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A B S T R A C T

The use of foams in applications such as enhanced oil recovery and varicose vein sclerotherapy has led to
renewed interest in their flow as yield stress fluids. In each application one seeks to determine the ability of
a foam to displace another fluid from a tortuous channel. We simulate the pressure-driven flow of a Bingham
fluid through a serpentine two-dimensional channel to predict the effects of varying the channel geometry on
the size and location of the unyielded regions in which the fluid is either stationary or moving as a plug. We
discuss the implications for the effective displacement of blood in varicose vein sclerotherapy.
. Introduction

Yield-stress fluids such as toothpaste [1], drilling mud [2], magma
3] and aqueous foam [4,5] are useful in many industrial and medical
pplications. A moving yield-stress fluid consists of unyielded, or plug,
egions, which can be either static or moving depending on the local
tresses and the channel geometry, surrounded by regions in which the
tresses exceed the yield stress and the fluid flows. The existence of
yield stress means that the fluid resists mixing and can effectively

isplace another fluid. Conversely, the yield stress prevents fluid flow
hen applied forces are small [6] and hence makes some processes
ore difficult.

In enhanced oil recovery [7], for example, foam acts as a dis-
lacement fluid: unyielded regions of the foam have a large effective
iscosity, which means that the foam can push the oil out of the
ormation, increasing the recovery factor. On the other hand, to move
ontaminated sludges [8] requires significant stresses to be applied and
ence greater expenditure of energy.

Foam sclerotherapy is a minimally invasive treatment for varicose
eins [4,9] in which a sclerosant-laden foam is used to displace stag-
ant blood from a varicose vein and to deliver sclerosant to the vein
alls. The sclerosant kills the cells forming the veins’ endothelial lining,
hich causes the vein to collapse. A foam with a high yield stress is
sed for the treatment, corresponding to a foam with a relatively low
iquid fraction, because an extensive unyielded region improves the
isplacement of blood. Mixing of the foam with blood in the yielded
egions close to the vein walls deactivates the sclerosant, providing a
urther benefit of a large plug region [9]. However, too high a yield
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stress makes it difficult to move the foam at all (as in the case of
contaminated sludges), since the necessary pressure drop to induce flow
would be high, making it difficult for the surgeon to squeeze the foam
out of a syringe for injection into a vein. It is therefore worthwhile to
predict the extent of the unyielded regions in a foam moving through
a constricted channel, since this will allow the sclerotherapy process to
be improved and optimised.

Previously we described the flow of an idealised yield-stress fluid,
a Bingham fluid, in straight and uniformly curved channels [10].
To investigate the displacing capability of yield-stress fluids in more
complex channel geometries, we present here the results of 2D finite
element simulations of the pressure-driven flow of a Bingham fluid in
a serpentine channel, relevant to applications such as well-drilling [11],
residual drilling [12], pulsed cleaning [13], and delivery of tooth-
paste [14]. In this geometry (see Fig. 1), the direction of the fluid flow
changes along the channel, providing insight into more realistic flows.
We consider the effects of the magnitude of the yield-stress and the
channel geometry on the position and extent of the unyielded regions
within the channel.

The flow of Newtonian fluids has been investigated in a number of
‘‘corrugated’’ and ‘‘wavy’’ geometries, showing that secondary viscous
eddies or flow reversal can occur when the amplitude of the corruga-
tions is large [15–17]. The critical geometrical parameters which lead
to secondary viscous eddies were determined numerically by Hemmat
and Borhan [18] in a constricted channel.

When the fluid has a yield stress, the locations of the viscous
eddies seen for Newtonian fluids broadly coincide with regions of static
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Fig. 1. The geometry of the channel, in which the shape of the central section is described by the sinusoidal function in Eq. (10). The height of the channel is fixed at ℎ = 1
throughout, without loss of generality.
𝜏

unyielded fluid. These ‘‘dead regions’’ [19,20] are situated at the walls
of the channel and grow in size as the yield-stress increases and the
amplitude of the channel increases [11,21]. For example, the plug of
unyielded fluid located near the middle of the channel decreases in size
at each bend of a sinusoidal-shaped channel [22], since the fluid stress
increases there. Roustaei et al. [12] extend this to different shaped
wavy channels, providing a ‘‘panorama’’ of images of the unyielded
fluid regions in wavy channels, which are mostly confined to the peaks
and troughs of the wall shape, as the yield stress and amplitude vary.
The regions of stationary or dead fluid adjacent to the wall appear at
approximately the same amplitude for all values of the yield stress.
More recently, Rahmani and Taghavi [23] showed that it is possible
to induce dead regions close to a flat wall by making the surface
hydrophobic. Flows of yield stress fluids in channels with non-uniform
width also include work on tapering channels [24–26], often using
lubrication approximations to assist progress.

In the following we will quantify the critical channel wall ampli-
tudes and yield stresses for the onset of dead regions in a particular
collection of serpentine channels and quantify the size of the flowing
and stationary plug regions relative to the total channel size.

2. Governing equations

We consider the flow of Bingham fluid through a sinusoidal channel
to draw conclusions relevant, for example, to foam flow in veins during
sclerotherapy.

In flows of this nature, we expect the Reynolds number to be small,
of order 10−2 [27], since the foam is injected slowly into the vein to
ensure a steady displacement of blood (e.g. 2.5 ml of foam injected over
15 s [28]). The relevant equations of motion are therefore the steady
Stokes equations, and we neglect centripetal forces (Dean flow) [29].
Using ̃ to denote dimensional variables, these are:

∇̃.𝜏 = ∇̃�̃�, (1)

∇̃.�̃� = 0. (2)

The fluid flow-rate is determined in such a way [11,30] that the
velocity in the straight part of the channel, leading towards and away
from the sinusoidal part, is equal to the exact prediction [10] for a
fluid with a given yield stress. The pressure gradient �̃� is defined as
the difference between the inlet and outlet pressures divided by the
total channel length �̃�𝑡:

∇̃�̃� = �̃� =
�̃�𝑖𝑛 − �̃�𝑜𝑢𝑡

�̃�𝑡
. (3)

The length of the channel is discussed in more detail in Section 3. We
will set �̃�𝑜𝑢𝑡 = 0 and find the appropriate value of �̃�𝑖𝑛. The value of the
inlet pressure required increases as the channel amplitude increases, as
shown in Fig. 3(a). We apply no-slip boundary conditions to the walls
of the channel.
2

The simplest constitutive equation for a yield-stress fluid is the Bing-
ham model [31]. This has been studied extensively, including pioneer-
ing numerical investigations by Mitsoulis and co-workers, for example
for channel flows [32], flow past a sphere [33] and a cylinder [34],
and unsteady Couette flow [35].

The Bingham model is derived on the basis that if the magnitude of
the fluid stress |𝜏| is less than the yield stress 𝜏0, the strain-rate �̇� is zero

and the resulting solid-like response inelastic. Here |𝜏| =
√

1
2

(

𝜏 ∶ 𝜏
)

denotes the second invariant of the stress tensor (and similarly for
the strain-rate tensor below). Above the yield stress, the relationship
between stress and strain is linear.

For a fluid with (effective) viscosity �̃�, the constitutive equation for
this visco-plastic model takes the form

̃ =
⎛

⎜

⎜

⎝

�̃� +
𝜏0
|
̃̇𝛾|

⎞

⎟

⎟

⎠

̃̇𝛾 for |𝜏| ≥ 𝜏0 (4)

̃̇𝛾 = 0 for |𝜏| < 𝜏0.

We work with a dimensionless system of equations and characterise
the yield stress behaviour with a Bingham number 𝐵. All lengths are
normalised by the width of the channel, ℎ̃, and �̃� denotes the mean
fluid velocity. With a pressure-gradient �̃� = �̃��̃�∕ℎ̃2 and time scale ℎ̃∕�̃� ,
the constitutive equation becomes

𝜏 =
⎛

⎜

⎜

⎝

1 + 𝐵
|�̇�|

⎞

⎟

⎟

⎠

�̇� for |𝜏| ≥ 𝐵 (5)

�̇� = 0 for |𝜏| < 𝐵

where 𝐵 is defined as

𝐵 =
𝜏0
�̃�ℎ̃

. (6)

The yield-stress of foams used in varicose vein sclerotherapy is of the
order of a few Pascals [9,36].

For unidirectional flows in straight and annular channels [10,37,38]
the relationship between stress and strain simplifies, which allows
closed-form expressions for the velocity profile to be derived. In the
more complex channel geometries that we consider here, numerical
solution of the governing equations is required.

Simulations were performed with the finite element software,
FreeFem++ [39], which solves the Stokes equations in weak form, with
the velocities contained in finite element space P3 and the pressure in
P1. The Bingham fluid is modelled as a generalised Newtonian fluid, as
follows.

To avoid singularities at the yield surfaces in our numerical imple-
mentation we use the regularised Papanastasiou [40] viscosity model,
which has previously been used to study Bingham fluids in many
situations, including flow around obstacles [41,42], in channels with

slip and/or non-slip boundary conditions [27,43]. The Papanastasiou
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Fig. 2. (a) The location of the shortest distance 𝑑𝑚𝑖𝑛(𝑥) between the walls occurs part way along the curved part of the channel. Here 𝐿𝑠 = 3 and 𝑦0 = 0.5. (b) The shortest distance
between the walls, defined as the minimum of 𝑑(𝑥𝑏) (Eq. (11)) decreases from the value in the straight part of the channel as the amplitude of the curved region increases.
Fig. 3. (a) The calculated inlet pressure, 𝑝𝑖𝑛, required to maintain the expected velocity profile in the straight channel regions, expressed as a pressure gradient in the curved
part of the channel. The contribution from the straight parts of the channel (of length 2𝐿) is subtracted to highlight the effects of channel curvature, indicating that the pressure
exceeds the value that would be predicted on the basis of total arc length. Error bars indicate the small non-systematic variation between different values of the Bingham number.
(b) The arc length of the curved part of the channel, scaled by 𝐿𝑠. Eq. (13) is evaluated for two values of the length of the curved part of the channel, 𝐿𝑠, for a range of values
of the channel amplitude 𝑦0. It is clear that as 𝐿𝑠 gets smaller, the effect on the arc length of the curvature of the channel is greater.
model [40] uses an exponential function to smooth the singularities
that occur in Eq. (5), taking the form:

𝜏 =
⎛

⎜

⎜

⎝

1 + 𝐵
|�̇�|

(

1 − exp
(

−𝑚|�̇�|
))

⎞

⎟

⎟

⎠

�̇� , (7)

where 𝑚 is the regularisation parameter.
However, smoothing over the singularity at the yield stress leaves

open the question of determining precisely the position of the yield
surfaces [44], since the unyielded fluid is no longer a rigid solid
but a ‘‘highly viscous fluid that approximates ideal viscoplastic be-
haviour’’ [45]. We use the following approximate (i.e. to leading order
in 1∕𝑚) criterion [44,46] to determine the critical (second invariant of
the) strain rate 𝛿 at which the stress is equal to the yield stress, given
in the form of a nonlinear equation:

𝑚𝛿 = log
(𝐵
𝛿

)

. (8)

𝛿 is therefore different for each choice of 𝑚 and 𝐵. With 𝑚 = 50,000,
we find that 𝛿 lies between 1.446 × 10−4 and 1.692 × 10−4 for 𝐵 in the
range 0.2 − 0.8, and is given approximately by:

𝛿 ≈ 1.78 × 10−5 log(𝐵) + 1.73 × 10−4. (9)

The position of the yield surfaces are plotted by considering the loga-
rithm of the second invariant of the strain rate log(|�̇�|). Regions of fluid
3

that experience a strain rate |�̇�| ≤ 𝛿 are considered to be unyielded.

They are coloured in black in Figs. 4 and 5.
Each simulation commences with 𝐵 = 0, thus solving the Stokes

equations for a Newtonian fluid, and then the desired non-zero value of
𝐵 is introduced, allowing a profile of viscosity to develop over several
hundred iterations according to Eq. (7). Our convergence criterion is
that the sum of the velocities at each node of the mesh changes by
less than 1× 10−5 between iterations. This was previously validated for
flow in a uniformly curved channel, for which there is an analytical
velocity profile [10]. The resolution of the finite element mesh within
the sinusoidal region of the channel is greater than 2 × 104 nodes per
unit area, which was the criterion for validating the accuracy of the
numerical simulation in straight and curved channels [27].

In Section 3, we describe the channel geometry and highlight some
additional factors to consider when varying the shape of the chan-
nel. We present the results of the simulations in Section 4, focusing
on the shape and extent of the unyielded regions of the fluid. We
summarise our conclusions, and the implications for processes such as
sclerotherapy, in Section 5.

3. Channel geometry

We consider pressure-driven flow of a Bingham fluid through a
channel of almost constant width that bends in first one direction then

the other. The channel consists of two straight sections, the inflow and
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Fig. 4. Unyielded regions are shown in black and superimposed on contours of fluid speed for 𝐿𝑠 = 4 for three values of the Bingham number 𝐵 = 0.2 (first column), 0.5 (second
column) and 0.8 (third column) and channel amplitudes 𝑦0 increasing downwards, 𝑦0 = 0.1, 0.2, 0.3,… , 1. The pattern of yielding is symmetric about the line 𝑥 = 0, so we show
only the inlet half of the channel.
outflow regions, joined by a serpentine region of length 𝐿𝑠 defined by
one period of a sinusoidal function. The deviation from the straight
channel is measured by a parameter 𝑦0 which we call the amplitude
of the channel, taking values up to the channel width. Our coordinate
system uses 𝑥 for the horizontal distance along the channel from its
midpoint and 𝑦 as the vertical distance from the bottom channel wall,
as shown in Fig. 1.

The straight inlet and outlet regions are of length 𝐿, chosen to be
sufficiently large that any inflow and outflow effects occur far from the
curved region. The lower wall of the curved part of the channel is given
by the formula

𝑦𝑙(𝑥) =
1
2
𝑦0

(

cos
(

2𝜋
𝐿𝑠

𝑥
)

+ 1
)

, (10)

and the upper wall by 𝑦𝑢(𝑥) = 𝑦𝑙(𝑥)+ℎ. The channel is symmetric about
the line 𝑥 = 0, with |𝑥| ≤ 𝐿 ∕2 referring to the curved part.
4

𝑠

There are two subtleties associated with this channel geometry. The
first is that although the vertical distance between the channel walls is
fixed, the channel width (cf. Fig. 2) may be less than ℎ in places, and
where it is less than ℎ it decreases with increasing amplitude 𝑦0. That is,
given a point (𝑥, 𝑦(𝑥)) on the top wall, the distance to the point (𝑥𝑏, 𝑦𝑏)
at the foot of the perpendicular to the wall at (𝑥, 𝑦(𝑥)) is

𝑑(𝑥) =
√

(𝑥 − 𝑥𝑏)2 + (𝑦𝑢(𝑥) − 𝑦𝑙(𝑥𝑏))2 (11)

=

√

(𝑥 − 𝑥𝑏)2 +
(

ℎ + 1
2
𝑦0

(

cos
(

2𝜋
𝐿𝑠

𝑥
)

− cos
(

2𝜋
𝐿𝑠

𝑥𝑏

)))2
. (12)

In Fig. 2(a) we show an example in which the minimum perpendicular
distance between the walls is 𝑑𝑚𝑖𝑛 ≈ 0.9 for 𝐿𝑠 = 3 and 𝑦0 = 0.5. This
decrease in the channel width near 𝑥 = ±𝐿𝑠∕4 implies that the flow
rate will increase and that further yielding of the fluid is likely.
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Fig. 5. Unyielded regions are shown in black and superimposed on contours of fluid pressure for 𝐿𝑠 = 2 for three values of the Bingham number 𝐵 = 0.2 (first column), 0.5
(second column) and 0.8 (third column) and channel amplitudes 𝑦0 increasing downwards, 𝑦0 = 0.1, 0.2, 0.3,… , 1.
The second subtlety is that increasing the amplitude makes the
channel longer. As a result, to maintain a given pressure gradient the
inlet pressure must be increased if the amplitude is increased. The total
channel length is 𝐿𝑡 = 2𝐿 + 𝐿𝑎𝑟𝑐

𝑠 , where

𝐿𝑎𝑟𝑐
𝑠 (𝑦0, 𝐿𝑠) = 2∫

𝐿𝑠∕2

0

√

1 + (𝑦′(𝑥))2 𝑑𝑥

= 2∫

𝐿𝑠∕2

0

√

1 +
(

𝑦0
𝜋
𝐿𝑠

sin
(

2𝜋
𝐿𝑠

𝑥
))2

𝑑𝑥. (13)
5

We evaluate the elliptic integral in Eq. (13) numerically, giving the
values shown in Fig. 3(b).

4. Results

We consider values of 𝐵 between zero and one (since in a straight
channel with unit pressure gradient the fluid becomes stationary when
𝐵 reaches one) and channel amplitudes 𝑦0 between zero and one. The
pressure gradient required to maintain the expected flow in the straight
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Fig. 6. The area of unyielded fluid 𝐴𝑢, relative to the curved channel area, decreases
as the amplitude 𝑦0 increases and decreases further with decreasing channel length 𝐿𝑠
(i.e. more tightly curved channels). The area of the dead regions 𝐴𝑑 increases with
increasing amplitude and with decreasing channel length 𝐿𝑠, and is evident as a slight
increase in unyielded area at larger 𝑦0.

part of the channel (Fig. 3(a)) is greater than what would be predicted
based only on the arc length of the channel (Fig. 3(b)). The discrepancy
is due the changes in width of the channel, as described above, as well
as the changes to the flow direction [47].

4.1. Location of unyielded regions

The pattern of unyielded fluid is shown in Fig. 4 for three different
Bingham numbers, in the case where the curved part of the channel has
length 𝐿𝑠 = 4. At small Bingham number the yield surfaces lie close to
the centre of the channel. Increasing the amplitude 𝑦0 causes further
yielding within the curved region, with the extent of this additional
yielding dependent on 𝐵.

For small 𝑦0 less than 0.3 there is little change in the position of the
yield surfaces: the introduction of a small amount of channel curvature
does not increase the stresses enough to cause all the fluid along the
centre of the channel to yield. There is a slight thinning of the plug
where the channel starts to curve away from the straight parts, and
again around the peak of the sinusoid, but there remains a continuous
plug along the centre of the channel [12].

At 𝑦0 = 0.3, the unyielded region in the curved part of the channel
becomes separated from the unyielded region in the straight parts of
the channel (for all Bingham numbers), because of yielding close to
the inlet/outlet of the curved region. The unyielded fluid in the straight
parts of the channel retreats towards the inlet and outlet. The unyielded
region in the curved part of the channel is displaced towards the inside
of the bend at 𝑥 = 0, because the fluid has a higher speed near the outer
wall of the channel.

At 𝑦0 ≈ 0.5, the plug around 𝑥 = ±𝐿𝑠∕4 has almost completely
disappeared for the two smaller Bingham numbers shown. For 𝐵 = 0.8,
on the other hand, diamond-shaped regions grow, almost completely
spanning the channel. These can form because there is a pseudo-
straight part of the channel forming here, for long channels with high
amplitude.

For 𝑦0 ≥ 0.8 there is little change since most of the fluid in the
curved part of the channel is yielded.

Fig. 4 also shows contours of velocity. As expected, the smaller the
Bingham number, the larger the velocities, which approach the value
𝐺ℎ2∕8𝜂 ≈ 0.125 for a Newtonian fluid in a straight channel. For given
𝐵, the maximum velocity grows with increasing channel amplitude 𝑦 ,
6

0

which is more apparent at the smallest value of 𝐵 shown. The position
of the maximum velocity moves away from 𝑥 = 0 to around 𝑥 = ±𝐿𝑠∕4
with increasing amplitude (this is explored in detail for flow from a
straight into a curved channel in [27]).

Fig. 5 shows a similar sequence of yield surfaces for a shorter chan-
nel (𝐿𝑠 = 2) with consequently greater curvature for given amplitude
𝑦0. Hence there is much more yielding, and the plug regions are much
smaller.

For 𝐵 = 0.2 the region of unyielded fluid in the middle of the curved
part of the channel separates from the unyielded fluid in the straight
part of the channel for 𝑦0 ≥ 0.1, which is less than half the value in the
case 𝐿𝑠 = 4 (Fig. 4). The fluid in the curved region is almost entirely
yielded at this small Bingham number.

For 𝐵 = 0.5 and 0.8, thin fingers of unyielded fluid extend out from
the plug in the inlet/outlet region and from the small region of un-
yielded fluid at 𝑥 = 0. In the latter case, their orientation changes with
increasing channel amplitude, pointing more directly up/downstream
as 𝑦0 increases.

Note also the static, or ‘‘dead’’, regions of fluid at the top wall
of the channel at the highest amplitudes. These increase in size with
increasing Bingham number, and are found at all amplitudes for 𝐵 =
0.8. For this large 𝐵, there is a second, smaller, region of dead fluid on
the other side of the channel where it first starts to curve.

Fig. 5 also shows contours of pressure, indicating how the pressure
must increase in the inlet to maintain the width of unyielded region in
the straight parts of the channel.

4.2. Area of yielded and unyielded fluid

In a straight channel, the area of the region of unyielded fluid per
unit length is [27]:

𝐴str
𝑢 = 𝐵, (14)

representing a strip of unyielded fluid in the centre of the channel, the
width of which increases with 𝐵. This is visible on the left of Figs. 4
and 5.

The area of unyielded fluid in the curved part of the channel, 𝐴𝑢,
is shown in Fig. 6 for different amplitudes 𝑦0. 𝐴𝑢 is normalised by the
total area of the curved part of the channel, 𝐴𝑡. As 𝑦0 increases and the
channel bends, 𝐴𝑢∕𝐴𝑡 decreases for all Bingham numbers 𝐵, starting
from a value close to the straight-channel value (Eq. (14)), representing
increased yielding. If the channel is more tightly curved (smaller 𝐿𝑠),
𝐴𝑢 reduces more quickly with 𝑦0.

For the shorter channel, with 𝐿𝑠 = 2, more than 80% of the fluid
in the curved part of the channel yields for amplitudes 𝑦0 ≥ 0.1, and
the curves saturate to a value below 0.2. For the longer channel, with
𝐿𝑠 = 4, this threshold increases to about 𝑦0 ≈ 0.3, except for larger
𝐵 ≥ 0.8 where the curve saturates at about 𝐴𝑢∕𝐴𝑡 = 0.3.

In some cases, either for large amplitude or small 𝐿𝑠, the fluid is
almost completely yielded, even at intermediate amplitudes (cf. Fig. 5).
Then as the amplitude increases further, we note the formation of dead
regions, which we take to be those regions of the fluid that have stress
below the yield stress and speed |𝑢| ≤ 10−5, at the top of the curved
part of the channel. This causes an increase in 𝐴𝑢, which we separate
out, denoting the area of dead regions by 𝐴𝑑 ; this is shown later, in
Fig. 9(a), and discussed in Section 4.2.2.

The area of the dead regions is greater for larger Bingham numbers
and shorter, more curved, channels. Above a threshold in 𝑦0, which
increases with decreasing 𝐵, it increases almost linearly.

We therefore distinguish the areas of moving and stationary un-
yielded regions of fluid. We will give approximate fits to the data to
provide simple estimates of the amount of unyielded and yielded fluid,
and the amount of unmoving fluid.
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Fig. 7. The area of unyielded moving fluid 𝐴𝑟𝑒𝑙 , i.e. the plug area, relative to the curved channel area, decreases with the deviation from a straight channel (i.e. the amplitude
𝑦0) for both channel lengths. It also increases at greater channel lengths 𝐿𝑠 (i.e. less-curved channels) for given amplitude, and is broadly similar for all values of the Bingham
number 𝐵, particularly at small 𝐿𝑠. The dashed lines are fits to Eq. (16).
4.2.1. Moving regions of unyielded fluid
For the moving plug of unyielded fluid, we record its area 𝐴𝑝

relative to the value expected in a straight channel:

𝐴𝑟𝑒𝑙 = 𝐴𝑝∕𝐴str
𝑢 . (15)

For small 𝑦0 we expect the relative area of unyielded fluid to be
close to one, since the curvature is small. The value of 𝐴𝑟𝑒𝑙 decreases
with increasing amplitude 𝑦0, as shown in Fig. 7, since more of the
fluid yields as the channel curves and can reach values close to zero,
indicating that the fluid yields everywhere.

As the length of the curved region decreases, the area of unyielded
fluid decreases (Fig. 7(a)). The value of 𝐴𝑟𝑒𝑙 at which the curves saturate
as 𝑦0 approaches 1 decrease towards zero for the smaller value of
𝐿𝑠, confirming that more of the fluid yields in more tightly curved
channels. In addition, for smaller 𝐿𝑠 the differences between different
values of 𝐵 become less noticeable.

The curves of 𝐴𝑟𝑒𝑙(𝑦0) in Fig. 7 are reminiscent of a hyperbolic
tangent, with a straight line with finite slope followed by saturation
to a constant value. We fit a tanh function to the data via two fitting
parameters 𝐴0 and 𝜖0 to summarise the effects of the Bingham number
𝐵 and the channel length 𝐿𝑠 on yielding. The parameter 𝐴0 measures
the value at which 𝐴𝑟𝑒𝑙 saturates for large 𝑦0 and the parameter 𝜖0
measures the effect of amplitude on yielding at smaller values of 𝑦0.
The fitting function takes the form:

𝐴𝑟𝑒𝑙 = 1 −
(

1 − 𝐴0(𝐵,𝐿𝑠)
)

tanh
(

𝑦0
𝜖0(𝐵,𝐿𝑠)

)

. (16)

The values of parameters 𝐴0 and 𝜖0 are determined using non-linear
least squares fitting in Python [48]; the values of the rms error of both
parameters are very small, of the order 10−5 for 𝐵 ≤ 0.7. For 𝐵 = 0.8
and 𝐿𝑠 = 4, there is a notable discrepancy between the data and the
fitting function, which results in a slightly higher error.

Fig. 8 shows the values of the fitted parameters. 𝜖0, i.e. the degree
of yielding with increasing 𝑦0, is almost independent of the Bingham
number for 𝐵 ≤ 0.7 and increases slightly with increasing channel
length 𝐿𝑠. Its value increases sharply when 𝐵 gets close to one. To a
reasonable approximation, the value of 𝜖0 is constant, with

𝜖0 ≈ 0.05𝐿𝑠. (17)

Conversely 𝐴0 increases with increasing 𝐵, but depends only weakly
on the channel length. We assume a quadratic increase and make the
approximation

𝐴0 ≈ 0.1𝜖0𝐿2
𝑠𝐵

2. (18)

This is shown as grey dashed lines in Fig. 8. Then our empirical
expression for the area of yielded fluid, caused by the curvature of the
7

Fig. 8. The fitting parameters 𝐴0 and 𝜖0 for 𝐴𝑟𝑒𝑙(𝑦0) from Eq. (16) plotted as functions
of the Bingham number 𝐵 for different channel lengths 𝐿𝑠. The error bars are smaller
than the point size when plotted. Eqs. (17) and (18) are shown in grey for comparison
with the fitting parameters.

channel, relative to the result for a straight channel, is

𝐴𝑟𝑒𝑙 ≈ 1 −
(

1 − 0.005𝐿3
𝑠𝐵

2) tanh
(

𝑦0
0.05𝐿𝑠

)

. (19)

4.2.2. Dead regions of unyielded fluid
The dead regions are parts of the fluid in which the stress is below

the yield stress and the fluid is not moving, always situated adjacent
to the walls of the channel. To find an approximate form for the size
of these regions, we fit the data for 𝐿𝑠 = 2 in Fig. 9 using the linear
function

𝐴𝑑∕𝐴𝑡 = 𝐶0
(

𝑦0 −𝐷0
)

. (20)

𝐶0 indicates how quickly the area of dead fluid increases with the
amplitude of the channel, while 𝐷0 is a measure of the amplitude at
which dead regions start to form.

The fitted function is indicated by a dashed line on Fig. 9. As above,
the parameters 𝐶0 and 𝐷0 are determined using non-linear least squares
fitting in Python [49]. Again, the rms errors are small, of the order 10−5

for most values of 𝐵, increasing to 10−4 at 𝐵 = 0.9 for the parameter
𝐷0. Fig. 9(b) shows the values of the fitting parameters. 𝐶0 increases
almost linearly with increasing 𝐵:

𝐶 ≈ 0.15𝐵, (21)
0
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Fig. 9. (a) The area of dead fluid 𝐴𝑑∕𝐴𝑡 increases with the deviation from a straight channel (i.e. the amplitude 𝑦0). The values are relatively large for 𝐿𝑠 = 2, and negligible for
the longer channel with 𝐿𝑠 = 4. (b) The fit parameters 𝐶0 and 𝐷0 from Eq. (20) in the case 𝐿𝑠 = 2. The ansatzes given in Eqs. (21) and (22) are shown as dashed lines.
while 𝐷0 decreases almost linearly with 𝐵:

𝐷0 ≈ 1 − 0.85𝐵. (22)

These fits are shown on Fig. 9.
Our rule of thumb for estimating the effect of channel curvature on

the amount of dead fluid is therefore

𝐴𝑑∕𝐴𝑡 = 0.15𝐵
(

𝑦0 + 0.85𝐵 − 1
)

. (23)

4.3. Velocity profiles

We determine the distribution of velocity in cross-sections of the
channel at 𝑥 = −𝐿𝑠∕2, the entrance to the curved region, and 𝑥 = 0,
the midpoint of the channel, at the top of the bend, and investigate how
these profiles change with increasing amplitude 𝑦0.

Fig. 10 shows the speed at both cross-sections for Bingham numbers
𝐵 = 0.2, 0.5 and 0.8 for 𝐿𝑠 = 2. In the case 𝑦0 = 0, the velocity profile
in a straight channel has a horizontal part and two parabolic parts
close to the walls, as expected. As the channel amplitude increases,
the maximum speed at 𝑥 = 0 increases (by at most 40%) (Fig. 10(a),
(c) and (e)). The position of the maximum velocity moves towards the
lower wall of the channel with increasing amplitude, as for the flow of
a Bingham fluid in an annulus [10].

The profiles also show the extent of the dead regions that form
at 𝑥 = 0, which increase with increasing amplitude 𝑦0 and Bingham
number 𝐵. For 𝐵 = 0.8 and 𝑦0 = 1, the width of the dead region spans
around 30% of the channel width.

In the cross-section at 𝑥 = −𝐿𝑠∕2 (Fig. 10(b), (d) and (f)), the speed
decreases with increasing channel amplitude as the fluid responds
to the curvature of the channel. This becomes more evident as the
Bingham number increases. The profiles confirm what is evident in
Fig. 5, that even at small amplitudes the fluid becomes entirely yielded,
since there are no longer straight parts to the velocity profile.

For the longer channel with 𝐿𝑠 = 4 the trends in velocity are similar
but less pronounced.

4.4. Pressure distribution

For a straight channel (𝑦0 = 0), the pressure decreases linearly with
increasing position 𝑥, with fixed gradient 𝐺 = 1. When the amplitude
𝑦0 of the channel is non-zero, Fig. 5 shows that the pressure deviates
from this linear profile.

We quantify this by recording the pressure along the centreline of
the channel, 𝑦 = 𝑦𝑙(𝑥) + ℎ∕2 (cf. Eq. (10)), shown in Fig. 11. The
pressure is antisymmetric about the centre of the channel (𝑥 = 0) so
only the upstream half is shown. In the straight channel upstream from
the entrance of the sinusoidal section, the gradient of pressure is similar
8

for all amplitudes and Bingham numbers as expected (with 𝐺 = 1),
but the pressure itself increases with the length and curvature of the
sinusoidal part of the channel.

As the end of the straight part of the channel is approached there is a
drop in pressure, which is more abrupt for a shorter channel and higher
Bingham number. Within the curved part of the channel the pressure
gradient is almost constant again. In this region there is only a weak
effect of Bingham number on the pressure, and the precise channel
geometry is more significant.

5. Discussion

We have investigated the pressure-driven flow of a model yield-
stress fluid at different Bingham numbers 𝐵 through serpentine chan-
nels with different amplitudes 𝑦0 and lengths 𝐿𝑠, and illustrated the
effect of these parameters on the extent to which the fluid yields.
As the amplitude of the channel increases, the width of the channel
decreases and, by conservation of mass, we expect the flow rate to
increase: this increases the amount of yielded fluid, quantified relative
to the expected area of yielded fluid in a straight channel. Similarly,
reducing the length of the curved section of the channel, and effectively
increasing the curvature of the walls, leads to more yielding.

We give rules of thumb (Eqs. (19) and (23)) for the extra yielding
that is caused by the curvature of the channel, over and above the value
expected for a straight channel, and for the size and onset of the dead
regions of stationary, unyielded, fluid.

For the purpose of varicose vein sclerotherapy, quantifying the size
of the moving plug regions and the dead regions is important as it is
a direct indication of where, and the extent to which, the process is
failing. As shown in Fig. 4, yielding, even at small 𝑦0, could lead to
additional mixing of the two fluids, in this example foam and blood,
and hence the deactivation of the sclerosant.

The size of the moving plug regions, 𝐴𝑟𝑒𝑙, is a measure of the
effectiveness of a yield stress fluid in displacing a second fluid. Keeping
the value of 𝐴𝑟𝑒𝑙 as large as possible is beneficial, since having more
fluid moving in a plug would improve the capability of the yield stress
fluid to displace another fluid. Fig. 7(b) shows that a large Bingham
number, and hence a large yield-stress, is good. On the other hand, in
strongly-curved channels a large Bingham number increases the size
of the dead regions, where no motion occurs, emphasising the need to
keep the channel, or the vein, as straight as possible [10]. Straightening
the channel, or vein, i.e. decreasing the amplitude 𝑦0 and/or increasing
the length 𝐿𝑠, would allow larger regions of unyielded fluid to move
through the vein, leading to a more effective displacement of blood and
delivery of surfactant to the endothelial cells.

For large values of the Bingham number 𝐵 the fluid may become
stationary everywhere. In a straight channel, the critical value of 𝐵 at

which this happens is one. We expect the critical value of 𝐵 at which
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Fig. 10. Velocity profiles at cross-sections 𝑥 = 0 and 𝑥 = −𝐿𝑠∕2 for the case 𝐿𝑠 = 2 showing the deviation from the symmetric profile seen in the straight channel case as the
amplitude 𝑦0 increases. The maximum velocity increases at 𝑥 = 0 with increasing amplitude whereas the speed decreases almost everywhere at 𝑥 = −𝐿𝑠∕2.
fluid flow ceases to decrease as the curvature increases [10]. Due to our
use of a straight inlet and outlet section to the channel, motivated by
the application to sclerotherapy, we are unable to determine the critical
value of the Bingham number at which the flow becomes stationary
in a purely sinusoidal channel. Such a calculation might be performed
using periodic boundary conditions on the ends of the channel, and this
is something that we will consider in future work.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: SJ
Cox reports financial support was provided by Engineering and Physical
9

Sciences Research Council. TG Roberts reports financial support was
provided by BTG plc.

Data availability

Data will be made available on request.

Acknowledgements

We acknowledge financial support from the UK Engineering and
Physical Sciences Research Council (EP/N002326/1) and a Ph.D. stu-
dentship from BTG.



Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105131T.G. Roberts and S.J. Cox
Fig. 11. The pressure 𝑝 along the channel centreline for two values of the Bingham number 𝐵 and channel lengths 𝐿𝑠. Values are shown from part-way along the straight inlet
region to the centreline of the channel, 𝑥 = 0, since the pressures are antisymmetric about the latter point.
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