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Introduction

The problem

@ Evolutionary Algorithm designed to optimize discrete functions
@ What happens if we add noise?

Gaussian noise Any noise with finite variance \
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Initial setting

Let:

@ EA an Evolutionary Algorithm
@ G, an instance, i.e. a set of fitness functions from {0,1}" to N.

@ Every g € G, has an optimum x* := arg maxg

Definition (Complexity f(n,d) of an algorithm EA)

The complexity f(n,d) of an algorithm EA is the number of fitness
evaluations needed to find the optimum of any function g € G,, with
probability at least 1 — 4.
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The Solution

Add noise to G,

———
Noise free instance Noisy instance
Modify EA: .
Gn Revaluation individuals Gn + noise

Averaging their fitness

4/14



Jucti Definiti G ian noise Any noise finite variance Applicati Conclusi

Revaluation-EA

Definition (Algorithm Revaluation-EA)
Let a and 8 two individuals. Then Revaluation-EA:

@ To compute the fitness value of a:
Average between k fitness evaluations of «, where

K — max (1, {02 log (1 — exp(log(1 — 0)/f(n, 6))) /Iog(B)l)

A

@ To compare the individual « and the individual 5:
o « better S if average of « greater by at least
o 3 better « if average of 3 greater by at least
o they have the same fitness value otherwise.

NIFN| =
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Theorem 1

Assume that EA solves G, with complexity f(n,d). Then Revaluation-EA
solves G, + o N with probability (1 — §)? and number of fitness

evaluations

ofrwof(-05))
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Proof Theorem 1

Compute probability of “misranking” a given individual, using deviation of
a Gaussian.

EA: b> a Revaluation-EA: b’ < &’
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Compute probability of “misranking” a given individual, using deviation of
a Gaussian.

Compute probability of misranking any individual, using union bound and
Step 1.

Compute probability of EA and Revaluation-EA having the same ranking
~~ We have the result
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ManyRevaluation-EA

Definition (Algorithm ManyRevaluation-EA)

Analogous to Revaluation-EA, but with:

k = max(1, [402f(n, 8)/6]) (2)
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Theorem 2

Assume that EA solves G, with complexity f(n,d). Then
ManyRevaluation-EA solves G, + ocN (with N some arbitrary noise with
variance 1) with probability (1 — 6)? and number of fitness evaluations

O (f(n,8)max(1,40°f(n,8)/5)) . (3)
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Proof Theorem 2

Compute probability of “misranking” a given individual, using
Chebyshev’s inequality

Compute probability of misranking any individual, using union bound and
Step 1.

Compute probability of EA and Revaluation-EA having the same ranking
~~ We have the result
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Application: OneMax

For every z € {0,1}" we define:
oM, :{0,1}" — {0,...,n}
x = [{je{0,...,n}x =z}

So, OneMax,, is the set of all OM,,z € {0,1}"

Algorithm and complexity

] (1 + 1)—EA o @(n |Og n) [Droste, Jansen, Wegener, 2002]
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Conclusions

From noise free case to noisy case modifying the original algorithm
@ Find optimum with high probability

o Complexity of the algorithm for noisy instances

V.
Influence of Noise

Gaussian Any noise finite variance

[O(f(n, 5) [0210g (,“g(f’g)ﬂ)] [O(f(n, 5)max(1, “"f;‘”))]

N
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Perspectives

Perspectives

© Finding the complexity? Not free! [01iveto, Witt, 2010]
@ Can we discard the need of the complexity a priori?
© Revaluate vs not revaluate [Shapiro, Pruguel — Bennet, Rowe]

@ Complexity analysis in noisy settings
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