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Abstract

X-ray tomography offers the possibility to examine the local changes in the structure of a three-dimensional
aqueous foam as it flows, allowing a better fundamental understanding of foam rheology and the validation
of models. We present an automated algorithm that reconstructs a dry aqueous foam from such images. Our
algorithm uses ImageJ to extract from an image the topology of the network of Plateau borders in the foam,
and then analyses this network to re-create the films and then the bubbles, and equilibrates the structure in
Surface Evolver. We validate our algorithm and demonstrate its precision by applying it to simulated foam
structures and analysing the topology and geometry obtained. We then apply our algorithm to a sequence
of images from an experiment in which a spherical bead falls under its own weight through a polydisperse
dry foam. This allows us to describe the evolution of the foam’s liquid content and the bubble volumes with
time as well as the distribution of bubble pressure and the forces exerted on a falling sphere.
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1. Introduction

Aqueous foams are widely used in a number of processes, including ore separation and enhanced oil
recovery. Their two-phase structure, consisting of gas bubbles in a liquid matrix, gives them many peculiar
and useful properties, for example a yield stress [1, 2]. The liquid structure consists of a network of liquid-
carrying channels called Plateau borders, which surround each thin film. Plateau’s laws and the Young-
Laplace law dictate that in an equilibrium dry foam (that is, one of low liquid content) the Plateau borders
meet in fours at the tetrahedral angle, and the films are surfaces of constant mean curvature that meet three-
fold at Plateau borders at 120◦ angles. To understand the interplay between foam structure and dynamics,
mathematicians and physicists have often turned to two-dimensional systems [3] because of the ease with
which they can be made, probed and modeled. Yet understanding the dynamics of three-dimensional foams
is not only important, but continues to present unsolved problems.

The advent of synchrotron tomography and other non-destructive imaging techniques has led to unprece-
dented amounts of data about the internal structure of soft materials such as foams [4, 5], and even its
evolution in time, provided that it does not evolve so quickly that it moves significantly while an image is
being made. For foams, we now have access to sequences of images, containing thousands of bubbles, un-
dergoing coarsening (bubble volumes evolve due to gas diffusion between them) [6, 7, 8, 9], drainage (liquid
motion through the network of Plateau borders), and rheology (bulk motion of the foam itself) [10]. The
significant drawback in all these imaging techniques is that they do not resolve the films between bubbles.
That is, the images and videos obtained appear to be of open-cell foams, and it is necessary to somehow
infer where the films are located from the shape and topology of the Plateau border network. Only then can
the individual bubbles be reconstructed. We tackle this problem here.

In the dry limit, Monnereau and Vignes-Adler [7] imaged foams of a few tens of bubbles and showed that
it is possible to identify each vertex where four Plateau borders meet, connect them via Plateau borders
(or edges), insert films (or faces), identify individual bubbles, and then allow the vertices to move so as to
satisfy Plateau’s laws. The result is a true foam structure with bubble volumes close to those in the imaged
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foam. Then bubble pressures and the statistics of each foam can be determined, and bubbles tracked from
one image to the next to calculate their change in volume due to coarsening. We seek to automate this
method, and apply it to much larger foams.

In a wet foam, with high liquid content, the bubbles are close to spheres and almost surrounded by liquid.
In this case the problem of reconstructing the bubbles, at least to a good approximation, is rather different.
For example, variations of the watershed algorithm can be used [4, 8, 9, 11, 12] to segment and label bubbles.

The static structure of a foam and Plateau’s geometric laws are a consequence of the foam minimizing
its surface energy, proportional to surface area, and constant bubble volumes. Surface Evolver [13] performs
this minimization process given the topology of the foam, as performed by Monnereau and Vignes-Adler [7].
However they did not tackle the question of whether the bubble volumes inferred from the reconstruction
are sufficiently accurate that they should be used in the minimization, or whether it is in fact the vertex
positions that are most accurately recorded, and that these should be the fixed entities. Ideally, both pieces
of information should be used. If the liquid content of a foam is non-zero, as is the case in most experiments,
then the vertices are slightly swollen, and it becomes difficult to determine precisely their position. On the
other hand, taking as a volume constraint the volume of the polyhedral cell with straight edges and flat films
is a coarse approximation.

Many data-sets have been collected for liquid foams using X-ray tomography; they include static and
coarsening foams [8, 9], and flowing foams moving through a constriction [10] and around a fixed sphere [14].
We choose to examine an experiment in which a small sphere falls through a foam under its own weight:
not just because of its relevance to froth flotation [15], but because changes in sphere velocity are related
to changes in foam structure. Further, this is a situation which we have simulated in 2D [16] and 3D, so
that we hope that the experimental results can eventually validate our simulations in this regime where the
origin of the forces on the sphere are well known.

We begin by describing the experiments used to generate images that we work with (§2.1), before ex-
plaining our methods for Plateau border network extraction (§2.2), identification of the bubble faces (§2.3)
and of the bubbles themselves (§2.4). In §3 we validate our method against an image of a simulated foam,
before analysing the experimental images in detail (§4), extracting the local liquid fraction, bubble pressures,
and the forces exerted by the foam on the sphere.

2. Method

2.1. Experiment

In the experiment, a light plastic sphere of diameter 4mm and weight 54±2.7mg falls slowly under gravity
through a polydisperse foam [4, 9] created from distilled water, 4% commercial dishwashing liquid (Dreft,
Procter & Gamble) and traces of C6F14 to suppress diffusion-driven coarsening. The foam is contained in
a cylindrical tube with a diameter of 15mm and height 50mm. A 7.6mm vertical section of the container
was imaged once per minute using a mixture of absorption and phase-constrast X-ray tomography. Each
scan takes only 10s, ensuring that the motion of the sphere is negligible during the scan. More details of the
imaging procedure can be found in [4]. Each image has dimensions 1024×1024×512 pixels and a resolution
such that each pixel has size 14.9 microns, so that Plateau borders appear about 5 pixels across, and are
thus shown clearly. We describe the centre of the sphere with Cartesian coordinates (x0, y0, z0), with z

pointing vertically upwards, opposite to gravity.
The sphere is released into the foam and the cylinder is moved relative to the camera so that the sphere

is at the centre of the image. The position of the cylinder is then fixed for the capture of 5 images, during
which time the sphere falls towards the bottom of the imaged region. The cylinder is then moved upwards
before repeating the procedure. The data inspected here is a sequence of 85 images spanning 110 minutes.

The sphere moves very slowly – of the order of 1.5 µm/s – and so we assume that the foam is at equilibrium
in each image. Then the forces that the foam exerts on the sphere are due to the pressures in the bubbles
and the surface tensions in the soap films that touch it [17, 18]. Clearly to obtain both components requires
that we know where the soap films are, yet this is the piece of information lacking from the tomography.
Hence the need for the automated algorithm to recreate them described below.
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2.2. Liquid network identification

We use ImageJ [19, 20] to turn each experimental image into a dry foam skeleton. Firstly, we use a 3D
median filter [21] with a 3 × 3 × 3 voxel resolution to smooth the image. That is, each voxel is assigned
the median intensity of itself and its 26 neighbours. We then obtain a binary image of the network of
Plateau borders, choosing an appropriate threshold that balances the need for minimal noise and a fully
connected liquid network. Note that manual user input is required to choose the threshold for one image of
the sequence, and then this is applied to all images in the sequence.

At this stage, we have a binary image in which the liquid (the Plateau borders) and the solid (the sphere
and container wall) all have unit intensity while the rest of the image (the gas) has zero intensity. To isolate
the liquid we apply the Remove Outliers processing tool, a 2D selective median filtering tool that replaces
a pixel’s intensity by the median intensity of pixels within a user defined radius. Applying it on a binary
image allows for removal of a small group of pixels with intensity one that are surrounded by large regions of
pixels with intensity zero. We choose a radius large enough so that applying the tool on each slice results in
the removal of pixels that belong to the foam’s Plateau borders. We re-slice the image and apply the tool for
all three coordinate directions. The resulting binary image now includes only the sphere and the container,
which we then subtract from the initial binary image, creating a binary image of the liquid network (see
figure 1a).

We approximate this network of Plateau borders as a skeletal network of straight edges as follows: (i)
thinning the liquid structure using an algorithm implemented in the Skeletonize3D plug-in [22, 23] of ImageJ
(see figure 1b); (ii) extracting the topology of the network using the AnalyzeSkeleton plug-in [24] to give the
position of each vertex (i.e. voxels with more than two neighbours) and those vertices connected by an edge;
(iii) re-structuring this information into a Surface Evolver [13] input file. An image of a network of straight
edges obtained in this way is shown in figure 1c. Finally, to compensate for errors in the skeletonization
at “swollen” wet vertices, we apply a correction by deleting very short edges. This leaves a structure with
mostly 4-fold vertices, but that may include 6-fold and 8-fold vertices.

2.3. Face identification

Having imported the edge network into the Surface Evolver software [13], we use it as a tool to explore
the topology of what is, in effect, a cyclic graph. The goal is to find all the irreducible cycles, as explained
by [25], which are the faces, or soap films. We expect that most cycles will have lengths n between n = 4
and n = 6, since most faces in a disordered 3D foam are quadrilaterals, pentagons, or hexagons [26]. The
procedure is as follows:

• All vertices and edges are labeled with a distinct number and each edge is given a direction, starting
at the vertex with the lowest label.

• All paths consisting of n = 3 contiguous edges are found. If the start and end vertices are the same
then this is a cycle. Each ordered cycle is stored as a new face. Plateau’s laws imply that we need no
longer consider edges that are part of three faces.

• We then generate all paths of length n = 4 in the same way, and continue to increment n until we
reach a chosen upper limit of n = 14, at which stage we presume that all faces have been found.

Note that the cycles found are not necessarily planar. Thus to create a face, the Surface Evolver firstly
positions a new vertex at the average position of the vertices in the cycle and then triangulates using this
vertex.

This process is highly memory intensive, since it has to hold in memory many paths that are part of
more than one face and may never be used. In practice, we have found that the time that the procedure
takes is highly dependent on the number of bubbles in the image: using a desktop PC, it takes less than 30
minutes for images with approximately 250 bubbles, but over 12 hours for images with over 1000 bubbles. In
its favour, it successfully identifies faces on the boundaries of the foam (either against the cylinder wall, or
on the top and bottom image boundaries). It also copes with vertices connected to six or eight edges, rather
than the four stipulated by Plateau’s laws, which arise due to vertices swollen with liquid in the original
image.
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(a) (b)

(c) (d)

Figure 1: Steps in the reconstruction algorithm: (a) Isolate the network of Plateau borders by filtering. (b)
Skeletonize this binary image. (c) Extract the topology of the Plateau border network. (d) Reconstruct the
films by finding cycles in the cyclic graph defined by the skeleton and define bubbles as the enclosed cells of
this structure.
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2.4. Bubble identification

To find bubbles, we scan for regions enclosed by faces. We determine the faces belonging to bubble k

with the following procedure:

1. Choose a face fk,1 with the smallest ID label, the first face of the bubble k.

2. Scan for the nearest face in the normal direction to fk,1. Denote this face by fk,2, the second face of
bubble k.

3. Define the point P(k,centre) as the midpoint of the segment joining the centres of faces fk,1 and fk,2;
this is an approximation to the centre of the bubble k.

4. Find all other faces (fk,i) of bubble k by checking whether each face that neighbours face fk,1 or fk,2
is the nearest to P(k,centre) along the line joining its centre to P(k,centre).

5. Update the position of P(k,centre) as the average of vertices of all faces that belong to bubble k.

6. Repeat steps (4) and (5) until the faces completely encloses a bubble. That is, until there are no
remaining edges with one face belonging to the bubble.

The above procedure is repeated until all enclosed cells are found, that is until all internal faces are part
of two bubbles and all external faces are part of one bubble. The time taken by this step of the algorithm
is linearly dependent on the number of bubbles in the image; it takes about 20 minutes on a desktop PC to
find 500 bubbles.

2.5. Foam structure and energy minimization

The final step in our algorithm is to minimize the surface area of the foam subject to imposed volume
constraints on the bubbles. It is reasonable to assume that the foam is at equilibrium for every good quality
image. Note that any motion of the foam during image acquisition, for example due to T1s, leads to very
noisy and unusable images. Thus, we reconstruct a foam at equilibrium, that is, at a minimum of surface
area subject to certain bubble volumes.

The bubble volumes are unknown, and so we must approximate them using information from the images.
Our approach is to approximate the volume of each bubble by the volume enclosed by the triangulated
surfaces determined by the bubble identification procedure (§2.4).

We then use the Surface Evolver to minimize the surface area of the foam. The software iteratively varies
the position of the vertices while respecting these volume constraints, and we refine the edges and faces,
ensuring that the triangular facets have a smaller area than 500 pixels, to allow them to curve. Edges and
vertices at the top and bottom of the foam are kept fixed, since their position is determined by parts of the
foam outside the image. An example of a reconstructed foam is shown in figure 2b.

3. Validation

To validate our reconstruction algorithm, we apply it to a dry foam structure simulated in Surface
Evolver, that is, a foam in which the precise topology and the distributions of bubble volumes and pressures
are known. We choose two test structures: a monodisperse foam and a polydisperse foam, each of 64 bubbles
contained within a rigid spherical container (see figure 3a). This spherical outer boundary partly mimics the
curved cylindrical outer wall in the experiments described above, but doesn’t contain free boundaries, such
as at the top and bottom of the experimental images, which are more difficult to deal with in a simulation.

We save all data from a converged simulation of the foam, in particular details of the topology of the liquid
network and the geometry and pressure of each bubble. We then discard all this information by removing
films and straightening the edges, to leave a network of straight edges, as for the analysed experimental
images. We are then in a position to apply our reconstruction algorithm to identify the films and the
bubbles and to re-equilibrate the foam. To compare, we match these bubbles with those in the simulation
by correlating the position of the centres, defined as the average of the position of each bubble’s vertices.
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(a) (b)

Figure 2: A sphere immersed in a dry (liquid fraction φl ≈ 1%) aqueous foam, showing (a) a smoothed,
binary image and (b) the reconstructed foam in Surface Evolver.

Foam Sample µ2 (F ) µ2 (n)
Monodisperse Simulation 0.070361 0.025304

Reconstruction 0.070361 0.025304
Polydisperse Simulation 0.069997 0.025387

Reconstruction 0.069997 0.025387

Table 1: Comparison of the topology of simulated and reconstructed dry monodisperse and polydisperse
foams.

3.1. Topology of the simulated foam

A first measure of the accuracy of the reconstruction is obtained by comparing the topology of the
simulated and reconstructed structures, for both the monodisperse and polydisperse foams, in terms of the
second moments of the distributions of the number of faces per bubble, µ2(F ), and of the number of edges
per bubble µ2(n):

µ2 (F ) =

〈

(F − 〈F 〉)
2

〈F 〉
2

〉

,

µ2 (n) =

〈

(n− 〈n〉)
2

〈n〉
2

〉

.

(1)

We find that both µ2 (F ) and µ2 (n) are exactly the same for each foam (see table 1). We also checked each
bubble individually and found each to have exactly the same number of faces and edges in the simulated and
reconstructed foams, for both volume dispersities. Thus, our algorithm accurately reconstructs the topology
of a foam.

3.2. Geometry of the simulated foam

We compare the geometry of the simulated and reconstructed foams by determining the L1 metric for
the error in bubble volumes Vi, the surface area per bubble, Ai, and the edge length per bubble, Li (cf. [27]):
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Figure 3: (a) The reconstruction algorithm is applied to this simulated monodisperse foam with N = 64
bubbles in a spherical container. The outer faces are removed. (b) Bubble pressures in the simulated and
reconstructed foams, with correlation coefficients of R = 0.998 and R = 0.976 for the monodisperse and
polydisperse foams respectively.

L1 Error Monodisperse Polydisperse
E (V ) 0.0424 0.0609
E (A) 0.0232 0.0254
E (L) 0.0105 0.0108

Table 2: L1 error in the geometry of a foam reconstructed from a simulation, from eq. (2).

E (V ) =
1

Vtot

N
∑

i

∣

∣V rec
i − V sim

i

∣

∣

E (A) =
1

2Atot

N
∑

i

∣

∣Arec
i −Asim

i

∣

∣

E (L) =
1

3Ltot

N
∑

i

∣

∣Lrec
i − Lsim

i

∣

∣,

(2)

where the number of bubbles is N = 64 and Vtot, Atot and Ltot denote the total volume, surface area and
edge length of the simulated foam. Note that we only consider faces and edges that are not on the boundary
of the sphere. Thus, each face separates two bubbles and each edge adjoins three bubbles, motivating the
factors of 2 and 3 in the above equations.

For these foams, our approximation that bubble volumes are equal to those of the reconstructed volumes
enclosed by triangulated surfaces (cf. §2.3 and 2.4) results in an error of up to 20% for an individual bubble
(data not shown). However, the error in the L1 metric for bubble volumes in the reconstruction is 5 ± 1%
(see table 2). The precision of our algorithm in reconstructing the surface area and total edge length for
each bubble is clearly demonstrated by the low values for E(A) and E(L) for the two foams tested (see table
2).

The last step of our algorithm, the equilibration in Surface Evolver, means that we are able to extract
bubble pressures from images of foams. In figure 3b we show that we recover the bubble pressures of the
simulated foam to high accuracy. The somewhat counter-intuitive result that the pressures are recovered
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Network force Simulation Reconstruction
Mondodisperse foam 1.047 0.961
Polydisperse foam 1.721 1.766
Pressure force Simulation Reconstruction

Mondodisperse foam 1.152 0.862
Polydisperse foam 1.804 1.740

Table 3: The magnitude of the network and pressure forces exerted on the container. The network force
acts inwards and the pressure force acts outwards; note that they are therefore almost equal and opposite
in each case, as expected for a foam at equilibrium.

with higher accuracy than the volumes may be related to the observation that the growth rate of a bubble,
which is proportional to the pressure, depends strongly on the number of faces [28, 29].

3.3. Forces on the container

A foam exerts a force on any solid surface that it touches. At equilibrium, this force has two components,
as follows.

The network force, ~Fn, is due to the pull of films in contact with the solid surface. It is given by the
sum of the lengths of each edge (or Plateau border) in contact, multiplied by the surface tension γ, which is
assumed constant here, resolved normal to the surface:

~Fn = γ
∑

edge, i

li~ni. (3)

Here li denotes the length of edge i and ni denotes the normal vector to the surface at the midpoint of that
edge.

The pressure force ~Fp, due to the pressure pk of each bubble k in contact with the sphere, is given by

~F p =
∑

bubble, k

pk





∑

facet j

aj~nj



 , (4)

where aj denotes the area of each facet of the triangulation of the surface of bubble k that contacts the
sphere.

Since one of our goals is to be able to determine the drag on a sphere immersed in a foam, we test
the ability of our algorithm to correctly reconstruct the forces acting on a solid surface by comparing the
network force, ~Fn, and pressure force, ~F p exerted on the spherical container in the simulation and in the
reconstruction. The magnitude of these forces is given in table 3.

The magnitude of the network force is found to high accuracy in both the monodisperse and the poly-
disperse foam, with a maximum error of 8%. The pressure force is less accurate, with an error of 25% for
the monodisperse foam. This may be because the pressure force is very sensitive to the contact area of
each bubble. Errors are smaller for the polydisperse foam. The direction in which the net forces act is also
recovered accurately - we find an error of only 7◦ and 4◦ for the network force and 16◦ and 7◦ for the pressure
force for the monodisperse and polydisperse foams respectively (data not shown).

4. Results

Having shown that the errors in our reconstruction algorithm appear to be modest, we now turn to the
reconstruction of experimental images of real liquid foams.
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4.1. Topology of the experimental foam

The topology of the foam can be described in terms of the distribution of the number of edges per face
and the number of faces per bubble. In figure 4 we present the topology of a foam with 968 bubbles, which
is close to the maximum number allowed by our reconstruction procedure, occurring after 30 minutes. We
separate the data for the 315 peripheral bubbles (those touching the cylinder wall or the sphere) and those
in the bulk.

The distribution of the number of edges per face, shown in figure 4a, peaks at five for bulk bubbles,
but broadens for peripheral bubbles, a feature seen in Matzke’s early experiments [30, 31] and found by
Kraynik et al. [26] in simulations of highly polydisperse foams. That this foam is significantly polydisperse
is confirmed by the distribution of the number of faces per bubble, F , which ranges from 4 to 28 (figure 4b).
We find that 〈F 〉 = 11.9 and µ2 (F ) = 0.16 for bulk bubbles. There is again a slight downward shift between
peripheral and bulk bubbles, although this is difficult to see because of the low number of bubbles in each
class and hence the poor statistics. The peak for bulk bubbles is at 10, similar to a foam with polydispersity
p = 0.106 in Kraynik et al.’s data [26]; this value of p corresponds to µ2(F ) ≈ 0.15, very close to our value.
Note that there are many more bubbles with four faces (tetrahedra) than with five (triangular prisms).

4.2. Liquid fraction

We measure the amount of liquid in the foam both to obtain a vertical profile and a global average over
time, based on a constant value of the threshold in the image analysis procedure described in §2.2 that gives
the best rendering of the Plateau borders.

4.2.1. Liquid fraction profiles

The liquid fraction of each horizontal slice φl(z) of an image is given by the proportion of pixels inside
the container in that slice with a binary value of one. From this information we obtain a profile of liquid
fraction versus vertical position z in the container. Figure 5a shows that, as expected, the liquid content is
lower at the top of the foam as a result of gravity-driven drainage [1] through the Plateau border network.

Note that every time that the cylinder is moved during the experiment, a different part of the foam is
imaged so that it is not possible to compare the liquid fraction in a given part of the foam for the whole
sequence of images. Nonetheless, it appears in figure 5a that the liquid fraction, and its gradient, both
decrease in time at a given position.

4.2.2. Average liquid fraction

We use the Voxel Counter ImageJ plugin on each binary image to give the proportion of voxels with a
binary value of one, and hence the average liquid fraction in the foam, 〈φl〉. Figure 5b shows that 〈φl〉 at
first decreases with time and then reaches a plateau after roughly 30 minutes.

The reduction in the average liquid fraction is due to liquid drainage, and also perhaps to diffusion-driven
coarsening. The latter is evident in the steady increase in the average bubble volume, shown in figure 5b,
measured in the reconstructed foam. During the two hour experiment analysed in figure 5b, as many as
three quarters of the bubbles eventually disappear, decreasing from approximately 1000 to 250 in this time.

4.3. Bubble pressure

We next describe the variation of bubble pressures in the experiment, relative to the position of the falling
sphere. At equilibrium, the pressure in a bubble depends to a large extent on its volume (small bubbles
have higher pressure) and also on its shape. In a rheological experiment such as this, we expect [32] bubbles
situated directly below the sphere to be squeezed, and therefore to have high pressure while bubbles in the
wake are stretched vertically and have lower pressure.

To visualize the bubble pressures, and to overcome the challenges and limitations of 3D visualizations,
we reduce the data to 2D by averaging around a vertical line through the centre of the sphere. Thus in
figure 6, we show the average bubble pressure (for a single experimental image) as a function of height z and
distance rs from this vertical line, so that each pixel (rs, z) represents the average bubble pressure around a
horizontal circular ring of radius rs and centre (x0, y0, z).

Figure 6 shows a region of low pressure in the wake of the sphere, where a large bubble is positioned.
A region of higher pressure lies next to the wake, which can be directly linked to an area of small bubbles
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Figure 4: Statistical information for the foam’s topology at a time of 30 minutes, separated into 653 bubbles
in the bulk and 315 peripheral bubbles: (a) the number of edges per face, n, and (b) the number of faces
per bubble, F .
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Figure 5: (a) Vertical profiles of liquid fraction in the experimental foam at three different times, showing
that the foam gets drier. (b) The evolution of the average liquid fraction of the foam, 〈φl〉, and average
bubble volume, 〈Vb〉, versus time.

11



0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

rs (pixels)

h
e
ig
h
t 
(p
ix
e
ls
)

0 100 200 300 400 500

0

100

200

300

400

500
Pressure

C
o
n
ta
in
e
r 
w
a
ll

Figure 6: 2D visualization of bubble pressure for a single image of the foam at 50 minutes: Bubble pressure
(with units γ(pixels)−1) is mapped over (rs, z), where rs denotes the radial distance from a vertical axis
intersecting the sphere’s centre and z denotes the height in the 3D image. The semi-circle shows the
downward-moving sphere and the thick vertical line on the right represents the cylinder wall.

12



-2

0

2

4

6

8

10

12

14

20 30 40 50 60 70 80 90 100 110
0

2

4

6

8

10

d
ra
g
 f
o
rc
e
/γ
(m

m
)

s
p
h
e
re
 p
o
s
it
io
n
 (
m
m
)

time (minutes)

network drag
pressure drag

total drag
sphere height
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position, versus time.

touching the sphere. As expected, there is a region of higher pressure beneath the sphere where bubbles are
squeezed. Regions of high pressure for large values of rs correspond to highly deformed bubbles close to the
cylinder wall.

4.4. Forces on the sphere

Our reconstruction of the full geometry of the foam allows us to calculate the forces on the sphere due to
the liquid network and the pressures in the bubbles, as described in §3.3. (Note that, as in that section, since
the reconstructed foam is at equilibrium, films contact surfaces at 90◦; for the light, slow-moving sphere in
the experiments considered here, this is a reasonable assumption.)

The components of these forces parallel to the z direction, that is the network and pressure drag, have
significantly greater magnitude than the lift components, and we do not consider the latter any further. The
variation of the network and pressure drag exerted on the sphere as it falls through the foam is shown in
figure 7. The network force is the main contribution to the drag, by almost an order of magnitude. This
agrees with 2D simulations [16, 32], which have also shown that the network force is greater than the pressure
force. Using the results from figure 7, we can suggest an approximate value for the surface tension γ in the
experiment. We consider the first 50 minutes shown in figure 7, where the downward motion of the sphere
is approximately constant. Assuming that the network drag force (Fn ≈ 9γ mm) balances with the weight
of the sphere over this period, we note that the surface tension is roughly γ ≈ 60× 10−3Nm−1, a reasonable
value for water and commercial detergent.

One further feature of figure 7 is significant: both the pressure and network components of the drag
force decrease with time. This is due either to the foam coarsening and the average bubble size increasing
(figure 5b) or the sphere coming into contact with larger bubbles lower down in the foam. In consequence,
the sphere’s velocity increases during the experiment.

5. Summary

We have presented a detailed description of an algorithm to reconstruct three-dimensional dry aqueous
foams, and have demonstrated its capability to extract precise information about the topology and geometry
of a foam. We emphasize that the algorithm, in its current form, is designed to be applied to a dry foam,
and it is computationally expensive compared to algorithms for wet foams, in which the bubbles are closer
to spheres (see e.g. [12]). We validated the algorithm using simulated foams, showing that we recover
bubble volumes and pressures to an accuracy of better than 20%. We applied the algorithm to a sequence
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of experimental images of a sphere falling through a foam and presented preliminary results. It remains to
extract more of the time-dependent features of the foam’s behaviour, such as the fields of bubble displacement
(velocity) and the local strain.
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