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Abstract. A recent conjecture on two-dimensional foams suggested that for fixed topology with given
bubble areas there is a unique state of stable equilibrium. We present counter-examples, consisting of a
ring of bubbles around a central one, which refute this conjecture. The discussion centres on a novel form
of instability which causes symmetric clusters to become distorted. The stability of these bubble clusters

is examined in terms of the Hessian of the energy.

PACS. 82.70.Rr Aerosols and foams — 46.32.+x Static buckling and instability

1 Introduction

In the course of a fresh approach to the description of the
structure of a foam and its rheological properties, [1] ad-
vanced the following conjecture: A dry two-dimensional
foam of specified topology and bubble sizes should have
a unique equilibrated structure corresponding to a unique
local minimum of energy. Structures related by exact sym-
metries (translation, rotation or reflection) are excluded.

This conjecture is here refuted by counter-example. We
shall describe structures that are metastable states corre-
sponding to local energy minima; they can (and will) have
different values of energy. Note therefore that we do not
discuss the global energy minimum, or ground state, with
either free or fixed topology.

We must consider two possible boundary conditions;
firstly a fixed-boundary condition, where we may choose
a closed loop in the plane and fill it with bubbles.
The counter-example in this case is trivial, and is de-
scribed briefly in Appendix A. More interesting is the
free-boundary case. In the next section we give exam-
ples where two or more stable equilibrated structures exist
with different bubble shapes, but with the same areas and
topology, for this free-boundary case. Note that we seek
an example other than the degenerate ones typified by a
chain of three bubbles, in which different shapes with the
same energy are obtained depending upon, for example,
whether the bubbles’ centres are co-linear or not.

These examples lead to the consideration of a family
of 2D clusters of cells, which we have simulated using the
Surface Evolver [2]. In Section 3 we explore the details of
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these clusters and in Section 4 we examine their stability,
primarily by calculating Hessian eigenvalues and identify-
ing those which are associated with incipient instability.

2 Non-unique geometry with free boundary
conditions

We seek a free bubble cluster which has the property
that alternative minima exist for given topology and bub-
ble areas. The underlying idea which we have used is
that a chain of bubbles under compression should exhibit
symmetry-breaking instabilities, leading to multiple min-
ima. It is most convenient to arrange such a chain in a
ring around a single central bubble whose area can be
gradually reduced to achieve the desired compression.

Figure 1a shows such a configuration as simulated with
the Surface Evolver [2], for the case of ten bubbles with
equal areas. More details of this method are given below.
In fact this symmetric configuration is simple enough to
be found analytically.

The obvious equilibrium configuration shown in Fig-
ure la has ten-fold rotational symmetry, but as the central
area is reduced it exhibits the expected instability in the
form of a symmetry-breaking transition in which the cen-
tral bubble becomes elongated, shown in Figure 1b. Note
that the topology is unaffected by this transition, provided
that it is not pursued too far. Also, the minimum shown
is one of a several which have similar energy, correspond-
ing to distortion in different directions; another example
is shown in Figure lc.

The conclusion is therefore that the conjecture fails,
and not just for singular special configurations. It may
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Fig. 1. Different configurations for a two-dimensional bubble cluster with ten “petals” of unit area around a central bubble.
a) With the central area at A. = 0.7, the symmetric, circular configuration is stable. b) Putting A. = 0.65 gives a stable
elliptical cluster instead. However, there are many possibilities for the configuration which results from the instability; another
example is shown in ¢). Panel ¢) cannot be obtained from b) by either rotation or reflection.

be wondered how it arose in the first place. The conjec-
ture seemed reasonable because computer simulations of
foams, typically with one hundred cells [3,4], have been
examined in the past to see whether they exhibited mul-
tiple minima when subjected to random perturbations,
but such minima were never found. It seems that typical
foam samples under periodic boundary conditions do not
readily exhibit more than one minimum, but this could
be well worth revisiting now. It should be possible to find
rare examples of multiple minima.

Additional details of our calculations on these unusual
configurations of free clusters are presented below. We de-
scribe in greater detail the onset of instability (Sect. 3)
and analyse the instability in terms of the energy Hessian
(Sect. 4).

3 Surface Evolver calculations

We have made extensive use of the Surface Evolver [2], a
software package which can find minimal energy configu-
rations, subject to certain constraints. It has been used
elsewhere in the study of instabilities of bubble clusters,
for example by [5].

For the two-dimensional case described here, consist-
ing of n ring-bubbles, or “petals”, surrounding a central
bubble, we create an initial configuration consisting of 2n
vertices joined by straight lines, with defined bubble topol-
ogy, and then use the Evolver, with quadratic mode and
four levels of refinement, to minimise the edge length sub-
ject to the given bubble areas.

In our calculations the free-boundary buckling insta-
bility occurs whenever the ring contains more than six
equal sized petals (of area A). It is not immediately clear
why the instability should only show itself for n > 6. We
start from an initial configuration in which the central
bubble is large enough that the buckling will not occur.
Then we use the following procedure: the area of the cen-
tral bubble is reduced by a small amount, and then the
new minimum energy structure is found. If the system is
still rotationally symmetric (we describe below a way of
measuring this symmetry) we perturb it by making small
random changes to the positions of the vertices. (Without
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Fig. 2. The critical area of the central bubble at which the
instability occurs is plotted against the number n of bubbles
in the ring. Also shown is the power law fit, given by A =
0.0415(n — 6)2. For these data the bubble area is A = 1.

such perturbations, the symmetric state may persist be-
cause the numerical calculation is stuck at a saddle point.)
The structure is next evolved to its minimum energy. If
this leads to buckling then we have reached the critical
bubble area at which the symmetric minimum configura-
tion becomes unstable. Otherwise we repeat the procedure
and further reduce the area of the central bubble.

In Figure 2 we show the critical area of the central
bubble, A%, at which an n-sided ring (i.e. with n petals)
is unstable, as a function of n. This is for fixed ring-bubble
area A = 1. The results are fitted extremely well by

A = 0.0415(n — 6)%A. (1)

Thus the instability is found for n > 6 only. It seems that
the case n = 6 plays a special role here, on the margin of
stability. In attempting to explain this, we note that the
instability is found at precisely the minimal energy of the
cluster as a function of central area, as shown in Figure
3. Such a minimum is found only for n > 6; thus the
cluster is only able to reduce its energy by buckling for n >
6. After buckling, as A, is further decreased, the energy
of the deformed cluster remains constant as it becomes
more elliptical. It is interesting to note that we might have
expected the case n = 6 to be stable, since a hexagonal
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Fig. 3. The variation in energy of a cluster with seven petals
(n =T) as the area of the central bubble is decreased. Surface
Evolver calculations show excellent agreement with the ana-
lytic result for the symmetric cluster. Below the critical point
at A} ~ 0.04, the energy of the distorted cluster is constant,
while the energy of the metastable circular cluster increases
steeply. Surface tension is equal to one.

bubble in a cluster of constant total area can change its
area without changing the total energy. The energy curve
shown in Figure 3 exhibits qualitatively similar behaviour
to the energy of a buckling regular honeycomb [6]. Our
analysis, based on the above ideas and the method given
in [1], shows that a minimum in energy is attained only
for n > 6, at a value of central area given by

min 1 V3 o n sin(mw/6 — w/n) n
Al *“(5*%) {ﬁ—sinwn) -5 @

with which the fit in (1) shows excellent agreement. As A,
is decreased below this value, the perimeter of the central
bubble remains constant, forcing the symmetry to break.

Note that the value of A} is easily estimated by using
the “target” diagram of Figure 4 to calculate areas and
perimeters, leading to the formula

1
Al = & (n —2m)* A. (3)
This is quite close to the empirical formula (1): the expo-
nent 2 is the same, the offset is 27 rather than 6 because
of the circularity, and the prefix (87)~! = 0.0398 is very
close to the empirical 0.0415.

As a measure of the magnitude of the distortion due
to the buckling instability, we shall use an eccentricity
parameter defined as follows. Given the positions of each
vertex (z;,¥;), with origin at the centre of the ring, we
calculate the 2 x 2 moment of inertia matrix

i i
i i

We diagonalise this matrix to find the principal moments
A1 and As. The eccentricity is then defined to be the nor-

malised difference: (A2 — A1)/y/A? + 3.

Fig. 4. This simple target model of a cluster (in this case for
n = 12) can be used to estimate the critical area at which the
minimum energy occurs. The annulus is divided into n petals
of area A, and the cluster has energy F = nR+2nA/R, where
R is the width of the annulus. F is minimised when R = \/ﬂ,
which gives the critical central area at which this minimum is
attained.
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Fig. 5. A measure of the eccentricity of the system, as the crit-
ical bubble area is varied, using the difference of the principal
moments of inertia. The results shown are for n = 10 and bub-
ble area A = 1, with the points denoting the numerical results.
As Ac is decreased, the configuration remains symmetric until
the critical point A% =~ 0.661 when the eccentricity increases
with the square root of A. (dashed line), in the classic manner
of a supercritical bifurcation.

The results for the eccentricity of a 10-bubble ring
are shown in Figure 5. The instability shows the typical
square-root shape of such a bifurcation and this provides
a confirmation of the critical point when the data are fit-
ted to such a square root. It is not possible to pursue this
curve to lower values of A. indefinitely, because topologi-
cal change occurs when the length of a side of the central
bubble shrinks to zero.

The analogy with a compressed chain of bubbles is very
suggestive. It indicates that there will be higher modes
of buckling; following the elliptical elongation described
above, there will be a triangular mode, then a square
mode, and so on. We shall remark further upon these
modes of instability in the next section. In future work
we intend to provide an experimental demonstration of
the instability, using the techniques described by [7].
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Fig. 6. The lowest six eigenvalues for a cluster consisting of
six bubbles surrounding a central one (n = 6). Each eigenvalue
(1), or pair of eigenvalues (2) is labelled on the right with
the kind of distortion to which it corresponds. No eigenvalues
descend to zero, so the cluster is stable for all values of the
central area A..
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Fig. 7. The lowest ten eigenvalues in the case n = 10, for
the cluster illustrated in Figure la. As for the case n = 6
(Fig. 6) there are three small constant eigenvalues (represent-
ing translations and a rotation) but the next seven eigenvalues
all descend to zero as the central area is decreased (they exist
in pairs, except for the highest one). This defines the critical
point at which the cluster becomes unstable, A} & 0.65.

4 Calculation of Hessian eigenvalues

The Surface Evolver program contains a facility for the
calculation of the Hessian matrix and its eigenvalues. This
is described by [8] and has been used by [9], for instance,
to investigate the distortion associated with two non-
coalescing droplets.

The Hessian is defined as the matrix of second-order
partial derivatives of the energy with respect to the co-
ordinates of the vertices (including those generated when
refining the edges). Figures 6 and 7 present eigenvalues for
two cases of interest: a ring with six petals and one with
ten. It is immediately apparent that, for the case n = 10,
which was previously identified as exhibiting instability
when the area of the central cell was reduced to a critical
value, many eigenvalues tend to zero at or close to this
critical point. However, for n = 6, which exhibits no such
instability, the eigenvalues remain positive. In each case
there are three small, constant eigenvalues; these corre-
spond to two translations and a rotation.

In the n > 6 cases one of the eigenvalues actually
reaches zero and provokes the kind of distortion described
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Fig. 8. In the fixed-boundary case we choose the bound-
ary shape above to demonstrate the required counter-example.
Bubble A can go in either of the two lobes, but in each case
the topology is the same while the bubble shapes are different.

earlier. In total there are n — 3 eigenvalues that reach zero
at, or close to, the critical point. The significance of the
other n — 4 decreasing eigenvalues can be made clear by
recognising that the relevant degrees of freedom are essen-
tially the motions of the individual cells as a whole. If we
think of the bubbles as interacting points, then we would
expect the system to exhibit many “soft modes” tend-
ing to instability at much the same point. Because of this
multiplicity of unstable modes, there is a corresponding
multiplicity of distorted structures in equilibrium, within
the unstable regime. Thus the energy landscape is much
richer than that implied by the initial bifurcation of stable
structures due to the first vanishing eigenvalue.

5 Conclusion

Although the initial impact of this work has been negative,
since it was explicitly developed in order to refute the con-
jecture of [1], it now offers an interesting object of study in
the instability of bubble clusters. This type of instability
is new, and takes its place alongside others which are well
known in the study of foams [10]. Similar clusters have
been studied already, usually for equal sized bubbles; the
present work points in a hitherto unsuspected direction
and raises fresh questions regarding the simple relation-
ships which we have found here. Moreover, we would also
expect similar instabilities to occur in three-dimensions.
It may well provide a useful model system for the study of
bifurcation, energy landscapes and other aspects of non-
linear systems. Its advantages include a simple model and
simulation procedure, an equally tractable experimental
realisation, and rich possibilities for multiple minima when
the procedure used here is taken further.
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Appendix A. Non-unique geometry with
fixed-boundary conditions

We describe briefly a counter-example to the conjecture
that for given topology and a fixed boundary, the bubble
geometry is unique. This is much easier than the free-
boundary case, discussed in Section 2: indeed it is quite
trivial —so much so that it does not require computa-
tion to provide a convincing demonstration. We are free
to choose a boundary and then attempt to insert bub-
bles which can be arranged in configurations that differ
in terms of geometry but not topology. We fill the region
shown in Figure 8 with two bubbles, A and B, which have
different areas. Then there are two possible shapes for A
and B, although the topology remains unchanged.
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