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Introduction

The problem

Evolutionary Algorithm designed to optimize discrete functions
What happens if we add noise?

Case 1
Gaussian noise

Case 2
Any noise with finite variance
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Initial setting

Setting

Let:
EA an Evolutionary Algorithm
Gn an instance, i.e. a set of fitness functions from {0, 1}n to N.
Every g ∈ Gn has an optimum x∗ := argmax g

Definition (Complexity f (n, δ) of an algorithm EA)

The complexity f (n, δ) of an algorithm EA is the number of fitness
evaluations needed to find the optimum of any function g ∈ Gn, with
probability at least 1− δ.
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The Solution

EA

Noise free instance

Gn

Add noise to Gn

−→−→−→

Modify EA:
Revaluation individuals

Averaging their fitness

Modified-EA

Noisy instance

Gn + noise
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Revaluation-EA

Definition (Algorithm Revaluation-EA)

Let α and β two individuals. Then Revaluation-EA:
To compute the fitness value of α:
Average between k fitness evaluations of α, where

k = max
(
1,
⌈
σ2 log

(
1− exp(log(1− δ)/f (n, δ))

A

)
/ log(B)

⌉)
To compare the individual α and the individual β:

α better β if average of α greater by at least 1
2

β better α if average of β greater by at least 1
2

they have the same fitness value otherwise.
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Theorem 1

Theorem

Assume that EA solves Gn with complexity f (n, δ). Then Revaluation-EA
solves Gn + σN with probability (1− δ)2 and number of fitness
evaluations

O
(
f (n, δ)

⌈
σ2 log

(
f (n, δ)

− log(1− δ)

)⌉)
(1)
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Proof Theorem 1

Step 1

Compute probability of “misranking” a given individual, using deviation of
a Gaussian.

EA: b > a Revaluation-EA: b′ ≤ a′
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Proof Theorem 1

Step 1

Compute probability of “misranking” a given individual, using deviation of
a Gaussian.

Step 2

Compute probability of misranking any individual, using union bound and
Step 1.

Step 3

Compute probability of EA and Revaluation-EA having the same ranking
 We have the result
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ManyRevaluation-EA

Definition (Algorithm ManyRevaluation-EA)

Analogous to Revaluation-EA, but with:

k = max(1, d4σ2f (n, δ)/δe) (2)
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Theorem 2

Theorem

Assume that EA solves Gn with complexity f (n, δ). Then
ManyRevaluation-EA solves Gn + σN (with N some arbitrary noise with
variance 1) with probability (1− δ)2 and number of fitness evaluations

O
(
f (n, δ)max(1, 4σ2f (n, δ)/δ)

)
. (3)
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Proof Theorem 2

Step 1

Compute probability of “misranking” a given individual, using
Chebyshev’s inequality

Step 2

Compute probability of misranking any individual, using union bound and
Step 1.

Step 3

Compute probability of EA and Revaluation-EA having the same ranking
 We have the result
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Application: OneMax

OneMaxn

For every z ∈ {0, 1}n we define:
OMz : {0, 1}n → {0, . . . , n}

x 7→ |{j ∈ {0, . . . , n}|xj = zj}|

So, OneMaxn is the set of all OMz, z ∈ {0, 1}n

Algorithm and complexity

(1 + 1)−EA : Θ(n log n) [Droste, Jansen, Wegener, 2002]
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Conclusions

Contribution
From noise free case to noisy case modifying the original algorithm

Find optimum with high probability
Complexity of the algorithm for noisy instances

Influence of Noise
Gaussian�



�
	O

(
f (n, δ)

⌈
σ2 log

(
f (n,δ)

− log(1−δ)

)⌉) Any noise finite variance�



�
	O

(
f (n, δ)max(1, 4σ

2f (n,δ)
δ )

)
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Perspectives

Perspectives
1 Finding the complexity? Not free! [Oliveto, Witt, 2010]

2 Can we discard the need of the complexity a priori?
3 Revaluate vs not revaluate [Shapiro, Pruguel− Bennet, Rowe]

4 Complexity analysis in noisy settings
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