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Abstract 

We present Surface Evolver computer simulations for two-dimensional (2d) foams in which 

the contact angle at which liquid films and Plateau borders meet is non-zero. We determine 

the average coordination number Z of bubbles over a wide range of finite contact angles θ 

and liquid fractions ϕ. We find a linear scaling of Z for values of ϕ between about 0.07 and 

0.15, corroborating previous data obtained for the case of zero contact angle. The results 

highlight the importance of attractive bubble interactions for 2d foams.  

 

1 Introduction 

    Aqueous foam, a two-phase fluid consisting of gas bubbles surrounded by liquid, features 

both in our daily lives (e.g. shaving foam, carbonated drinks) and in various fields of 

engineering, such as oil-gas field development [1], foam flotation [2], and soil remediation 

[3]. An important quantity for the description of foam structure is its liquid volume fraction ϕ, 
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which is generally a function of both position and time.  For values of ϕ around 30%, a three-

dimensional (3d) wet foam resembles a dense packing of near-spherical bubbles. In dry 

foams, where the liquid fraction is less than about 3%, the bubbles take on near-polyhedral 

shapes [4].  

This variation in character of the bubble packing, together with the fact that foams are 

generally disordered with a wide variation of bubble sizes (polydispersity), makes simulating 

them a difficult task. The Surface Evolver software developed by Ken Brakke proved an 

essential tool for this [5], but 3d simulations of foams over a wide range of liquid fraction are 

still very limited. However, it has long been recognized that the study of two-dimensional 

(2d) foams, which is computationally much less demanding, offers insight into many 

statistical properties of foam structure, such as the variation of the average number of 

contacts of a bubble (coordination number) as a function of liquid fraction. Such a 2d foam is 

not just a toy for a theorist, but may be realized experimentally, for example by placing a 3d 

foam between two glass plates with a spacing that is much smaller than the average bubble 

diameter [6, 7]. 

In the standard model of a dry 2d foam (ϕ = 0), the infinitesimally thin liquid films 

separating two bubbles are represented by arcs of circles, as a consequence of the Laplace-

Young law, and three such arcs meet at a vertex at 120 degrees (Plateau's law) [8, 9]. For a 

small non-zero value of liquid fraction the vertices swell and form what are called Plateau 

borders, which contain almost all the liquid. These three-sided Plateau borders grow in size 

with increasing liquid fraction, and eventually merge to become four- or more-sided. The 2d 

equivalent of a wet 3d foam is a random packing of circular bubbles (disks) at a critical liquid 

fraction ϕc  of about 0.16 [8]. 

A key quantity in the statistical description of dense random packings of particles is the 

average number of contacts of a particle (average coordination number Z), which is generally 
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a function of the packing fraction 1- ϕ [10]. The main question that we address here is the 

functional form of its variation in a 2d foam over a wide range of liquid fractions below the 

wet limit [11]. 

In the dry limit Z = 6 as a consequence of Euler's theorem, which relates the number of 

faces, edges, and vertices of a cellular structure to a topological invariant [8]. Z remains equal 

to 6 up to about ϕ ≈ 0.03; the Decoration Theorem [8] states that such a foam can be obtained 

by simply “decorating” a dry foam with three-sided Plateau borders. Upon a further increase 

of liquid fraction, Z begins to decrease, as neighbouring bubbles lose contacts and Plateau 

borders with more than three sides start to appear. 

At the wet limit [12] ϕc, also called the jamming point in the context of granular packings, 

the critical coordination number 𝑍𝑐 is four. This can be shown by matching constraints due to 

bubble-bubble contacts with the number of degrees of freedom, i.e. two in two dimensions; 

since each contact provides a constraint for two bubbles, this leads to an average value of Zc 

= 4 in an infinitely large 2D foam [10, 13]. 

Using the PLAT software [14] , which accurately represents gas-liquid interfaces as arcs 

of circles and then directly implements Plateau's laws, Winkelmann et al. [15] carried out 

600,000 independent simulations of foams comprised of 60 bubbles each. Their data showed 

that Z varies linearly over a wide range of ϕ. A fit of the data in the range 0.12 < ϕ < ϕc to the 

form 

Z-Zc ∝ (ϕc- ϕ)β                                                         (1) 

gives an exponent β =1.000±0.004 (for details of the simulations see [16]). Note, however, 

that a linear variation gives an excellent description of the data for the even larger range of ϕ 

exceeding about 0.08. 
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Here we present simulations which are also based on the standard foam model, as 

introduced above. However, we have performed these with the Surface Evolver software, 

which allows for the setting of a finite contact angle, and thus the addition of an attractive 

force between bubbles, as detailed below.  

As in the PLAT calculations, we start with a dry foam (small ϕ) and progressively 

increase the liquid fraction. We again find a linear variation of the average coordination 

number for an extensive range of liquid fractions below ϕc  ≈ 0.16. We also note that bubble 

attraction allows foam structures to be found for higher values of ϕ [17], which we explore 

below. 

Many other results for the variation of average coordination number with packing 

fraction are concerned with jamming; starting from a loose random assembly of particles, 

isotropic compression of the system leads to the onset of rigidity at some critical value of 

packing fraction. 

To explore the relevance of these results to our own work, we distinguish between 

packings of soft particles, which in 2D are represented by overlapping disks, and deformable 

particles, which conserve their areas, and may correspond to bubbles in a wet foam. The 

particles may interact purely repulsively, or may exhibit some attraction. 

The earliest soft particle model appears to be that of Durian, also known as the soft disk 

model [18].  It has often been used as a toy model for 2d wet foams as it illustrates both 

quasi-static and rheological properties of foams [19]. At liquid fractions below the wet limit 

the disks overlap but repel each other with a harmonic potential. A 2d bubble model foam 

then corresponds to a minimal-overlap packing of disks for a given value of liquid fraction 

[18]. Figure 1 illustrates the difference between an overlapping disk packing and a packing of 

deformable bubbles. In the soft disk model, the exponent in equation (1) is β = 0.5 [10]. 
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Koeze et al. [20,21] extended the soft disk model by adding an attractive shell around the 

(harmonically) repulsive core of the particles. Strong attraction leads to the formation of rigid 

clusters of particles, even at very loose packings, which grow continuously as the packing is 

compacted above the critical packing fraction (a second order continuous phase transition). 

For weak attraction the onset of rigidity is sudden (first order transition).  

Dunne et al. [22] implemented the Morse-Witten theory to model a foam consisting of 

deformable and repulsive bubbles. The theory accounts for the non-local and anharmonic 

character of bubble-bubble interactions and is exact in the wet limit [23, 24]; as for the soft 

disk model, the simulations [22] also find a square root scaling (i.e. β = 0.5). 

Otherwise, packings of deformable particles, as we generate here, currently appear to be 

largely restricted to those exhibiting repulsive interactions. Boromand et al. [11] developed a 

model for deformable bubbles and emulsion droplets which is exact in the wet limit.  Away 

from this limit, the excess contact number variation may be expressed as an expansion, ΔZ ~ 

(ϕc- ϕ )1/2  +(ϕc- ϕ). Note that the linear variation which features in the PLAT data and that we 

find below for attractive bubbles only shows the second of these two terms over a large range 

of ϕ. 

           

(a)                                                                       (b)  
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Figure 1. Computer simulations of wet 2d foams. (a) In the bubble model, the bubbles are disks that can overlap. 

In the configuration shown the bubble labelled 1 contacts three other bubbles. (b) In a packing of deformable 

bubbles, here simulated with Surface Evolver, the non-circular shape of bubbles will generally lead to a 

different local foam structure. In the configuration shown, which is similar to that of (a), the bubble labelled 1 

contacts six other bubbles. Thus a similar local neighbourhood might be associated with different coordination 

numbers in different models. 

 

The variation of Z(ϕ) has been studied experimentally for planar elastic disks [25]  and 

quasi-two-dimensional foams [26]. The quasi-2d foams consisted of disordered rafts of 

bidisperse bubbles between a liquid pool and a glass plate. Varying the distance between the 

plate and the liquid surface compresses the bubbles against each other, resulting in a change 

of nominal 2d liquid fraction. In the wet limit, where the gap between the covering plate and 

the liquid interface is similar to the bubble diameter parallel to the plate, the description of 

the foam as 2d becomes more and more approximate.  The determination of average contact 

number from image analysis is not an easy task, and the oft-used assumption in the analysis 

that the bubbles can be treated as circles might lead to bias towards the bubble model. Katgert 

and van Hecke  [26] report an exponent β of 0.5 or 0.7 (depending on how liquid fraction is 

measured), with  Zc close to 4 and ϕc close to 0.16, which is somewhat inconclusive. 

In the following we describe computer simulations using the Surface Evolver software [5] 

to investigate the variation of Z(ϕ). As mentioned above, this is the standard software for the 

simulation of (dry) foams, particularly in 3d, although it has so far only found limited 

application to random wet foams [17]. Here we apply the Surface Evolver to 2d foams with 

varying liquid fraction. Foam structures are computed via the minimisation of energy (total 

surface energy (3d), total line energy (2d)) under the constraint of constant bubble size 

(volume, area) [27].  
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Of particular interest to the problem considered here is that the Surface Evolver allows 

the setting of a finite contact angle θ [17], as illustrated in Figure 2. A finite contact angle is a 

consequence of having different values for surface tension in bulk and in liquid films, as is 

often encountered in experiments. This results in increased bubble-bubble attraction, or 

stickiness, which may inhibit the reorganisation of foam structure upon a change of liquid 

fraction. The smallest contact angle that we can simulate in Surface Evolver is 0.81o.  

 

 

 

Figure 2. Two Plateau borders with contact angle θ = 0° and θ > 0° between the gas-liquid interface and the gas-

liquid-gas interface. Here γf is the surface tension of the gas-liquid-gas interface (i.e. a liquid film) and γ is the 

tension of the gas-liquid interface. In an equilibrium state, γf = 2γ cosθ. 

 

The detailed simulation procedure will be described in Section 2, followed by a 

presentation of the results for Z(ϕ) for foams of a range of different contact angles in Section 

3. Finally, Section 4 presents the conclusions. 

 

2 Simulation procedure  
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In our simulations using the Surface Evolver [5], the equilibrium structure of a wet 2d 

foam at fixed liquid fraction is obtained by minimizing the total energy of the interfaces 

under the constraint of fixed bubble areas. The energy is a sum of two contributions: from the 

films separating neighbouring bubbles and from the interfaces of the Plateau borders, 

weighted by their respective interfacial tensions. 

The tension γf of a film (gas-liquid-gas interface) is set to 1, without loss of generality. 

The tension γ of a single gas-liquid interface is chosen just above 0.5 to set the desired 

contact angle θ [17] from  

𝜃 = cos−1
𝛾𝑓

2𝛾
.                                                                   (2) 

In this way we simulate foams with contact angles from less than 1° to almost 12°. 

All our foam samples were polydisperse, with N=1600 bubbles. Polydispersity is 

evaluated as the standard deviation of the distribution of bubble radii R, divided by the 

average bubble radius, defined in terms of the means ⟨𝑅⟩ and ⟨𝑅2⟩ of the distribution of R as 

𝜎𝑅 = √
⟨𝑅2⟩

⟨𝑅⟩2
− 1 .                                                             (3) 

Therefore, for a monodisperse (but not necessarily hexagonal) foam, 𝜎𝑅 = 0.  The data 

presented below is for  𝜎𝑅 = 0.0079. 

The simulation procedure is described in [17]. Briefly, we construct the initial foam 

structure from a Voronoi partition with periodic boundary conditions, as shown in Figure 

3(a), resulting in a uniform random distribution of bubble areas. The films are represented as 

arcs of circles and Surface Evolver is used to find an equilibrium dry foam with these bubble 

areas (Figure 3(b)). Then three-sided Plateau borders are added at each threefold vertex to 

create a wet foam with low liquid fraction, typically between 0.01 and 0.02, as shown in 
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Figure 3(c).  Conjugate gradient descent, interspersed with occasional Hessian iterations, is 

used to find a new equilibrium with energy accurate to eight decimal places.  

The liquid fraction is increased in small steps of 0.002, with minimization at each step. 

During this equilibration, T1 topological changes [28] are triggered when the length of an 

interface decreases below a small cut-off. At lower liquid fraction, only T1 rearrangements 

that do not change Z are possible (see Figure 3(d)), but this is not the case above about ϕ = 

0.03. We also account for bubbles coming into contact and two interfaces merging partway 

along their lengths. At the end of each step, the average coordination number is recorded. 

 

              

         (a) Voronoi network                                 (b) A dry foam                    (c) A wet foam 

                       

(d)  

Figure 3.  Surface Evolver simulation of 2d foams. (a-c): Preparation of a wet foam structure with the contact 

angle 5.12° and the liquid fraction 0.013 (note that a part of the 1600-bubble foam is shown). (d) Example of a 

T1 transition following an increase in liquid fraction by 0.002. Note that in this low liquid fraction foam (Φ < 

0.03) the average coordination number, Z, stays constant, although the number of neighbours of each bubble 
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involved in the T1 changes. Increasing the liquid fraction to higher values leads to a decrease in Z as lost 

contacts are not necessarily regained following bubble rearrangements. 

3 Results and analysis 

Figure 4 shows the computed variation of the average coordination number Z with liquid 

fraction for different contact angles θ up to 12o All data sets show the same qualitative 

behaviour: at values of ϕ less than about 3% the coordination number remains roughly 

constant and close to the value six (as a consequence of the Decoration Theorem) and then a 

further increase in liquid fraction leads to a regime in which Z decreases linearly with liquid 

fraction.  

 

(a) 
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(b) 

Figure 4. Surface Evolver results for the variation of average coordination number Z with the liquid fraction, for 

foam samples with N = 1600 bubbles and polydispersity 0.0079. (a) For values of liquid fraction greater than 

about 0.07 and less than about 0.15, Z(ϕ) decreases linearly with ϕ.  Also shown is the data for zero contact 

angle obtained with PLAT [15] . (b) The same data is shown on log-linear scales (cf [20]) to illustrate the 

difference between the PLAT data and the finite contact angle data.  

In the case of zero contact angle (i.e. the PLAT data) this linear regime extends all the 

way to ϕc where Z ≈ 4. For our new data with finite contact angle, we find that Z(ϕ) begins to 

flatten off when the liquid fraction exceeds about 0.15, and then approaches a constant value, 

greater than 4. This is a result of “flocculation” [17]: bubbles cluster together, leading to 

inhomogeneities in the foam structure (Figure 5).  

 

As the liquid fraction increases, large liquid regions develop from the four-sided Plateau 

borders, similarly to what is found in the simulations of sticky disks by Koeze et al. [20, fig. 

1a]. Eventually one of these comes to dominate the sample, and the bubbles form a single 

large cluster surrounded by liquid. The bubbles in this cluster are close to circular, although 

there can be large liquid regions still present within the cluster. However, the surrounding 
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liquid can absorb any further increases in the liquid fraction without the bubble shapes 

changing, and hence the value of Z saturates. In addition, the fact that the cluster is 

surrounded by liquid ensures that the average coordination number saturates to a value above 

4. 

           
(a) θ =0.81° and ϕ =0.099                                                  (b) θ =0.81° and ϕ =0.199 

        
(c) θ =5.12° and ϕ =0.099                                                  (d) θ =5.12° and ϕ =0.199 
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(e) θ =11.36° and ϕ =0.099                                                  (f) θ =11.36° and ϕ =0.199 

 

Figure 5. Foam structures with different contact angles and the liquid fractions ϕ = 0.099 and 0.199. At higher 

contact angles, the liquid is less evenly distributed, as bubbles begin to cluster together and flocculate, and large 

liquid regions form.  

 

The slope of Z(ϕ) in the linear regime depends strongly on the contact angle. As the 

contact angle approaches zero, the bubbles “share” less interface (they are less “sticky”) and 

the average coordination number decreases more quickly as the liquid fraction increases. In 

addition, varying the polydispersity at fixed contact angle (data not shown) does not change 

the slope of Z(ϕ) in the linear regime. Only beyond this regime do the curves separate. 

       We have determined the slope dZ/dϕ in the linear Z(ϕ) regime using linear regression. 

This is shown in Figure 6. The slopes are consistent with the data of Boromand et al. [11] 

who find, for soft deformable particles, slopes of around 4 in their linear regime. 

      A fit to the empirical expression  

𝑑𝑍

𝑑𝜙
= 𝑐1 − 𝑐2𝜃                                                               (4) 
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 accurately describes our Surface Evolver simulations with fitted constants c1 =9.90 and c2 = 

0.45.  

 

Figure 6. The slope of the linear region in the variation of the coordination number with liquid fraction as a 

function of contact angle θ. It may be described by linear relationship Equation (4). The PLAT simulation, for 

contact angle zero, indicates that the limit in which the contact angle tends to zero is discontinuous. 

 

The Surface Evolver results for the finite contact angle are broadly consistent with the 

previous PLAT results in that they too reveal a linear variation of Z(ϕ) for moderate values of 

ϕ.   We stress here again that the methods of calculation used by Surface Evolver and PLAT 

differ: the former uses energy minimisation, the latter equilibrates a foam structure via 

balancing the forces due to surface tension and pressure differences. The linearity of Z(ϕ) is 

thus not an artefact of a particular numerical procedure.  

However, the value of the slope for the finite contact angle does not extrapolate to that of 

zero contact angle, because even a small non-zero contact angle induces flocculation.  
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In their study of soft (non-deformable) “sticky disk” packings, Koeze et al. [20] vary the 

strength of the attraction between disks and compute the variation of the excess coordination 

number ΔZ as a function of packing fraction 1- ϕ [20] (the quantity nr in their fig. 4 

corresponds to 2ΔZ). While in the limit of weak attraction there is a sharp drop in ΔZ as 1-ϕc 

is approached, with any finite attraction present the decrease in ΔZ is more gradual. In foams, 

i.e. in packings of deformable bubbles, it appears that the contact angle plays a similar role to 

Koeze et al’s attraction parameter. In Figure 4(b) we have replotted our data from Figure 4(a) 

to match the presentation of Koeze et al. [20, fig. 4] and find broadly similar features. This 

presentation also emphasises the distinction between the PLAT data, with zero contact angle, 

and our finite contact angle data, which we already noted when discussing the variation of 

slope dZ/dϕ in the linear Z(ϕ) regime in Figure 6. The excess coordination number for our 

PLAT data drops more quickly than for any sticky disk system, while with a finite contact 

angle the data saturate at a relatively high value of Z (and thus ΔZ). Our computations are 

very time-consuming and we do not have sufficient data to compute what Koeze et al. [20] 

call the “sticky jamming point” ϕc(θ), or indeed examine any other scaling relations related to 

the shear modulus for example. 

 

4 Conclusion 

     We have simulated two-dimensional wet foams with deformable bubbles and finite 

contact angle to analyse how the coordination number of these structures is affected by the 

liquid fraction. We identify a linear regime for all foam structures, covering a wide range of 

liquid fractions, in which the coordination number decreases linearly with liquid fraction. 

This linearity contrasts with data from the bubble model [29], which show a square-root 

dependence. In the linear regime, the slope itself depends linearly on the contact angle, and 

the effect of polydispersity is negligible.  
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Beyond the linear regime, at even higher liquid fractions, there remain unanswered 

questions. In particular, it is unclear how to define the usual wet limit since the coordination 

number never reaches 4. Instead, the contact angle, and to a lesser extent the polydispersity in 

bubble size, controls the value of Z to which the curves saturate.  

At these high liquid fractions, our simulations indicate that the foam becomes a large 

cluster of bubbles, surrounded by an extensive body of liquid. In this respect, it is difficult to 

distinguish the response of the flocculated cluster from the response of the system as a whole. 

Similar effects are encountered in what was recently called “sticky jamming” [20], i.e. the 

jamming of particles with attractive forces, and we have explored the similarities between 

these systems and foams. 
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