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Abstract

We study the effect of the experimental set-up on the strac&ind rheology of two-
dimensional foams. We perform the same experiment, in whiskequence of topological
instabilities is realized, in three different set-upspwaiing the relative merits of each system
to be discussed. The experiment consists of an in-planerdafion of two bubbles which are
confined laterally by bars and wholly or partially confinedadand below by glass plates and
liquid surfaces. An instability of the bubbles occurs whiea bar spacing is increased or de-
creased (traction or compression) beyond a critical valine critical values depend strongly
on the experimental set-up used, and, because of the figitil lfraction of the system, do
not always agree with predictions based upon a two-dimaak&nalysis of a dry foam. This
behaviour gives information about the discrepancies batweported experimental results on
macroscopic two-dimensional foams under shear.

1 Introduction

The field of liquid foams has attracted much attention in mégears. Three-dimensional (3D)
foams are familiar from daily experience, but are difficalttork with from both an experimental
and theoretical point of view. However, two-dimensiondD)&ystems allow the determination
of several properties of foam that can be extended to 3D.€lRB&s systems are much easier
to analyse; for example, in an experiment, every bubble eageen and its position and shape
monitored. Computer simulations of 2D foams are much fasi@n their 3D counterparts, and
are thus able to be extended to much larger systems, with thamgands of bubbles. We will
describe three methods for the experimental productionDofdams below. By comparing all



three different methods, we show in this paper how the chaiiceethod affects the structure and
response of the foam.

Recent interest in the rheology of foams stems from a 2D Gewdtear experiment by De-
bregeas et al. [1]. An aqueous foam was trapped between tamhtal glass plates in an annular
cell, and sheared by moving the inner wall in a quasi-staanmer (i.e. the strain-rate was low
enough that full elastic relaxation could occur betweeresall increment in strain). The strik-
ing result was that all the plastic events (topological ¢jee) were confined to a region close to
the inner wall (shear banding). This result was unexpeaied foam in the quasi-static limit. A
different Couette shear experiment was carried out by Deand co-workers [2, 3, 4] in a cell in
which, instead of a glass plate, the foam was bounded belaivébgurface of a liquid pool, and
unbounded above. In this case shear banding was either setwald [2], or the shear band was
located much farther from the inner cylinder [3]. Our stuslpartly motivated by trying to explain
this discrepancy between ostensibly similar experimeitts different setups.

The work described here also relates to instabilities ofrf®an apparently 2D systems. Re-
lated studies have found that the investigation of topalaiginstabilities is a profitable way to
better understand foam systems and to improve the agredmemeen theoretical predictions
and experimental results [5]. The analysis of such ingtaslrelies on the assumption of the
two-dimensionality of the system, considering small pkdparations and assuming a low liquid
fraction, i.e. the foam to be dry, so that gravity does noy pléarge role.

Recently, attention has been drawn to the 3D nature of exjgatial systems. Cox et al. [6]
have shown that topological changes predicted by the thafodlyy foams may occur at different
values in the experimental system because of the unacabiantiquid, for example in the menis-
cus beneath the bubbles. Thus experimental configuratientaeoured which have higher 2D
energies than those configurations predicted by dry théldrg. differences between the standard
methods of producing 2D bubble clusters suggest differeh&ibiours of the instabilities [7].

The most common methods used to produce 2D foams are (i) deotddh (ii) a Hele-Shaw
cell or (iii) a liquid-glass system. These are illustratadrigure 1. In each experimental system
there is a distribution of liquid around the bubbles, whismbt accounted for in the standard
dry theory. When a soap film touches a glass plate or when fiimee meet, a small triangular
liquid channel, known as a Plateau border, is formed. Thadign the Plateau borders, and in
the menisci where films meet a liquid surface, will cause réigancies in the response of the
experiment, compared to the dry case, which we will quantiiyr experiments thus allow us to
begin to explain the difference in the Couette shear exparisreferred to above, in which shear
banding is seen in a Hele-Shaw geometry but not in a bublile raf

The bubble raft method was used by Bragg and Nye [8] to rem®the behaviour of atoms. In
this case a single layer of bubbles is created on a liquidsarfDespite the ease of foam creation,
this method has the disadvantage of rapid bubble ruptuestathe large region of contact with
air. Also, its response cannot always be reconciled withutheal 2D model of foams, in that a
topological transition may result in bubbles separatirtigeathan being linked by a common film,
as shown below. The liquid content, as measured by the sideeaheniscus encompassing the
base of each film, is difficult to control.

In the Hele-Shaw or glass/glass method [9], a layer of bubldesandwiched between two
horizontal glass or perspex plates. Plateau borders areetbat the top and bottom of each film



and along the vertical lines of intersection of the films. Tty Plateau border is smaller than the
bottom one due to gravity, and the vertical films interpola@veen them, in hydrostatic balance.
This procedure was first used by Smith [10] and adopted byrakaathors to study coarsening
(bubble growth due to gas diffusion) [e.g. 11]. Itis genlgréde method which allows experiments
with the lowest liquid fraction. However, the presence & ¢flass plates creates difficulties in the
manipulation of bubbles, and it is therefore difficult to guce arrangements of bubbles with a
given topology.

In the third method, the bubbles are trapped between a diatgsgmd a liquid solution [12]. In
addition to the Plateau borders touching the upper glase,@a in the glass/glass method, there
is a meniscus at the base of each film, as in a bubble raft, idggnerally larger than the Plateau
border above it. This method was also introduced by Smith |ithough each system was for a
different purpose, so that he did not compare the resultseofame experiment between the two
methods. This glass/liquid method has several advantagse®asy to produce many topological
configurations of bubbles quickly, and to vary the effectigaid fraction of the foam by changing
the separation between liquid and glass (large separatmmespond to lower liquid fractions).
However, in common with the bubble raft, it is difficult to dedi precisely this liquid fraction,
because of the presence of the meniscus, and the meniscusos®/topological changes that are
not predicted by dry theory.

In this paper, we make identical experiments on these tlysterss, shown in Figure 2, choos-
ing a simple experiment to allow us to easily study the eftd@cthe system. The experiments
consist of the deformation of two bubbles between two bahgresthe distance between the bars
is increased (traction) or decreased (compression) tgerig change in topology, as in the 3D
experiments of Bohn [13]. These instabilities occur fotical values of the bar spacing. A small
number of experimental results of the two-bubble instaediprepared with the liquid/glass tech-
nique were given by Fortes et al. [14]. Those authors alseiged an analytical analysis which
we discuss below, although note that in our experiments obtige films are ever pinned to the
wall at any point.

The structure of this paper is as follows. 48 we describe the experiment and the three
experimental systems, then give theoretical predictiongie critical bar spacings §8. In §4 we
present the results and discuss thergan

2 Experiments

Figure 1 illustrates the three experimental set-ups usedoduce 2D foams: a) bubble raff,4,

b) glass/glass7G and c) liquid/glass£G. While in the first method the bubbles are only in contact
with the liquid pool ) and air (4), in the other two methods the bubbles are confined by either
the liquid pool and the glasgj, or the two glass plates.

Figure 2(iii) shows two bubbles produced with the liquidgg method. Two parallel bars
penetrate into the liquid solution. One bar is fixed and theeiobar moves parallel to the fixed
one. A glass plate covers the two bars. Two equal-volumelbslare produced from a graduated
syringe inserted in the liquid, so that their volufies known. In this way, the bubbles are formed
between the surfactant solution and the glass plate cayerat a separatioii .



In the bubble raft system, Figure 2(i), the procedure is #raesexcept that we do not cover
the bubbles with the glass plate. In the glass/glass sydtemrsin Figure 2(ii), the bottom liquid
is replaced by a glass plate, on which the bubbles are forrafdocovering with a second plate,
again at a separatiaf.

We denote byw the distance between the two bars. The experiment consgistsreasing and
decreasing the spacing in small steps (of about 1mm), interspersed with pausesldw dhe
system to re-equilibrate (i.e. quasi-static motion). Weaasuweged the critical values of the spacing
at which transitions between various bubble configurataotsir.

We made experiments with various separatiéh@®.5, 1.0 and 1.5 cm) and bubble voluniés
(0.5, 1 and 1.5m?).

The bubbles are deformed by changing the distance betwedratko. We start with configu-
ration’P (Figure 3(i)) in which the two bubbles contact each otherfilmaparallel to the bars. We
first increasev (traction) and at a critical bar spacing- an instability occurs in which this film
disappears and re-forms in the other direction, known asprddess. This new configuratiah;
(Figure 3(ii)), has a film perpendicular to the bars, jointhg two bubbles. In the experimental
systemL A this film does not form, and the bubbles separate to form agunaiion/’ consisting
of two semi-circular bubbles.

We then compress configuratio by decreasingy and we obtain configuratio® again,
at a critical valuewyp. Further compression leads to the slant configuratfigure 3(iii)),
without a change of topology, at a valugs; here the inter-bubble film is inclined, representing
a buckling transition. After further compression, the dtebble film touches the bars and the
bubbles undergo a T1 topological transformation into thal@o structurds (Figure 3(iv)), which
consists of two bubbles which share a common film perperali¢althe bars. This is attained at a
critical value,wgp.

3 Theoretical Predictions

The driving force for the topological changes is the miniatian of surface energy. For an ideal-
ized two-dimensional foam, the surface energy is equivatetne line-length, or perimeter, of the
configuration. In the dry model of a 2D foam at equilibriunme fiims are represented as circular
arcs which meet three-fold &20° in vertices, according to Plateau’s rules [15]. It is thessble

to calculate geometrically an idealized 2D energy for ed¢hebubble configurations considered
here, shown in Table 1.

The decoration of this structure with a triangular Plateandbr at each vertex, representing the
vertical Plateau borders in the experiments, is the mogdyeaieved representation of a wet 2D
foam. In practice, the main effect of the Plateau borders chainge the vertex separation at which
T1s occur. Such a model does not, however, take into accoyntaaiation of Plateau border area
with height.

We give here two predictions for the bar-spacing at whichtdipelogical changes occur. The
first is based upon the usual dry model of a 2D foam, the secoroh @ffectively “wet” 2D foam.

Our first theoretical prediction of the critical bar-spagarises by calculating the value ofat
which a soap film shrinks to zero length, as in the idealizgchttwdel of a 2D foam. At this point,
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Table 1: The 2D energy (line-length) and the length of the filat shrinks to zero length to trigger
the T1, as a function of bubble ardaand bar spacing. ' the distance between the two separated

semicircles.* cos(a) = /3% (@ + %)

two vertices touch and trigger a topological change. Thgtles\L of these films are given in the
last column of Table 1 for 2D bubbles of arda They are calculated directly from the geometry
of the cluster, as demonstrated by Fortes et al. [14]: fotrdmesitionS to B they predict a value

of wgp = 0.885v/A, which is the point at which one of the short films touchinglthe disappears.
The other values arepy = 3.322v/A, when the common film shrinks to zero length in the
configurationwy p = 2.210v/A, when the film joining the bubbles in th€ configuration shrinks

to zero length; andy » = 1.128/A, when the two semi-circular bubbles touch. These values are
reduced, in proportion to the square-root of the liquidti@at, as the foam becomes wetter, since
the vertices touch sooner.

The transition fromP to S does not involve a topological change: the change to thenalige
configuration should occur when it is energetically favdaleao do so. By comparing the energy
E of each configuration (lines 1 and 4 of Table 1), Fortes etlal] predicted that the value af
at which theP to S transition occurs ispg = 1.022v/A.

The energetic analysis given above is also applicable tam fihat does not have vanishingly
small liquid fraction [6]. The effect of the excess liquidti allow the bubbles to jump to an
alternative configuration as soon as the energy of thisratse configuration, measured for the
equivalent (undecorated) dry foam, is lower. Our secondiptien, for wet foams, is that the
critical spacingu;; is the value ofw for which the energy of configuratians equal to the energy
of configurationj. These values arepy = 2.586V A, wpy: = 2.129v/A andwgp = 1.304V/A.

These should be considered as upper and lower bounds, beaxfdhe effects of liquid content.
The first prediction, of films shrinking to zero length, shbpfovide an upper bound for the critical
spacing at which the transition occurs in tractioh £ N) and a lower bound in compression.
Similarly, the second prediction should give lower and ugdpmunds in traction or compression
respectively.



4 Resaults

In Figure 4 we plot the critical values af as a function of bubble volumg for the transitions
P—-N',N'"—P,P -8 andS — B, obtained with the bubble raft experimentAd. The results
are scaled by an equivalent cross-sectional area that asdinait the bubbles are hemispherical,
A, = m(3V/(2m))%3. That the results do not change for different bubble volumegyests that
this scaling is appropriate, and that for the other systemseaed only concentrate on the variation
of w with plate separatioii/ .

In traction, theP—N" transition occurs as soon as it is energetically favourthd® so, in good
agreement with the second analytic prediction for “wet’nfiga This reflects the (uncontrollable)
wetness of this experimental system, which induces thesitian. In compression, there is a
slight delay after the energies become equal beforé\theonfiguration of two separated bubbles
rejoins to formP, but it still occurs before the idealized picture of two sarincles that just touch
suggests it should (first theoretical prediction). It reyer@s, in fact, the extent of the meniscus,
and the distance at which two bubbles start to be attracteddb other [16]. Thé& configuration
appears where predicted, but the transition fe®to 3 does not occur until the edge length shrinks
to zero, as in a dry foam. Apart from this last discrepancyewegect that the wet predictions will
be most useful for th&€ A system.

In the experiments where the foam is covered by a glass @atsyn in Figure 5, the values
of the spacingu are scaled by the square-root of the apparent area of eatiebub= V/H,
whereH took a range of values up to 1.5cm. As the plate separatiorases, the effective liquid
fraction of theLG system decreases, while that of the glass/glass system'do€kerefore the
observation that the critical values@ofdo not change witti for GG makes sense. Moreover, all
theGg results are consistent with the predictions of dry 2D thdeojid lines).

The results for the liquid/glass system in tractidgh ') show that this transition occurs as
soon as it is energetically favourable to do so for low setp@ra (relatively high liquid fraction).
The values drift towards the other prediction, of waiting foe shortest film to shrink to zero
length, asH increases. In compression, the trend of increasing driticwith increasingH is
also clear. AsH decreases and the system gets wetter, the criticial smaller and below the
lower bound of the second analytic prediction, suggestagfor theLG system the dry theory is
inappropriate.

5 Discussion

The two-dimensional model of an idealized dry foam is amaative one for theory and compu-
tation. It has also been widely invoked as an experimentdnigue, often without noting the
significant defect that no experimental system of this kim@dompletely two-dimensional (un-
like, for example, a Langmuir foam [17, 18], consisting okxisting gas and liquid phases in a
monolayer of amphiphilic molecules on a liquid surface).

Therefore, the disagreement between theoretical and iexpetal values are due to the 3D
nature of the experiments. Both the bubble raft and thedigliss methods suffer from the pres-
ence of a meniscus around the bubbles, while the confinemeéheiglass/glass system makes it



awkward to manipulate the bubbles.

It is the glass/glass system, or Hele-Shaw cell, that we Hamsonstrated to correspond most
closely to the dry theory. At the other extreme, the bubbfeisasimple to use but bears the
least resemblance to the predictions of dry theory, beitigbapproximated by our “wet” theory.
Between these two extremes, the glass/liquid system allbevéiquid fraction to be controlled:
our experiments suggest that it is necessary to fék¢’A < 1 to be close to the dry limit, and
H/+/A > 2 for our second set of “wet” predictions to be valid.

It should therefore be no surprise if the localization resof the 2D Couette shear experiments
of Debregeas et al. [1], performed in the glass/glass sysaeenfound to be in agreement with
guasi-static 2D simulations of dry foams in this geometryor#difficult will be a numerical
confirmation that the shear-band is not always present f2hanges position [3], in the bubble
raft. The greater liquid content in the latter system supédys a role in determining the presence
of localization.

Such a simulation with the Surface Evolver would requirehefdm to be deleted at least once
in each iteration to test whether the energy of an alteraaibnfiguration is lower. An alternative
would be a full three-dimensional Evolver calculation of @iwam, which is currently not viable
because of the computational time required.

To improve agreement between simulations and experimer®doams, the finite time-scale
of a T1 event must be accounted for (T1s occur instantangouguasi-static simulations), as in
Durian’s bubble model [19] for wet foams. Twardos and Der{@®] have recently shown that
for the LA system, this time-scale is of the order of 10 seconds, adan fnsignificant length of
time. The same time-scale may not apply to the other two Bysteloes the presence of a glass
plate increase or decrease it? That is, to what extent isitésscale set by the underlying liquid,
or the drag of the Plateau borders on the glass plates, ofinbble dissipation?

In our experiments, we find time-scales close to two secondthé relaxation to equilibrium
after theP — A change (data not shown) for all systems. This shorter timéddme indicative of a
change in solution viscosity or the ease with which a foamvofliubbles can relax, in comparison
to a bulk foam; it will be investigated in future work.
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| Liquid Pool | Glass Plate | Liquid Pool '

Figure 1: Different quasi-2D experimental set-ups for stigating foams, illustrated in cross-
section. (i) a bubble raft, denoted herefay, in which the bubbles float freely on the surface of a
liquid. (ii) GG. (iii) £LG. Based upon figure 6 of [6].



Figure 2: Three experimental systems used to produce 2DS¢erp view): (i) bubble raftL.A,
(i) glass/glassg G and (iii) glass/liquid LG. The bar-spacing in each case is of the order of 2cm.
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(iii) (iv)
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Figure 3: Experimental observations of configurations?i)ii) A\/; (iii) S and (iv) B. The bars
are visible at the top and bottom of each image.
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Figure 4: The critical bar spacing as a function of bubbleugm V' at which the configuration
changes for th&€ A4 system, in which the bubbles completely separate irithe\/’ transition and
the “height” of the system does not play any role. In each exptw is scaled byw/A,, where
Ay is the area of the base of a hemi-sphere of voliimd&he dashed lines represent the critical
from the second analytic prediction (equal energy stresuwhile the solid lines are the critical
w for the first prediction (edge shrinking to zero length) sitiear that varying the bubble volume
makes little difference to the results scaled in this wag et for discussion.
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Figure 5: The critical bar spacing as a function of scaledept@paratiorf//+/A at which the
configuration changes for the two systeg and £LG. The dashed lines represent the critical
from the second analytic prediction (equal energy stresfuwhile the solid lines are the critical

w for the first prediction (edge shrinking to zero length).
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