 of the 26 orbits of line
spreads having an automorphism group of order greater than 35, and for 8 of
the 16 orbits of line spreads having an automorphism group of order greater
than 71. Moreover, the structure of book spreads makes them interesting
for various constructions based on spreads. In particular, in [13] spreads in
PG(5, 2) were used to obtain affine 2-(64,16,5) designs by Rahilly’s construc-
tion [15]. The aim was to find 2-(64,16,5) designs with the smallest possible
2-rank and thus look for new counter examples to Hamada’s conjecture [6]
(see also [7], [14]). Only two minimal rank designs were found [13, Table
III] and they were both constructed from book spreads.

We expect that the PG(5, 2) results in the present paper will be of use
in some future work where we intend to investigate certain kinds of book
spreads in PG(7, 2), see Remark 1.1(i) below.

Spreads in projective spaces have been widely studied in the last sev-
eral decades and very many constructions of spreads have been found [12].
Classification results are known for spreads in PG(3, q) with certain au-
tomorphisms [9], [10], [11], for maximal partial spreads in PG(3, 2) [17],
PG(3, 3)[17], PG(3, 4) [17], [18], and PG(4, 2) [5], for spreads in PG(5, 2)
[13], and for maximal partial spreads of size 45 in PG(3, 7) [2].

We identify the nonzero elements of the GF(2)-vector space Vn+1 with
the points of the associated projective space PVn+1 = PG(n, 2) and hence
the group GL(Vn+1) with the collineation group PGL(n+ 1, 2) of PG(n, 2).
We use 〈u, v, . . .〉 for the flat (projective subspace) generated by projective
points u, v, . . . . Also, for any geometric structure D in PG(n, 2), we denote
by G(D) the subgroup of PGL(n+ 1, 2) which stabilizes D.

1.1 Books, quatrain books and book spreads in PG(5, 2)

Let µ be a line of PG(5, 2) and let B = {σ1, σ2, σ3, σ4, σ5} be a set of five
solids (3-flats) σi in PG(5, 2) such that each 3-flat σi contains µ and such
that each of the 60 points in the complement µc := PG(5, 2)�µ of µ lies in
one (and only one) of the five solids of B. We will call B a book of solids
with spine µ, and we will to the elements σ1, σ2, σ3, σ4, σ5 of B as the pages
of the book B.

A quatrain Q(i) of σi is a partial spread of four lines such that Σ(i) :=
{µ} ∪ Q(i) is a spread of σi. Suppose that in each of the five pages of the
book B we ‘write’, i.e. choose, a quatrain Q(i). Thus equipped, we will refer
to B as a quatrain book, or a Qbook, and denote it by 5B. Each quatrain
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book 5B thus determines a line spread S21 = S21(5B) for PG(5, 2), whose
elements are the lines of the five quatrains together with the spine of B:

S21 = {µ} ∪Q(1) ∪Q(2) ∪Q(3) ∪Q(4) ∪Q(5). (1.1)

Line spreads for PG(5, 2) of this kind will be referred to as book spreads.
In PG(5, 2) there are 651 choices for the spine µ of a book B, and there

are 56 choices for the set B of five solids σi through µ. Consequently, in
PG(5, 2) there exist 651 × 56 = 36, 456 = 23.3.72.31 books. Now the spine
µ belongs to eight distinct spreads in each σi, so there are eight choices of
quatrain for each of the five pages of the 36, 456 books. Hence in PG(5, 2)
there exist 36, 456× 85 = 1, 194, 590, 208 = 218.3.72.31 quatrain books.

Remark 1.1 In the present paper we confine our attention solely to book
spreads in PG(5, 2). It is clear that it is considerably more difficult to classify
book spreads in PG(5, q), q > 2.

Concerning higher dimensional generalizations, these could also involve
plane spreads. Thus in PG(8, 2) one could consider plane spreads contained
in books consisting of 9 pages of 5-flats sharing a common plane as spine. In
each of these nine PG(5, 2) pages we need to choose a spread of nine planes
(one plane being the spine), and in PG(5, 2) there exists only one kind of
spread of nine planes: see [16, Theorem 4.1].

1.2 Useful background material

1.2.1 Desarguesian spreads in (i) PG(3, 2) and in (ii) PG(5, 2)

The subgroup of GL(4, 2) preserving a Desarguesian spread in PG(3, 2)
is clearly Γ L(2, 4). The center Z of GL(2, 4) preserves each component
of the spread and together with the zero map is a field, the kernel of the
spread, which is isomorphic to GF(4) as the spread is Desarguesian. The
group GL(2, 4) preserves exactly one spread of PG(3, 2) inducing Alt(5) on
it.

Similarly, the subgroup of GL(6, 2) preserving a Desarguesian spread in
PG(5, 2) is Γ L(3, 4). Also, the center of GL(3, 4) together with the zero
map is the kernel of the spread and is isomorphic to GF(4). All these
subgroups are conjugate; this can be derived, for example, from [12, Theo-
rem I.3]. Therefore, the number of distinct Desarguesian spreads of PG(5, 2)
is [GL(6, 2) : Γ L(3, 4)] = 28.7.31.

Remark 1.2 Through a given point m of PG(2, 4) there pass five lines,
each line containing four further points. We may consider the point m as
the spine µ of a book B whose five PG(3, 2) pages arise from the five lines
on m in PG(2, 4). Moreover, the four points other than m on a such a line
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equip each PG(3, 2) page with a quatrain, and so we have a quatrain book
5B. Consequently, a Desarguesian spread in PG(5, 2) is an example of a book
spread. Observe that such a book spread S21 has a highly unusual feature,
namely that it may be viewed as a quatrain book 5B in 21 different ways,
since any of its lines may serve as the spine. Consequently, the order of the
stabilizer G(5B) of such a quatrain book is

|G(5B)| = |G(S21)|/21 = 27.33.5 = 17, 280. (1.2)

Of course these Desarguesian spreads account for just one of the 131044
different kinds of PG(5, 2) line spreads in the classification [13]. Incidentally,
the order 362880 of their stabilizer group dwarfs the size, namely 5760 (see
[13, Table I]) of the second largest stabilizer group.

1.2.2 Our standard spread Σ in PG(3, 2)

Choose a Singer cycle A ∈ GL(4, 2), see for example [4, Table 3]. Then
A has order 15 and, without loss of generality, we may suppose that A
satisfies A4 = A+ I. We label the points of PG(3, 2) so that A induces the
permutation given in (1.3) on these points. We define the elements B := A6

and W := A10, of orders 5 and 3, respectively. Then A = BW = WB and
B and W induce the permutations given in (1.3) on the points of PG(3, 2).

A : (a1, b2, c3, a4, b5, c1, a2, b3, c4, a5, b1, c2, a3, b4, c5),
B : (a1, a2, a3, a4, a5)(b1, b2, b3, b4, b5)(c1, c2, c3, c4, c5),
W : (a1, b1, c1)(a2, b2, c2)(a3, b3, c3)(a4, b4, c4)(a5, b5, c5).

(1.3)

Moreover, the 〈W 〉-orbits are lines of PG(3, 2) which are permuted tran-
sitively by 〈B〉. For i ∈ {1, . . . , 5}, we define κi = {ai, bi, ci}, and refer
to

Σ := {κ1, . . . , κ5}, where κi = {ai, bi, ci}, (1.4)

as the standard spread for PG(3, 2). Since 〈W 〉 is the unique subgroup of
GL(4, 2) which fixes each of the lines κi of Σ, we will refer to it as the
distinguished group of Σ.

As 〈B〉 has no fixed points it permutes the 35 lines of PG(3, 2) in 7 orbits,
each of size 5. One of these orbits is the standard spread Σ, and the other
six are given by the following six kinds of linear relations:

ai + ai+1 = bi+3; bi + bi+1 = ci+3; ci + ci+1 = ai+3;
ai + ci+1 = ai+2; bi + ai+1 = bi+2; ci + bi+1 = ci+2. (1.5)

In (1.5) and in many situations throughout the paper the indices i are to be
read mod 5.
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We now identify some particular elements of G(Σ) which we will use later.
Since Sym(5) is isomorphic to SL(2, 4) extended by the field automorphism,
it may be embedded in GL(4, 2). We describe one such embedding by π 7→
Nπ for π ∈ Sym(5) and give explicit descriptions of the action Nπ on σ when
π is a transposition. In this description, we will see that π also corresponds
to the action Nπ induces on Σ.
Let N(i,i+1) be the mapping which interchanges ai with ci+1 and bi with
bi+1. Then N(i,i+1) induces the permutation

N(i,i+1) : (ai, ci+1)(bi, bi+1)(ci, ai+1)(bi+2, ci+2)(ai+3, bi+3)(bi+4, ci+4) (1.6)

on points and the permutation (κi, κi+1)(κi+2)(κi+3)(κi+4) on Σ.
Let N(i,i+2) be the mapping which interchanges ai with ai+2 and ai+1 with
bi+1. Then N(i,i+2) induces the permutation

N(i,i+2) : (ai, ai+2)(bi, ci+2)(ci, bi+2)(ai+1, bi+1)(ai+3, ci+3)(ai+4, ci+4) (1.7)

on points and the transposition (κi, κi+2) on Σ.
Defining G1(Σ) := 〈N(ij), 1 ≤ i < j ≤ 5〉, we see that G1(Σ) ∼= Sym(5)

acting naturally on Σ.

2 The standard book B and its quatrains

Since all books are GL(6, 2)-equivalent, we will use a particular decompo-
sition V6 = V4 ⊕ V2 and a book B = {σ1, σ2, σ3, σ4, σ5} in PG(5, 2) = PV6

with spine µ = PV2 = {u, v, w}, u+ v+w = 0 for the rest of the paper. We
also choose a solid σ = PV4, skew to µ, and label its elements so that the
spread Σ := {κ1, . . . , κ5} induced by B, setting κi = σ ∩ σi for i = 1, . . . , 5,
is consistent with the labelling in Section 1.2.2. Since each line in PG(3, 2)
belongs to eight distinct spreads, there is a choice of eight possible qua-
trains Q(i)

1 , Q
(i)
2 , . . . , Q

(i)
8 for each page σi of our book B. In displaying

these quatrains it helps to adopt abbreviations of the kind
u w v
0 u u
w 0 w
v v 0


(i)

:=


ai+u bi+w ci+v
ai bi+u ci+u

ai+w bi ci+w
ai+v bi+v ci

 . (2.1)

For the page σi = 〈ai, bi, u, v〉, four of the quatrains are Q(i)
1 , Q

(i)
2 , Q

(i)
3 , Q

(i)
4 ,

as given by the respective four arrays
0 0 0
u v w
v w u
w u v


(i)

,


u w v
0 u u
w 0 w
v v 0


(i)

,


w v u
0 w w
v 0 v
u u 0


(i)

,


v u w
0 v v
u 0 u
w w 0


(i)

, (2.2)
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the four lines of a quatrain being given by adding (ai, bi, ci) to each row of
the array. The remaining four quatrains Q(i)

5 , Q
(i)
6 , Q

(i)
7 , Q

(i)
8 are then those

given by the respective four arrays
0 0 0
u w v
w v u
v u w


(i)

,


u v w
0 u u
v 0 v
w w 0


(i)

,


v w u
0 v v
w 0 w
u u 0


(i)

,


w u v
0 w w
u 0 u
v v 0


(i)

. (2.3)

For 1 ≤ i ≤ 5, we define Q(i)
+ := {Q(i)

r }r∈{1,2,3,4}, Q
(i)
− := {Q(i)

r }r∈{5,6,7,8},
andQ(i) := Q(i)

+ ∪Q
(i)
− . We also defineQ+ :=

⋃
1≤i≤5Q

(i)
+ ,Q− :=

⋃
1≤i≤5Q

(i)
− ,

and Q := Q+ ∪Q−.

3 Aspects of the groups G(B), G0(B) and G0(
2B)

Since GL(6, 2) is transitive on lines of PG(5, 2), any Qbook is GL(6, 2)-
equivalent to a Qbook in B. Moreover, any two Qbooks in B which are
GL(6, 2)-equivalent are G(B)-equivalent, since an element mapping one to
the other fixes the spine. Consequently, the GL(6, 2)-orbits of Qbooks are
the GL(6, 2)-orbits of the representatives of the G(B)-orbits of Qbooks.

3.1 The groups G(B), G0(B)

A general element A ∈ G(B) has the block form

A =
(
A4 0
X A2

)
, where A4 ∈ G(Σ), A2 ∈ GL(V2), X ∈M2,4(GF (2)). (3.1)

Consequently,

G(B) ∼= Z8
2 : (Γ L(2, 4)×GL(2, 2)), and |G(B)| = 212.33.5 = 552, 960. (3.2)

It follows that the number of books in PG(5, 2) is |GL(6, 2)|/|G(B)| =
36, 456.

Let B4 and W4 denote the elements of G(Σ) relative to V4 denoted by
B and W in (1.3). In particular, 〈W4〉 is the distinguished subgroup of the
spread Σ. Also we denote by W2 the element of order 3 in GL(V2) inducing
the permutation (uvw) on the spine µ.

Define three elements W , W ∗ and B of GL(V6), where V6 = V4 ⊕ V2, by

W = W4 ⊕W2, W ∗ = W4 ⊕ (W2)−1, B = B4 ⊕ I2. (3.3)

For each π ∈ Sym(5), we define an element N̄π ∈ GL(6, 2) which fixes σ and
µ, acting on σ as Nπ and on µ as v ↔ w if π is odd and trivially if π is
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even. We also define an involution J(vw) of GL(V6) which fixes σ pointwise
and fixes µ, interchanging v and w.

Let G0(B) denote the subgroup of G(B) of those elements which fix each
page of the book B. Then A ∈ G0, with A as in (3.1), if, and only if, A4 is
in the distinguished subgroup of Σ; that is, A4 ∈ 〈W4〉. Consequently,

G0(B) ∼= Z8
2 : (Z3 ×GL(2, 2)), and |G0(B)| = 29.32 = 4608. (3.4)

Let G256
∼= Z8

2 be the normal subgroup of G0(B) consisting of those elements
of the form (3.1) with A4 = I4 and A2 = I2.

Lemma 3.1 (i) For 1 ≤ i ≤ 5, the elements W , W ∗ and J(vw) of G0(B) act
on Q(i) inducing respectively the permutations

(Q(i)
2 Q

(i)
3 Q

(i)
4 ), (Q(i)

6 Q
(i)
7 Q

(i)
8 ) and (Q(i)

1 Q
(i)
5 )(Q(i)

2 Q
(i)
6 )(Q(i)

3 Q
(i)
7 )(Q(i)

4 Q
(i)
8 ).
(3.5)

(ii) B is an element of G(B) which permutes the pages of B transitively
and induces the permutation

∏
1≤r≤8(Q(1)

r Q
(2)
r Q

(3)
r Q

(4)
r Q

(5)
r ) on the 40 qua-

trains of B.

Proof. Immediate, from (2.2), (2.3).

3.2 Some subgroups of G0(B)

3.2.1 Some elementary Abelian subgroups

Since {ai, bi, ai+1, bi+1, u, v} is, for each i ∈ {1, 2, 3, 4, 5} (mod 5), a basis for
V6, we may consider involutions Ji, J ′i , J

′′
i ∈ GL(6, 2) such that each of them

fixes the page σi = 〈ai, bi, u, v〉 pointwise and satisfy

Ji : ai+1 7→ ai+1 + u, bi+1 7→ bi+1 + v, ci+1 7→ ci+1 + w,

J ′i : ai+1 7→ ai+1 + v, bi+1 7→ bi+1 + w, ci+1 7→ ci+1 + u,

J ′′i : ai+1 7→ ai+1 + w, bi+1 7→ bi+1 + u, ci+1 7→ ci+1 + v. (3.6)

The involutions Ji, J ′i , J
′′
i ∈ G256 also preserve the other pages σi−1, σi−2,

and σi+2, since they act trivially on V6/V2. In particular, Ji induces the
following maps on these pages:

ai−1 7→ ai−1 + u, bi−1 7→ bi−1 + v, ci−1 7→ ci−1 + w,

ai−2 7→ ai−2 + w, bi−2 7→ bi−2 + u, ci−2 7→ ci−2 + v,

ai+2 7→ ai+2 + w, bi+2 7→ bi+2 + u, ci+2 7→ ci+2 + v. (3.7)

As J ′′i = JiJ
′
i , we have

A(i)
4 := 〈Ji, J ′i〉 = {I, Ji, J ′i , J ′′i } ∼= (Z2)2, i = 1, 2, 3, 4, 5. (3.8)
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Define

Ki := J(vw)JiJ(vw), K
′
i := J(vw)J

′
iJ(vw), K

′′
i := J(vw)J

′′
i J(vw),

C(i)
4 := J(vw)A

(i)
4 J(vw) = {I,Ki,K

′
i,K

′′
i } ∼= (Z2)2, i = 1, 2, 3, 4, 5. (3.9)

So Ki,K
′
i,K

′′
i keep pointwise fixed the page σi and their action upon the

other pages is given by interchanging v and w in (3.6), (3.7). It is easy to
see that

W ∗Ji(W ∗)−1 = J ′i , W ∗J ′i(W
∗)−1 = J ′′i ,

WKiW
−1 = K ′i, WK ′iW

−1 = K ′′i . (3.10)

Define A16 := 〈Ji, J ′i , J ′′i : 1 ≤ i ≤ 5〉 and C16 := J(uv)A16J(uv). Then

Lemma 3.2 (i) A16 = {I} ∪ {Ji, J ′i , J ′′i : 1 ≤ i ≤ 5} ∼= (Z2)4, C16 = {I} ∪
{Ki,K

′
i,K

′′
i : 1 ≤ i ≤ 5} ∼= (Z2)4, and

A16 = A(i)
4 ×A

(j)
4 , C16 = C(i)

4 × C
(j)
4 . (3.11)

Moreover, G256 = A16 × C16.

(ii) A16 fixes each quatrain in Q+ and has the orbits Q(i)
− , 1 ≤ i ≤ 5, in

Q−. C16 fixes each quatrain in Q− and has the orbits Q(i)
+ , 1 ≤ i ≤ 5, in

Q+.

(iii) For 1 ≤ i ≤ 5, A(i)
4 and C(i)

4 fix σi pointwise. For 1 ≤ i, j ≤ 5 and
j 6= i, Q(j)

− is a A(i)
4 -orbit in Q− and Q(j)

+ is a C(i)
4 -orbit in Q+.

(iv) For 1 ≤ i, j ≤ 5 and j 6= i, A16 acts transitively on the sixteen pairs
of quatrains {Q(i)

r , Q
(j)
s }5≤r,s≤8, and C16 acts transitively on the sixteen pairs

of quatrains {Q(i)
r , Q

(j)
s }1≤r,s≤4.

Proof. A somewhat lengthy, but straightforward, verification. Concern-
ing (3.11), we may verify relations such as J1J2 = J ′4. Concerning (iv), this
follows from (iii) on account of the direct product structures (3.11).

The partition Q+ ∪ Q− defines an equivalence relation on Q. We say
that two elements of Q are in harmony with one another if both are in Q+

or both are in Q−. That is, two quatrains of B are in harmony if they are
both fixed by A16 or both fixed by C16.

Remark 3.3 Let L(i)
16 denote the set of sixteen lines of the page σi which

are skew to the spine µ. In the 4 + 4 splitting Q(i) = Q(i)
+ ∪Q

(i)
− of the eight

quatrains for the page σi, see (2.2) and (2.3), each line λ ∈ L(i)
16 appears in

precisely two quatrains, one a member of Q(i)
+ and one a member of Q(i)

− .
This ties in with the fact that the skew pair of lines {λ, µ} lies in two spreads
in PG(3, 2) whose distinguished subgroups act differently upon the two lines.
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By using harmony considerations we may classify full Qbooks 5B into
three broad harmony types:
T (5, 0) : all five quatrains of 5B are in harmony;
T (4, 1) : precisely four quatrains of 5B are in harmony;
T (3, 2) : the quatrains of 5B split (3, 2) or (2, 3) between Q+ and Q−.

Furthermore, since the involution J(vw) interchanges the quatrain sets
Q+ and Q−, we may restrict our attention to Qbooks 5B such that at least
three of its quatrains belong to Q+, without loss of generality. Moreover,
as the group induced on the set of pages of B is Sym(5), we may restrict
attention to those Qbooks 5B for which the quatrains in its first three pages
σ1, σ2 and σ3 all belong to Q+.

3.2.2 The subgroups A(i)
12 , G

(i)
36 , G48, G∗48 and G144 of G0(B)

Since A16 is centralized by W and normalized by W ∗, we may define

G48 := 〈A16,W 〉, G∗48 := 〈A16,W
∗〉, G144 := 〈G48,W

∗〉. (3.12)

The groups A16,G48,G∗48 and G144 are all subgroups of G0(B) and are iso-
morphic to (Z2)4, Z4

2 × Z3, Z4
2 : Z3 and (Z4

2 : Z3) × Z3, respectively. From
the definition of A16, it is easy to see that G144 = 〈J1, J2, ,W,W

∗〉. The five
subgroups A(i)

4 of A16 give rise to ten subgroups of G144 defined by:

A(i)
12 := 〈A(i)

4 ,W ∗〉 = 〈Ji,W ∗〉, G(i)
36 := 〈A(i)

12 ,W 〉 1 ≤ i ≤ 5. (3.13)

Structurally, A(i)
12
∼= Alt(4) and G(i)

36
∼= Alt(4)× Z3 for 1 ≤ i ≤ 5.

Lemma 3.4 (i) For 1 ≤ i ≤ 5, The action of G144 on the set of eight
quatrains {Q(i)

r }1≤r≤8 has three orbits

Ω(i)
A = {Q(i)

1 },Ω
(i)
B = {Q(i)

2 , Q
(i)
3 , Q

(i)
4 },Ω

(i)
C = {Q(i)

5 , Q
(i)
6 , Q

(i)
7 , Q

(i)
8 }. (3.14)

The stabilizers in G144 of any Q
(i)
r ∈ Ω(i)

B , and Q
(i)
5 are G∗48, and G(i)

36 ,
respectively.

(ii) For 1 ≤ i ≤ 5, G∗48 acts transitively on Ω(i)
C and fixes each of the

quatrains {Q(i)
r }1≤r≤4.

The stabilizer in G∗48 of Q(i)
5 is 〈A(i)

4 ,W ∗〉.
(iii) For 1 ≤ i, j ≤ 5 with j 6= i, G(i)

36 fixes Q(i)
1 , Q(i)

5 and Q
(j)
5 , and has

the orbits Ω(i)
B , Ω(j)

B , {Q(i)
r : 6 ≤ r ≤ 8}, and Ω(j)

C .

The stabilizer in G(i)
36 of any Q(i)

r ∈ Ω(i)
B and of any Q(j)

r ∈ Ω(j)
B is A(i)

12 ,
and the stabilizer of Q(j)

5 is 〈W 〉 × 〈W ∗〉.

Proof. This is a straightforward exercise using Lemmas 3.1 and 3.2.
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3.3 Harmonious quatrains and normal pentads

If a quatrain book 5B has the quatrain Q
(i)
ri , ri ∈ {1, 2, . . . , 8}, in its ith

page, and so determines the book spread S21(5B) = {µ}∪Q(1)
r1 ∪Q

(2)
r2 ∪Q

(3)
r3 ∪

Q
(4)
r4 ∪Q

(5)
r5 of PG(5, 2), then we refer to the ordered pentad of quatrains

Qr1r2r3r4r5 := (Q(1)
r1 , Q

(2)
r2 , Q

(3)
r3 , Q

(4)
r4 , Q

(5)
r5 ) (3.15)

as the content of the Qbook 5B, and we use 5Br1r2r3r4r5 to denote this Qbook.
If we write quatrains Q(1)

r1 and Q(2)
r2 in the first two pages of our book B, and

leave the other pages blank, then we will say that we have a 2-quatrain book,
or 2Qbook, 2B whose content is Qr1r2 , and we use the notation 2Br1r2 for this
2Qbook. We define in an analogous fashion a 3-quatrain book, or 3Qbook,
3Br1r2r3 whose content is Qr1r2r3 and a 4Qbook 4Br1r2r3r4 whose content is
Qr1r2r3r4 .

Lemma 3.5 The line spreads of the Qbooks 5B11111 and 5B55555 are both
Desarguesian.

Proof. From (2.2) we see that the element W cycles through the points
of each line of each of the quatrains Q(i)

1 , 1 ≤ i ≤ 5, and so 〈W 〉 serves
as the required distinguished subgroup. From (2.3) the element W ∗ serves
similarly for the quatrains Q(i)

5 , 1 ≤ i ≤ 5.
A pentad Qr1r2r3r4r5 will be termed a normal pentad of quatrains if it

is the content of a Qbook 5B whose book spread S21(5B) is a Desarguesian
spread. Subsets of a normal pentad Qr1r2r3r4r5 of sizes 2, 3 and 4 will be
termed normal duads, triads and tetrads.

Lemma 3.6 If the quatrains Q(i)
r , Q

(j)
s , i 6= j, are in harmony then the pair

{Q(i)
r , Q

(j)
s } is a normal duad.

Proof. This follows immediately from Lemmas 3.2(iv) and 3.5.

Lemma 3.7 A book B supports precisely 16 normal pentads with quatrains
in Q+ and 16 normal pentads with quatrains in Q−.

Proof. Within Q+ there are
(
5
2

)
× 4× 4 = 160 duads. But each normal

pentad contains
(
5
2

)
duads.

3.4 The standard 2Qbook 2B and the group G0(
2B)

As explained in Section 3.2.1, in classifying the book spreads in PG(5, 2)
we may restrict attention to those Qbooks 5B, based on our standard book
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B, for which the quatrains in its first three pages all belong to Q+. Since
C16 is transitive on the sixteen pairs of quatrains {Q(1)

r , Q
(2)
s }1≤r,s≤4, by

Lemma 3.2(iv), we may suppose that the quatrains on the first two pages
are Q(1)

1 and Q
(2)
1 , respectively. Thus equipped, the book B becomes our

standard 2Qbook 2B11, whose content is Q11.

Lemma 3.8 The subgroup of G0(B) which stabilizes our standard 2Qbook
2B11 is G144.

Proof. Let G0(2B11) be the stabilizer of the standard 2Qbook 2B11 in
G0(B). By Lemma 3.1(i) and Lemma 3.2(ii), G144 ≤ G0(2B11). None of the
involutions in C16 fixes Q(1)

1 or Q(2)
1 . Hence, G0(2B11) ∩ (A16 × C16) = A16.

As G0(2B11)/A16 ≤ GL(2, 2) and J(uv) 6∈ G0(2B11), we have G144 = G0(2B11).

4 Extending the 2Qbook 2B to a full Qbook 5B

Before extending our standard 2Qbook 2B11 with further pages, we study
the subsets of normal pentads, whose quatrains are in Q+.

Lemma 4.1 (i) For ri ∈ {1, 2, 3, 4} the ordered pentad

Qr1r2r3r4r5 := (Q(1)
r1 , Q

(2)
r2 , Q

(3)
r3 , Q

(4)
r4 , Q

(5)
r5 ) (4.1)

is a normal pentad of quatrains if and only if either ri = 1, 1 ≤ i ≤ 5, or if
r1r2r3r4r5 takes one of the following fifteen values

12442, 21244, 42124, 44212, 24421;
13223, 31322, 23132, 22313, 32231;
14334, 41433, 34143, 33414, 43341. (4.2)

(ii) Each of the 160 pairs of quatrains {Q(i)
r , Q

(j)
s }1≤r,s≤4, 1≤i<j≤5 belongs

to precisely one of these sixteen normal pentads.
(iii) The sixteen normal pentads comprise a single C16-orbit.

Proof. (i) Since Q11111 is a normal pentad by Lemma 3.5 and the
involution K1 maps Q11111 to Q12442, Q12442 is normal. From Lemma 3.1(ii)
we see that B sends Qr1r2r3r4r5 to Qr2r3r4r5r1 ; so the three rows of (4.2)
correspond to three B-orbits of pentads. But from Lemma 3.1(i) we see
that W cyclically permutes the three rows (the fifteen pentads thus forming
a single 〈BW 〉-orbit). So it follows that all fifteen pentads given by (4.2) are
normal. The sixteen normal pentads thus found exhaust the possibilities,
since by Lemma 3.7 no further normal pentads exist with quatrains in Q+.
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(ii) This is a simple verification; see proof of Lemma 3.7.
(iii) This follows from (ii) since, from Lemma 3.2(iv), C16 is transitive on

the sixteen pairs {Q(i)
r , Q

(j)
s }1≤r,s≤4 for any i, j ∈ {1, . . . , 5} with i 6= j.

Remark 4.2 From Lemma 3.4, the subgroup G0(5B11111) of G0(B) which
stabilizes the Qbook 5B11111 is G144.

We partition the set of pentads as follows. First we partition the set of
pentads of harmony type T (5, 0) into four classes:
P ∈ P0 if P is a normal pentad, e.g. Q11111;
P ∈ P1 if P /∈ P0 but P contains a normal tetrad, e.g. Q11112;
P ∈ P2 if P /∈ P0 ∪ P1 but P contains a normal triad, e.g. Q11122;
P ∈ P3 if P contains no normal triads; e.g. Q11232.

Lemma 4.3 A harmonious pentad of type P2 contains precisely two normal
triads.

Proof. Without loss of generality we may assume that the pentad is
Q111rs for some r, s ∈ {2, 3, 4}. By Lemma 4.1(ii) the harmonious duad
{Q(4)

r , Q
(5)
s } is a subset of precisely one of the normal pentads (4.2), and

so is a subset of a unique normal triad {Q(i)
1 , Q

(4)
r , Q

(5)
s } for some i ∈

{1, 2, 3}. Thus Q111rs contains just the two normal triads {Q(1)
1 , Q

(2)
1 , Q

(3)
1 }

and {Q(i)
1 , Q

(4)
r , Q

(5)
s }. (For example, besides {Q(1)

1 , Q
(2)
1 , Q

(3)
1 }, the only

other normal triad contained in Q11142 is {Q(1)
1 , Q

(4)
4 , Q

(5)
2 }, arising from

the first entry in (4.2).)
Next we partition the set of pentads of harmony type T (4, 1) into three

classes:
P ∈ P ′1 if P contains a normal tetrad, e.g. Q11115;
P ∈ P ′2 if P /∈ P1 but P contains a normal triad, e.g. Q11125;
P ∈ P ′3 if P contains no normal triads, e.g. Q11235.

Finally we partition the set of pentads of harmony type T (3, 2) into two
classes:
P ∈ P ′′2 if P contains a normal triad, e.g. Q11155;
P ∈ P ′′3 if P contains no normal triads, e.g. Q11255.

Using Lemma 4.1(i), Lemma 4.3 and elementary calculations, we can
determine the sizes of these nine classes of pentad. We list them in the
following lemma.

Lemma 4.4 |P0| = 32, |P1| = 480, |P2| = 1440, |P3| = 96, |P ′0| = 640,
|P ′1| = 7680, |P ′2| = 1920, |P ′′0 | = 5120, and |P ′′1 | = 15360.

In the remaining sections, we will show that there are precisely nine
distinct GL(6, 2)-orbits of Qbooks and they are the nine classes listed above.
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4.1 Extending the 2Qbook 2B to a 3Qbook 3B

By making a choice of quatrain in Q+ for the page σ3 of B, we thereby
extend our standard 2Qbook 2B11 to a 3Qbook 3B11r with 1 ≤ r ≤ 4. In
fact, by Lemmas 3.8 and 3.4, we may suppose that r ∈ {1, 2} and we get

G0(3B111) = G144; G0(3B112) = G∗48. (4.3)

4.2 Qbooks of type T (3, 2)

In the case of Qbooks of harmony type T (3, 2), we may extend the 3Qbooks
3B111 and 3B112 to full Qbooks directly.

Theorem 4.5 There are exactly two GL(6, 2)-orbits of full Qbooks of type
T (3, 2) in PG(5, 2). They are represented by 5B11155 and 5B11255, whose
pentads belong to P ′′2 and P ′′3 , respectively.

Proof. A16 fixes the quatrains {Q(i)
r }1≤r≤4 in each page σi and acts tran-

sitively on the sixteen pairs of quatrains {Q(4)
r , Q

(5)
s }5≤r,s≤8 by Lemma 3.2.

So, up to isomorphism, the extensions 5B111rs and 5B112rs of type T (3, 2) to
the 3Qbooks 3B111 and 3B112 are represented by those with r = s = 5.

From Lemma 3.4, we have

G0(5B11155) = 〈W,W ∗〉; G0(5B11255) = 〈W ∗〉. (4.4)

4.3 Qbooks of type T (5, 0)

We now determine up to isomorphism those extensions of the 3Qbooks
3B111 and 3B112 to full Qbooks 5B111rs and 5B112rs of type T (5, 0).

By (4.3), G0(3B111) = G144 and, by (3.14), the G0(3B111)-orbits of qua-
trains for the page σ4 are Ω(4)

A ,Ω(4)
B and Ω(4)

C . Hence, up to isomorphism,
there are thus just two kinds of 4Qbook which extend 3B111 such that the
four quatrains are in harmony. They are represented by 4B1111 and 4B1112.
From Lemma 3.4, it follows that the two subgroups G0(4B) of G0(B) which
stabilize these two 4Qbooks are

G0(4B1111) = G144; G0(4B1112) = G∗48. (4.5)

Since G0(3B111) = G144, the G144-orbits involving quatrains for the pages σj ,
j ∈ {4, 5}, in harmony with those of 3B111 lie in Ω(j)

A and Ω(j)
B by Lemma

3.3. Furthermore, G∗48 fixes each quatrain in Ω(j)
B as G∗48 / G144. Thus, up

to isomorphism, there are at most four extensions of 3B111 to a full Qbook
of type T (5, 0), and these are 3B11111, 3B11112, 3B11121 and 3B11122. Since B
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maps 3B11121 to 3B11112, there are at most three extensions. However, the
pentads of the three Qbooks 5B11111, 5B11112, and 5B11122 are of different
types; indeed,

Q11111 ∈ P0, Q11112 ∈ P1, Q11122 ∈ P2. (4.6)

Consequently, there are exactly three GL(6, 2)-orbits of extension of the
3Qbook 3B111 to a full Qbook of type T (5, 0), and they are represented by
5B11111, 5B11112, and 5B11122.

Next we look at extensions of the 3Qbook 3B112 to a full Qbook 5B112rs

with r, s ∈ {1, 2, 3, 4}. By Lemma 3.1(ii), B2 maps 5B11211 to 5B11112 and
B maps 5B112r1 to 5B1112r, r ∈ {2, 3, 4}, which as extensions of 3B111 have
already been considered. Then, N̄(45), defined in Section 3.1 and (1.6), maps
5B1121s for s ∈ {2, 3, 4} to 5B112s′1 for some s′ ∈ {2, 3, 4}, and this has already
been considered. Of the remaining nine extensions 5B112rs, r, s ∈ {2, 3, 4},
of 3B112, we see from (4.2) that eight have pentads of types P1 and P2, and
the ninth, 5B11232, has a harmonious pentad of type P3.

Lemma 4.6 For k = 0, 1, 2, 3 all pentads in Pk are isomorphic.

Proof. If P1 ∈ P1 then let P0 ∈ P0 be the normal pentad which shares
four of its quatrains with P1. By Lemma 4.1(iii) there exists K ∈ C16

such that K(P0) = Q11111. Hence K(P1) agrees with Q11111 in four of
its places, and so for some power Bh of B, see Lemma 3.1(ii), we have
BhK(P1) = Q1111r for some r ∈ {2, 3, 4}. Hence each P1 ∈ P1 is isomorphic
to Q11112. Similar considerations, using appropriate elements of G(B), allow
us to prove that all pentads in P2 are isomorphic. Finally recall, see the
preamble to the Lemma, that the 3Qbook 3B112 has a unique extension to a
Qbook having a harmonious pentad of kind P3. Consequently, all pentads
in P3 are isomorphic.

Our results for Qbooks of type T (5, 0) are thus as in the next theorem.

Theorem 4.7 There exist in PG(5, 2) just four GL(6, 2)-orbits of full Qbooks
of type T (5, 0), with representatives:

5B11111,
5B11112,

5B11122 and 5B11232. (4.7)

The pentads corresponding to the Qbooks in (4.7) belong to P0, P1, P2, and
P3, respectively.

Furthermore, using (4.3) and Lemma 3.4, we get

G0(5B11111) = G144; G0(5B11112) = G0(5B11122) = G0(5B11232) = G∗48. (4.8)
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4.4 Qbooks of type T (4, 1)

It follows from Lemma 3.2(ii) that there is just one GL(6, 2)-orbit of Qbooks
of type T (4, 1) which extend the 4Qbook 4B1111, and it contains 5B11115.
Similarly, there is just one GL(6, 2)-orbit of Qbooks of type T (4, 1) which
extend the 4Qbook 4B1112, and it contains 5B11125. These two orbits are
distinct, since 5B11115 and 5B11125 have pentads of types P ′1 and P ′2, respec-
tively. The extensions 5B1115r, r ∈ {1, 2, 3, 4}, of the 4Qbook 4B1115, belong
to the second orbit above since the involution N̄(45) maps 5B1115r to 5B111r′5

for some r′ ∈ {1, 2, 3, 4}.
Any remaining orbits of type T (4, 1) extensions of 3B112 must contain

at least one of the Qbooks 5B112r5, r ∈ {2, 3, 4}. From (4.2) we see that
5B11225 and 5B11245 have pentads of type P ′2 and 5B11235 has a pentad of type
P ′3. Arguing as in Lemma 4.6, we see that 5B112r5, r ∈ {2, 4}, is isomorphic
to 5B11125. For Qbooks of type T (4, 1) our results are thus as in the next
theorem.

Theorem 4.8 There exist in PG(5, 2) just three GL(6, 2)-orbits of full Qbooks
of type T (4, 1), with representatives:

5B11115 ∈ P ′1; 5B11125 ∈ P ′2; 5B11235 ∈ P ′3. (4.9)

Furthermore, using (4.3) and Lemma 3.4, we get

G0(5B11115) = G(5)
36 ; G0(5B11125) = G0(5B11235) = A(5)

12 . (4.10)

Remark 4.9 The book spread S11115 := S21(5B11115) is unusual in that
it can be viewed as a quatrain book in two different ways! To see this,
recall from Remark 1.2 that the book spread S11111 := S21(5B11111) can
be viewed as a quatrain book in 21 ways. In particular it is a quatrain
book with spine the line {a5, b5, c5} ∈ Q

(5)
1 . Now if we replace the regulusa5 + u b5 + v c5 + w

a5 + v b5 + w c5 + u
a5 + w b5 + u c5 + v

 in σ5 by its opposite

a5 + u b5 + w c5 + v
a5 + w b5 + v c5 + u
a5 + v b5 + u c5 + w


we thereby convert Q(5)

1 to Q
(5)
5 and 5B11111 to 5B11115. So S11115 is a

quatrain book with spine {a5, b5, c5} as well as a quatrain book with spine
µ = {u, v, w}.

5 The complete classification of Qbooks in PG(5, 2)

In Table 1, we list data relating to the nine GL(6, 2)-orbits of Qbooks found
in Theorems 4.5, 4.7, and 4.8. The second column lists a representative for
each orbit. Since |G(B) : G(5B)| is the size of the G(B)-orbit of the Qbook
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5B, we determine the entries in the third column using Lemma 4.4. The
groups G0(B) for the various representatives have been found in (4.8), (4.10)
and (4.4), and are listed in the fourth column. From the third and fourth
column, we calculate the order of G(5B)/G0(5B), which gives the action of
G(5B) on the pages of the Qbook, and we list it in the fifth column. In
each case, we then find a subgroup of G(5B) of this order modulo G0(5B).
This subgroup, together with G0(5B), generates G(5B), which we describe in
Section 5.1. In Section 5.2, we comment briefly on the full automorphism
groups of these spreads, and we list their orders in the sixth column.

Type Content of 5B |G(5B)| G0(5B)
∣∣G(5B)/G0(5B)

∣∣ |G(S21)|
T (5, 0) Q11111 ∈ P0 17280 G144 120 362880 = 7.5.34.27

Q11112 ∈ P1 1152 G∗48 24 1152 = 32.27

Q11122 ∈ P2 384 G∗48 8 384 = 3.27

Q11232 ∈ P3 5760 G∗48 120 5760 = 5.32.27

T (4, 1) Q11115 ∈ P ′1 864 G(5)
36 24 1728 = 33.26

Q11125 ∈ P ′2 72 G(5)
12 6 72 = 32.23

Q11235 ∈ P ′3 288 A(5)
12 24 288 = 32.25

T (3, 2) Q11155 ∈ P ′′2 108 〈W,W ∗〉 12 108 = 33.22

Q11255 ∈ P ′′3 36 〈W ∗〉 12 36 = 32.22

Table 1: The Qbook orbit representatives

5.1 The nine stabilizer groups G(5B)

Qbooks of harmony type T (5, 0)
(1): N̄(12) and N̄(12345) act on the quatrains of the pentad Q11111 as

(Q(1)
1 , Q

(2)
1 ) and (Q(1)

1 , Q
(2)
1 , Q

(3)
1 , Q

(4)
1 , Q

(5)
1 ), respectively. Hence, these two

elements generate a group inducing Sym(5) on the pages of the book. So,

G(5B11111) = 〈G144, N̄(12), N̄(12345)〉 ∼= ((Z4
2 : Z3)× Z3) : Sym(5) (5.1)

(2): N̄(12) andWN̄(234) act the pentadQ11112 as (Q(1)
1 , Q

(2)
1 ) and (Q(2)

1 , Q
(3)
1 , Q

(4)
1 ),

respectively. Hence, these two elements generate a group inducing Sym(4)
on the pages of the book. So,

G(5B11112) = 〈G∗48, N̄(12),WN̄(234)〉 ∼= (Z4
2 : Z3) : Sym(4) (5.2)

(3): W 2N̄(13) and K1N̄(15)(34)K1 act the pentad Q11122 as (Q(1)
1 , Q

(3)
1 )

and (Q(1)
1 , Q

(5)
2 )(Q(3)

1 , Q
(4)
2 ), respectively. Hence, these two elements generate

a group inducing D8 on the pages of the book. So,

G(5B11122) = 〈G∗48,W
2N̄(13),K1N̄(15)(34)〉 ∼= (Z4

2 : Z3) : D8 (5.3)
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(4): N̄(12) and K ′′4 N̄(12345)K
′′
4 act on the pentad Q11232 as (Q(1)

1 , Q
(2)
1 )

and (Q(1)
1 , Q

(2)
1 , Q

(3)
2 , Q

(4)
3 , Q

(5)
2 ), respectively. Hence, these two elements

generate a group inducing Sym(5) on the pages of the book. So,

G(5B11111) = 〈G∗48, N̄(12),K
′′
4 N̄(12345)K

′′
4 〉 ∼= (Z4

2 : Z3) : Sym(5) (5.4)

Qbooks of harmony type T (4, 1)

(5): N̄(12) and N̄(234) act the pentadQ11115 as (Q(1)
1 , Q

(2)
1 ) and (Q(2)

1 , Q
(3)
1 , Q

(4)
1 ),

respectively. Hence, these two elements generate a group inducing Sym(4)
on the pages of the book. So,

G(5B11115) = 〈G(5)
36 , N̄(12), N̄(234)〉 ∼= ((Z2

2 : Z3)× Z3) : Sym(4) (5.5)

(6): WN̄(12) and N̄(23) act the pentadQ11125 as (Q(1)
1 , Q

(2)
1 ) and (Q(2)

1 , Q
(3)
1 ),

respectively. Hence, these two elements generate a group inducing Sym(3)
on the pages of the book. So,

G(5B11125) = 〈A(5)
12 ,WN̄(12), N̄(23)〉 ∼= (Z2

2 : Z3) : Sym(3) (5.6)

(7): N̄(12) and K1N̄(234)K1 act the pentad Q11235 as (Q(1)
1 , Q

(2)
1 ) and

(Q(2)
1 , Q

(3)
2 , Q

(4)
3 ), respectively. Hence, these two elements generate a group

inducing Sym(4) on the pages of the book. So,

G(5B11235) = 〈A(5)
12 , N̄(12),K1N̄(234)K1〉 ∼= (Z2

2 : Z3) : Sym(4) (5.7)

Qbooks of harmony type T (3, 2)

(8): N̄(12), N̄(23), and N̄(45) act the pentadQ11155 as (Q(1)
1 , Q

(2)
1 ), (Q(2)

1 , Q
(3)
1 ),

and (Q(4)
5 , Q

(5)
5 ), respectively. Hence, these two elements generate a group

inducing Sym(3)× Z2 on the pages of the book. So,

G(5B11155) = 〈W,W ∗, N̄(12), N̄(23), N̄(45)〉 ∼= Z2
3 : (Sym(3)× Z2) (5.8)

(9): N̄(12), K ′1N̄(13)K
′
1, and N̄(45) act the pentad Q11255 as (Q(1)

1 , Q
(2)
1 ),

(Q(1)
1 , Q

(3)
2 ), and (Q(4)

5 , Q
(5)
5 ), respectively. Hence, these two elements gen-

erate a group inducing Sym(3)× Z2 on the pages of the book. So,

G(5B11255) = 〈W ∗, N̄(12),K
′
1N̄(13)K

′
1, N̄(45)〉 ∼= Z3 : (Sym(3)× Z2) (5.9)

5.2 The spread groups

We have seen in Section 1.2.1 that S11111, the Desarguesian spread, has
automorphism group ΓL(3, 4) which acts transitively on the lines of the
spread. So, every line can act as a spine.
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In seven of the remaining eight spreads, we find that there is just one
line which, together with each of the other twenty lines, generates exactly
five solids in PG(5, 2). As this line is the spine of the book, we see that
every automorphism of the spread 5B is in G(5B). That is, G(5B) is the full
automorphism group of the spread.

The remaining spread is S11115. Here, we find that there are just two
lines which, together with each of the other twenty lines, generate exactly
five solids in PG(5, 2). So, there are two lines which can act as the spines of a
Qbook for S11115. We observed in Remark 4.9 that there is an automorphism
of S11115 which interchanges these two spines. This automorphism can be
realized by the involution which fixes a1 and b1 and interchanges a5 with u
and b5 with v.

5.3 Invariant sequences

Lemma 5.1 Let S21 be a line spread in PG(5, 2), and let H be any hyper-
plane of PG(5, 2). Then precisely five lines of S21 lie inside H.

Proof. The 32 points of Hc account for 16 lines of S21 which meet H
in a point. The remaining 31− 16 = 15 points of H must therefore support
the remaining 21− 16 = 5 lines of S21.

Thus S21 gives rise to an induced partial spread S5(H) in each hyper-
plane H of PG(5, 2). Now all partial line spreads in PG(4, 2) have been
classified in [5, Table B.1]. In particular there exist in PG(4, 2) ten projec-
tively distinct kinds of partial spreads of size 5. Of the 63 partial spreads
S5(H) determined by the spread S21 suppose that precisely Nx belong to
class Vx.1, x = a, b, . . . , j; see [5, Table B.1]. Then we will say that the
sequence (Na, Nb, . . . , Nj) is the invariant sequence I(S21) of the spread
S21.

Clearly spreads S21, S ′21 in PG(5, 2) which have different invariant se-
quences will be non-isomorphic. In the case of a book spread determined
by a Qbook 5B then the 15 hyperplanes through the spine µ of B contribute
(0, 0, 0, 0, 0, 0, 0, 0, 0, 15) to the invariant sequence. In order to determine the
full invariant sequence one needs to determine the contributions of the 48
hyperplanes H48 which meet µ in a point. In some unpublished research in
2004 R. Shaw succeeded in doing this by first finding the orbit structure of
these 48 hyperplanes under the action of various relevant groups. His 2004
results are listed in column 3 in Table 2. These invariants are related to the
invariants calculated by computer in [13], namely the number nm of 3-flats
containing m spread lines is calculated in [13] for m = 3, 4, 5. In particular
Nj = 3n5 and Ni = 3n4. (To see that Ni = 3n4, observe that if σ is a solid
which contains 4 lines S4 of the spread S21 then the three hyperplanes which
contain σ are Hr := 〈σ, λr〉, where λ1, λ2 and λ3 denote the three lines of

18



S21 \ S4 which meet σ in a point. Since the induced partial spread S5(Hr)
in each of these 3 hyperplanes is thus of class Vi.1 it follows that Ni = 3n4.)

Type Content of 5B Invariant sequence
T (5, 0) Q11111 ∈ P0 (0, 0, 0, 0, 0, 0, 0, 0, 0, 63)

Q11112 ∈ P1 (0, 0, 0, 0, 0, 0, 0, 0, 48, 15)
Q11122 ∈ P2 (0, 0, 0, 0, 0, 0, 0, 48, 0, 15)
Q11232 ∈ P3 (48, 0, 0, 0, 0, 0, 0, 0, 0, 15)

T (4, 1) Q11115 ∈ P ′1 (0, 0, 0, 0, 0, 0, 0, 0, 36, 27)
Q11125 ∈ P ′2 (0, 0, 0, 0, 0, 0, 0, 36, 12, 15)
Q11235 ∈ P ′3 (12, 0, 0, 0, 0, 0, 0, 36, 0, 15)

T (3, 2) Q11155 ∈ P ′′2 (0, 0, 0, 0, 0, 0, 0, 27, 18, 18)
Q11255 ∈ P ′′3 (3, 0, 0, 0, 0, 0, 0, 36, 9, 15)

Table 2: The invariant sequences

6 Computer-aided check of the main results

Book spreads in PG(5, 2) were first considered by R. Shaw who, in some
unpublished 2004 research, classified them into nine different classes. The
more detailed results in Table 1 have received two independent computer-
aided checks, which we now describe.

Firstly, in 2004, T.P. McDonough verified using GAP [3] that there were
exactly nine different kinds of quatrain books in PG(5, 2). One observes
initially that, since G = PGL(6, 2) acts transitively on the lines of PG(5, 2),
every such spread is equivalent to one with spine µ and, since PGL(4, 2)
is transitive on line spreads in PG(3, 2), every such spread is equivalent to
one whose pages are the pages of the standard book B. Now observe that
two quatrain books in B are G-equivalent if, and only if, they are G(B)-
equivalent. The GAP program thus determines the G(B)-orbits of quatrain
books in B. Representatives of the nine orbits are the pentads of quatrains
Q

(1)
j1
Q

(2)
j2
Q

(3)
j3
Q

(4)
j4
Q

(5)
j5

where the quintuples j1j2j3j4j5 are listed in the first
row of Table 3. The second row of the table lists the orders of the stabilizers
of the quatrain books in G(B). The third row of the table lists the orders
of the stabilizers of the quatrain books in G. The GAP program is available
from the authors.

Secondly, the classification of all line spreads in PG(5, 2) [13] shows that
up to isomorphism there are only 9 spreads for which there are at least five
3-dimensional subspaces containing 5 spread lines. However, it is not clear
that they are all book spreads. So S. Topalova recently carried through some
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11111 11112 11115 11122 11125 11155 11242 11245 11255
17280 1152 864 384 72 108 5760 288 36

362880 1152 1728 384 72 108 5760 288 36

Table 3: Stabilizer orders

new computer-aided work, briefly described below, which concentrated solely
on book spreads. Moreover, some intermediate theoretical results, proved
in the present paper, were also checked. This was done by our own software
written in C++.

Without loss of generality we may fix the first 6 lines of the spread,
namely the spine, the lines of the first quatrain, and one line of the second
quatrain. We choose the remaining 15 spread lines from a set D of 102
lines (out of all 651 lines of the projective space) that are skew to each of
the fixed 6 ones. We construct the spread by backtrack search adding to
the set of these 6 lines the remaining 3 lines of the second quatrain, then
the 4 lines of the third quatrain, of the fourth and of the fifth one. The
lines of D are ordered lexicographically, and each line we choose is greater
than the previous line of the same quatrain or if it is the first line of a
quatrain, it is greater than the first line of the previous quatrain. We obtain
2048 = (2.1.1).(8.2.1.1).(4.2.1.1).(4.2.1.1) spreads, and from them we see
that:

1. There are 2 choices for the second line of the second quatrain and
only one choice for each of the other two lines of the second quatrain — this
is in agreement with the fact that each skew pair of lines (namely the spine
and the first line of the second quatrain) is in two spreads in PG(3, 2) —
section 1.2.2 and with the fact that the spine and one more line fix exactly
2 quatrains (one from Q+ and one from Q− (Section 2).

2. There are 8 choices for the first line of the third quatrain. This is
in agreement with the following facts: There are 2 possibilities for choos-
ing {a3, b3, c3} because each skew pair of lines (namely {a1, b1, c1} and
{a2, b2, c2}) is in two spreads in PG(3, 2) — Section 1.2.2 . Then there
are 4 ways of choosing the smallest line of a quatrain because there are 8
quatrains, but one and the same line is in one quatrain from (2.2) and in
one quatrain from (2.3).

3. Similar to 1.: there are 2 different choices for the second line of the
third quatrain and a unique choice for the other two lines.

4. There are 4 choices for the first line of the fourth (fifth) quatrain —
{ai, bi, ci} are already fixed so these are the 4 ways of choosing the smallest
line of a quatrain (see 2.) and then there are 2 different choices for the
second line and a unique choice for the other two lines.

There are 18 automorphisms which fix the first six lines of the spread.
To check for isomorphism we use the same technique as in [13], i.e. apply
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automorphisms of PG(5, 2) which map the spread lines to the fixed six lines
in all possible ways, and then these 18 automorphisms. We find out that
there are 9 nonisomorphic book spreads.

During the isomorphism check we also determine the automorphism
groups which stabilize the spreads and their subgroups which preserve the
spine. The orders of these groups are the same as those which are obtained
theoretically and presented in columns 6 and 3 of Table 1.

Concerning the possibility of a future computer-aided study of book
spreads in PG(7, 2), it would seem, after some initial investigations, that
although they are only a small part of all line spreads, their number is too
big for a full computer-aided classification to be possible. Thus book spreads
in PG(7, 2) with certain additional properties ought to be considered, and
the knowledge of the structure of PG(5, 2) book spreads and their stabilizers
gained in the present paper will presumably be very helpful.
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