

Our acknowledgements to: A. Pruguel-Bennett, J.Rowe, J. Shapiro in Dagstuhl seminar Theory of Evolutionary Algorithms 2013, who participated in the discussions which initiated this work

Introduction	Definitions	Gaussian noise	Any noise finite variance	Application	Conclusions
Introduc	tion				

The problem

- Evolutionary Algorithm designed to optimize discrete functions
- What happens if we add noise?

Case 2

Any noise with finite variance

Initial setting

Setting			
Let:			
• EA an Evolutionary Algorithm			
• G_n an <i>instance</i> , i.e. a set of fitness functions from $\{0,1\}^n$ to \mathbb{N} .			
• Every $g \in G_n$ has an optimum $x^* := rg \max g$			

Definition (Complexity $f(n, \delta)$ of an algorithm EA)

The **complexity** $f(n, \delta)$ of an algorithm EA is the number of fitness evaluations needed to find the optimum of any function $g \in G_n$, with probability at least $1 - \delta$.

Definitions

Gaussian noise

Any noise finite variance

plication

Conclusions

The Solution

Add noise to G_n

 $\longrightarrow \longrightarrow \longrightarrow$

Modify EA: Revaluation individuals Averaging their fitness

イロト イヨト イヨト イヨト

E

4/14

Definition (Algorithm Revaluation-EA)

Let α and β two individuals. Then Revaluation-EA:

• To compute the fitness value of α : Average between k fitness evaluations of α , where

$$k = \max\left(1, \left\lceil \sigma^2 \log\left(\frac{1 - \exp(\log(1 - \delta) / f(n, \delta))}{A}\right) / \log(B) \right\rceil\right)$$

- To compare the individual α and the individual β :
 - α better β if average of α greater by at least $\frac{1}{2}$
 - β better α if average of β greater by at least $\frac{1}{2}$
 - they have the same fitness value otherwise.

Definitions

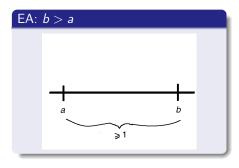
Gaussian noise

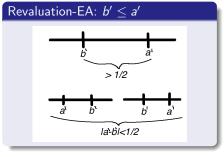
Any noise finite variance

cation

Conclusions

Theorem 1


Theorem


Assume that EA solves G_n with complexity $f(n, \delta)$. Then Revaluation-EA solves $G_n + \sigma \mathcal{N}$ with probability $(1 - \delta)^2$ and number of fitness evaluations $O\left(f(n, \delta) \left[\sigma^2 \log\left(-f(n, \delta) - \gamma\right)\right]\right)$ (1)

$$O\left(f(n,\delta) \left| \sigma^2 \log\left(\frac{f(n,\delta)}{-\log(1-\delta)}\right) \right| \right)$$
(1)

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ペ 6 / 14

Compute probability of "misranking" a *given* individual, using deviation of a Gaussian.

Step 2

Compute probability of misranking *any* individual, using union bound and Step 1.

 \rightsquigarrow We have the result

Introduction

Definitions

Gaussian noise

Any noise finite variance

pplication

Conclusions

ManyRevaluation-EA

Definition (Algorithm ManyRevaluation-EA)

Analogous to Revaluation-EA, but with:

$$k = \max(1, \lceil 4\sigma^2 f(n, \delta) / \delta \rceil)$$
(2)

イロト イヨト イヨト イヨト

臣

9/14

Definitions

Gaussian noise

Any noise finite variance

pplication

Conclusions

Theorem 2

Theorem

Assume that EA solves G_n with complexity $f(n, \delta)$. Then ManyRevaluation-EA solves $G_n + \sigma N$ (with N some arbitrary noise with variance 1) with probability $(1 - \delta)^2$ and number of fitness evaluations

$$O\left(f(n,\delta)\max(1,4\sigma^2 f(n,\delta)/\delta)\right).$$
(3)

Compute probability of "misranking" a given individual, using Chebyshev's inequality

Compute probability of misranking any individual, using union bound and Step 1.

Compute probability of EA and Revaluation-EA having the same ranking \rightarrow We have the result

Conclusions

Application: OneMax

OneMax_n

For every $z \in \{0,1\}^n$ we define: $OM_z : \{0,1\}^n \rightarrow \{0,\ldots,n\}$ $x \mapsto |\{j \in \{0,\ldots,n\}| x_j = z_j\}|$

So, OneMax_n is the set of all $\operatorname{OM}_{\operatorname{z}}, z \in \{0, 1\}^n$

Algorithm and complexity

• $(1+1) - \mathsf{EA} : \Theta(n \log n)$

[Droste, Jansen, Wegener, 2002]

Conclusions

Contribution

From noise free case to noisy case modifying the original algorithm

- Find optimum with high probability
- Complexity of the algorithm for noisy instances

Influence of Noise

Gaussian

Any noise finite variance

$$\left(\mathsf{O}\left(f(n,\delta)\left\lceil\sigma^{2}\log\left(\frac{f(n,\delta)}{-\log(1-\delta)}\right)
ight)
ight)
ight)$$

$$O\left(f(n,\delta)\max(1,\frac{4\sigma^2 f(n,\delta)}{\delta})\right)$$

<ロト < 部 > < 言 > < 言 > 言 の Q (や 13/14

Perspectives

Perspectives

Inding the complexity? Not free!

[Oliveto, Witt, 2010]

- ② Can we discard the need of the complexity a priori?
- Skapiro, Pruguel Bennet, Rowe]
- Complexity analysis in noisy settings