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Abstract

Two-dimensional bidisperse foams were simulated in cyclic, uniaxial, extensional shear.

Mixing of bubbles of different sizes only occurs at high strains, and once mixed, the bubbles

do not segregate. For liquid fractions up to 1%, the rate of mixing is shown to be slightly

enhanced by increased liquid fraction.
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1 Introduction

The flow of foams is seen in many processes, and its use in majorindustries means

that an understanding of the rheology of foams is of paramount importance [1, 2].

Although foams are disordered materials, they have well-defined equilibrium laws

which allow their static structure to be determined. It is perhaps the combination

of industrial importance with an attractive and precise local structure that makes

foams one of the best candidates to improve the understanding of the rheology of

multiphase fluids.

Foams are by nature opaque. While it is possible to perform three-dimensional ex-

periments [3] and simulations [4] to understand the rheology of foam, as in many

other fields much can be gained from considering a two-dimensional (2D) foam,

such as can be made by trapping bubbles between two parallel and closely spaced
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horizontal glass plates. Then each bubble can be seen, and its position tracked over

time. Indeed, a large part of the recent literature attests to the profitability of such

an approach, both experimentally [5, 6, 7, 8, 9], theoretically [10, 11] and compu-

tationally [12, 13, 14, 15].

In equilibrium, the idealized 2D foam used for computation consists of films which

appear as circular arcs that meet three-fold at120◦. This is a consequence of the fact

that the most important contribution to the energy of a film isits area, or, in 2D, its

length [16, 17]. For the same reason, films meet solid boundaries at90◦. Thus, the

search for the equilibrium structure of a 2D foam is equivalent to the problem of

finding the least perimeter of a collection of circular arcs subject to area constraints

(the bubbles). This is a problem admirably tackled by the Surface Evolver [18], and

that software is employed here.

As is well-known, foams are elastic solids at low strain. They deform plastically as

the strain increases until they act as liquids at high stress, above a so-called yield

stress. We concentrate here on the plastic events that occurin a foam undergoing

extensional shear. These plastic events take the form of local neighbour-switching

topological changes, as illustrated in figure 1. As one film shrinks to zero length,

an unstable four-fold vertex is formed. The Surface Evolverallows this vertex to

be “popped”, so that the film can re-form with different neighbours, thus reducing

the energy of the foam. These T1 topological transformations [19] thus provide a

mechanism for dissipation in the quasi-static or zero shear-rate regime [20]. They

also allow bubbles to change their positions relative to each other.

Whether a few topological changes can be said to have pushed afoam beyond its

yield stress is a moot point, but undoubtedly the effect of these local changes is to

allow a foam to reduce its energy and therefore to change its properties. Although

the static shear-modulus of a foam does not depend greatly onits precise structure,

it does depend upon bubble size [2]. In a polydisperse foam, the mixing or segre-

gation of bubbles according to their size can therefore leadto regions of the foam

with different responses to shear.

The liquid fractionΦl of a 2D foam is defined as the ratio of liquid area to total area.

The usual picture used for computation is that of a dry foam, but as liquid is added

to the foam, the three-fold junctions swell, to form Plateauborders, as shown in
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figure 2. This decoration of the structure [21] with small triangular liquid elements

does not, however, provide the most easily accomplished method of simulating a

wet foam. The effect of the liquid is to allow the T1 changes tooccur at a vertex

separation greater than the dry case predicts. We thereforeintroduce a critical cut-

off length lc which is applied to a dry foam to mimic a wet one:lc represents the

vertex separation at which T1s are triggered in the Surface Evolver simulations.

Small lc corresponds to dry foams, and increasinglc to foams of greater liquid

fraction. A geometrical calculation shows that

Φl = 0.242
l2c
Ā

(1)

whereĀ is the average bubble area. This method cannot be expected tobe accurate

for significantly wet foams; it is probably effective for foams of liquid fraction up

to about 5%, when four-sided Plateau borders start to appearin the foam [20] and

the decoration theorem fails [21].

The most simple 2D system in which to examine bubble sorting or mixing accord-

ing to size is a bidisperse foam, in which a bubble has one of only two possible

areas. Questions about whether sorted or mixed configurations of bubbles of two

different sizes represent the minimum energy state have been addressed by Teixeira

et al. [22]. They show that for a configuration in which the ratio of bubble areas is 2,

as considered here, the least energy configuration is a sorted collection of ordered

hexagons.

This paper explores whether such arrangements are stable under the application of

cyclic extensional shear to the foam, or conversely, whether the shear can induce

an optimal ordering. That is, does an initially sorted foam remain sorted, or can a

mixed foam be sorted under shear? Shearing a foam may allow itto explore differ-

ent arrangements of bubbles and to choose lower energy ones.The simulations are

applied to disordered foams in a quasi-static fashion: a small increment in strain is

followed by relaxation to a local minimum of film length, so that the foam moves

through a series of equilibrium states in which Plateau’s laws apply. During each

step, many neighbour-switching T1 transformations may occur, although their pre-

cise order of occurrence is not resolved. However, even at this level of description,

there are interesting effects, before details such as viscous drag are introduced. In-
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deed, the introduction of viscous effects may reduce the amount of mixing.

2 Numerical implementation

All foams considered here consist of 100 bubbles in a square box that has initial

width W0 = 10 and heightH0 = 10. A foam of this size is large enough for the

effects of size-sorting to be seen, but not so large as to makesimulations so slow

as to be un-viable. The Surface Evolver works in dimensionless units, and since

the only energy is proportional to the surface tension, its value is not important: we

take it to be equal to one.

The foams are bidisperse: each bubble is assigned a target area of eitherAb ≈ 0.66

or 2Ab, with a roughly 50% probability, so that the average bubble area is one.

From the initial state, the foam is deformed quasi-statically by increasing the strain

ǫ sinusoidally. Time is increased in steps ofdt = 0.005, and at each step the foam

is relaxed to equilibrium, with T1s being performed when a film shrinks below a

critical lengthlc. The dimensions of the rectangular box vary according to

W = W0e
ǫmax sin(t); H = W0H0/W, (2)

whereǫmax is the maximum strain reached. The strain is therefore area-preserving,

andǫmax = 1 corresponds toW = 27.18, H = 3.68.

In each of the simulations described below, five cycles of extension are simulated,

so that timet lies in the range[0, 10π]. We commence with a small value oflc =

0.01, which represents a very dry foam. The value ofǫmax is varied, and three

different bubble distributions are investigated.

3 Sorting and mixing

To determine whether bubbles mix under shear, the starting configuration is one in

which the large bubbles are all in the lower part of the box. This is referred to as

foam 1, shown in figure 3(a). A small value oflc = 0.01 is chosen, which represents
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a dry foam (Φl ≈ 2.42 × 10−5). The effect of mixing is measured by counting

the number of films that separate large from small bubbles,Nsl. The normal stress

differenceτxx−τyy is calculated by integrating the normal vector to each film along

its length and resolving inx andy directions, then averaging over the whole foam.

This allows a shear modulus to be found.

To ensure that the results for mixing are not affected by the initial strain being par-

allel to the interface between large and small bubbles, a second foam is simulated

in which the large bubbles are initially on the left-hand side of the foam as in figure

3(b). Finally, to investigate if sorting occurs, a third setof simulations commence

from a mixed foam, figure 3(c).

3.1 Results

Figure 4 quantifies the amount of mixing that occurs in the three foams. For low

amplitude strains,ǫmax = 0.1, there is no change in the structure, henceNsl is

constant in this elastic regime. Forǫmax = 0.5 there is a small cyclic variation in

Nsl for each foam, but as the third row of figure 3 makes clear, there is no mixing in

foam 1 or 2. Atǫmax = 0.75 there is a definite relative motion of the small bubbles,

but they mostly remain together. At high strain there is significant relative bubble

motion, although for foam 3Nsl decreases only slightly from a value of about 130.

Mixing occurs for both foams 1 and 2, whereNsl rises from a value of 19 to a

value around 70 to 80 after 5 cycles. The results for foams 1 and 2 are qualitatively

similar, showing that the orientation of the initial foam does not play a significant

role.

The value ofNsl for foams 1 and 2 might be expected to saturate close to the value

for foam 3. To test this assertion, foams 1 and 3 were simulated for 5 further strain

cycles atǫmax = 1.0, shown in figure 5. It is indeed the case that for both foams the

degree of mixing tends to the same limit,Nsl ≈ 90.

For mixing to occur, therefore, the maximum strain amplitude must be large (figure

8). This forces the small bubbles to be pushed out of the centre of the short side, so

that in the next cycle they are redistributed (figure 9). At this large strain amplitude,

the small decrease ofNsl in foam 3 may represent small bubbles moving preferen-
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tially to the wall, at which point one of their sides does not count towards the total.

Counting the peripheral bubbles in figure 3 shows that the number of bubbles, both

large and small, touching the walls increases slightly at large amplitude strains for

all three foams. In addition, the decrease ofNsl may denote a degree of sorting in

foam 3, although it seems unlikely that this is a trend that would continue much

further. A second simulation of an initially mixed foam was performed (data not

shown), verifying that this behaviour is robust.

To justify simulating foams of only 100 bubbles, figure 6 compares the value ofNsl

after 5 strain cycles with that in foams of larger size, up to 400 bubbles, for a range

of values of the maximum strainǫmax. WhenNsl is scaled by the total number of

bubbles, the results are indistinguishable.

Figure 7 shows how the stress evolves with strain. For small amplitude strains

(ǫmax = 0.1) the stress increases and decreases linearly, representing purely elas-

tic behaviour, visible as a straight line through the origin. At higher strains, plastic

events begin to occur, as films shrink to zero length and T1s are triggered. These

events are visible as sudden drops in stress, which almost all occur as the width or

height approaches its maximum value,

In all cases however, the shear modulus, measured as the slope of the stress-strain

curve in the elastic regime on figure 7, is close to the value for the hexagonal hon-

eycomb [2]. (This is no longer the case once the liquid fraction is greater than about

5% [20].)

As Φl increases, however, there are more T1s. So increasing the liquid fraction

results in faster mixing of the bubbles, even within this 5% limit, as shown in figure

10. The data is for foams 1 and 2, and the liquid fraction is increased by a factor of

25 (lc increases from 0.01, the value used above, to0.05). It is therefore clear that

a wetter foam imparts greater mobility to the bubbles.

The maximum stress that the foam reaches in figure 7 is a measure of the yield

stressτs of the foam. For values oflc between 0.001 and 0.2 (6 points), that is

liquid fractions up to 1%, we fit the stress to a sinusoid

τxx − τyy = τs sin(t/t0). (3)
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The values ofτs are then fitted to the square-root power law of Hutzler et al. [20]:

1

2
τs = a − b

√

Φl, (4)

giving a = 0.76 ± 0.01 andb = 3.17 ± 0.16. This compares well with their fitted

parameters,a = 0.74, b = 3.4, despite the difference in boundary conditions and

treatment of wet foam. That is, the simulations presented here treat a foam in a

finite box, rather than one with periodic boundary conditions. Moreover, the PLAT

software used by Hutzler et al. [20] explicitly includes thetriangular Plateau bor-

ders; the agreement in values of the yield stress thus validates our use of a cut-off

length to make the simulations more straightforward.

4 Conclusions

The mixing of bubbles in bidisperse foams in extensional shear occurs only at high

strains. Once mixed, the bubbles of different sizes do not segregate. For liquid frac-

tions up to 1%, the rate of mixing is slightly enhanced by increased liquid fraction.

The experiments of Quilliet et al. [9] show that when a monodisperse foam contain-

ing a single large bubble is sheared transversely, the largebubble moves towards

the walls of the box. These simulations of extensional shearmay be able to explain

this observation – there is certainly an increase in the number of bubbles touching

the wall in a mixed foam.

Indeed, the complementary experiment to the extensional shear presented here

would be of great interest in validating these results. The means by which such

an experiment could be accomplished are not immediately clear. The easiest may

be to use a bubble raft, in which the foam floats above a liquid pool, or to enclose

a bubble raft beneath a glass plate, as in [9]. These approaches suffer, however,

from the foam having a high liquid fraction. To reach the dry limit, the foam may

be trapped between glass plates; it is then difficult to manipulate the boundaries of

the rectangular box smoothly, and in such a way as to preservearea. Perhaps the

best approach might be to surround the foam, along with four small magnets at the

corners, with an elastic membrane rather than rigid walls. The magnets could then

be manipulated from outside the glass plates to drive the shear.
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The effects of system size have not been discussed here. Preliminary simulations of

foams with up to 400 bubbles show similar trends to those described here, with a

slight increase in mixing at lower maximum strains. In addition to larger systems,

future work will include the use of periodic boundary conditions to ascertain the

effect, if any, of the solid boundaries used here.

As first described by Fullman [23], viscous effects may be introduced into the dry

foam model by considering the drag as the liquid surfaces move along the bounding

surfaces of the experiment. Both the vertex model [13, 14], in which the dissipation

is concentrated at the vertices, and the recent model of Kernet al. [15], in which the

dissipation occurs in the films while full structural information is retained, improve

upon the usual quasi-static model of flow. The order in which T1 changes happen

is also resolved. The precise effects that viscous drag has on bubble mixing and

sorting remain to be seen.
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Fig. 1. A 2D foam minimizes its total perimeter, subject to the constraints imposed by bub-

bles of fixed area. At equilibrium, the foam consists of circular arcs that meet three-fold at

120
◦. As a flowing foam moves from one configuration to another, thechanges in topology

occur when a film shrinks to zero length and reforms with different neighbours. These T1

transformations result in a reduction in the foam’s total energy, or, equivalently, its total

perimeter.

Increasing liquid fraction

Fig. 2. A dry 2D foam can be decorated with a triangular Plateau border at each of the

three-fold vertices to represent a wet system. The liquid fraction, which is defined as the

liquid area divided by the total area, plays an important role in the foam’s properties. To

model the effects of liquid fraction, a cut-off length is introduced into the dry foam model,

which allows T1s to be triggered when the vertex separation represents the point at which

two Plateau borders touch.

11



Fig. 3. The three bidisperse foams used to investigate mixing and the coordinate system.

The small bubbles have been shaded for clarity. (a) Foam 1 starts with all large bubbles at

the bottom of the foam. (b) Foam 2 starts with all large bubbles to one side of the foam.

(c) Foam 3 is a random distribution of the two bubble areas. The first row shows the initial

configuration. The second, third and fourth rows show, respectively, the result of 5 cycles

of extensional shear with maximum strains ofǫmax = 0.1, 0.5, 0.75 and1.0. For foams 1

and 2, there is evidently mixing; no sorting is observed for foam 3. After experiencing high

strain amplitudes, these dry foams show bubbles which are elongated in the direction in

whichW is increasing.
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Fig. 4. The number of films separating large from small bubbles, Nsl, for each of the sim-

ulations illustrated in figure 3: (a) foam 1; (b) foam 2; (c) foam 3. Only in foams 1 and 2,

where large and small bubbles are initially segregated, andonly at high maximum strains

(ǫmax = 1.0), is there any significant mixing.Nsl decreases slightly for foam 3, perhaps

indicating that there is a small amount of sorting in this initially mixed foam.

 80

 85

 90

 95

 100

 105

 110

 115

 120

 5  6  7  8  9  10

Strain cycles

N
um

be
r

of
fil

m
sN

s
l

Foam 1
Foam 3

Fig. 5. The number of films separating large from small bubbles,Nsl, increases for foam 1

and decreases slightly for foam 3, which was initially unsorted, until the two are commen-

surate.
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inside each curve is the energy dissipated in each cycle, which is greater for higher strain
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Fig. 8. Images of the foam at maximum extension, in the case ofan initially mixed foam

(Foam 3). Withǫmax = 1.0, the foam is only about 5 bubbles across at this point.

(a)

(b)

Fig. 9. Images of Foam 1, with all the large bubbles initiallyat the bottom of the foam,

for ǫmax = 1.0. (a) The first cycle att = 0, π/2, π, 3π/2 and2π; first W increases to its

maximum value, thenH does the same. (b) The configuration of Foam 1 after each full

cycle (i.e. att = 0, 2π, 4π, . . .). The mixing of the two bubble sizes occurs incrementally,

with a few small bubbles being pushed between the larger onesin each cycle.
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