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Abstract. Quasistatic simulations show that the topological changgastic events that occur when an aqueous foam flows
are confined within narrow regions. The width of these regjigrshown to scale with a power of the polydispersity in babbl
area. The exponent is one-half for linear Couette flow andfiftinefor Poiseuille flow.

Keywords: Foams, Rheology, Localization, Plasticity
PACS: 47.57.Bc Foams and Emulsions, 83.80.1z Emulsions and Foams

INTRODUCTION

Liquid foams are familiar from domestic use and importaninidustrial applications, including ore-separation and
enhanced oil recovery. They are elasto-visco-plastic ¢exffuids with a highly nonlinear response to applied forces
at low strain they deform elastically, like a solid, whileoale a yield stress they flow like a viscous liquid. Of all
complex fluids, liquid foams provide one of the most experitaly accessible systems for study, since bubbles are
objects that can have millimetric dimensions. Moreoveat€du’s laws mean that the internal structure of a foam is
well understood, at least at the level of the network of fildis Foams thus provide a prototypical complex fluid.

We study two-dimensional (2D) foams, such as can be madeumseging a foam between parallel glass plates until
it consists of a single layer of bubbles. Despite its siniglim comparison to the three-dimensional foams found in
applications, the dynamics of 2D foams are rich, and prowidight into their 3D counterparts.

The mathematical idealization of a two-dimensional foarasdollows: a dry 2D foam at equilibrium consists of
bubbles with fixed areas surrounded by films that are cir@rzs meeting threefold at angles of 12These rules are
consequences of minimization of energy [2], which is in ti#ise the total film length multiplied by surface tension. We
use the Surface Evolver software [3] to simulate, with higbuaacy, foams consisting of many hundreds of bubbles
in order to predict their plastic response.

At low strain a foam responds as an elastic medium. As thinstrereases, the foam begins to yield and bubbles
begin to slide past each other in plastic events known dsgological changes [1]. These occur when a film shrinks to
zero length and a fourfold vertex is formed. Such a vertexigtable, and immediately dissociates into two threefold
vertices with the connecting film now perpendicular to theishing one.

Localization of T, events, also referred to as shear banding, has been dekicriseperiments in an annular wide-
gap Couette viscometer [4]. After an initial transient, thajority of T; events occur close to the inner moving wall.
Similar results have been found in simulations [5]. In lin€auette shear between parallel side-walls, there is also
localization of T;s. In this geometry, since the shear stress should be horaogsithere is no preferred location for
the localized region based upon the boundary conditionsfjrooed by Potts model [6] and Surface Evolver [7, 8]
simulations. However, strain ordering close to the boupdarans that the localization does often occur there.

Previously, we predicted that thrédth of the localized region in linear Couette shear dependsglymn the area
disorder of the foam [8]. This is, in effect, a prediction bétdegree to which the foam is fluidized under shear. In
the limit of zero area disorder - a monodisperse foam €Vents tend to occur in a very narrow band and shear-
induced crystallization is evident. Making a foam more plidperse widens the localized region and can thus reduce
the amount of static foam present.

We characterize the polydispersity, or volumetric disordéa foam by the second moment of the distribution of

bubble areas: 5
i (A8 m

where() denotes an average over the whole foam.
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FIGURE 1. (a) An example of the foams used to simulate Poiseuille floav2D foam forpy(A) = 0.123. (b) They positions of
the Tys during flow forp,(A) = 0.170.

In quasi-static simulations of linear Couette shear (fatdeen flow), we found that the widthy of the localized
region, normalized by the bubble size, is proportional toduare-root of area disorder [8]:

W

—— ~ x(A)Y, o =0.489+0.0634 (2)

(A)
Here, we investigate whether a similar dependenggy0A) is found for Poiseuille (pressure-driven) flow. That is, we
consider a channel with a no-slip boundary condition andh plus foam along the channel. Topological changes occur

as the bubbles slide past those fixed to the walls, and we aslthgowidth of the regions in which{B occur varies
with the area dispersity of the foam.

NUMERICAL METHOD

We use the Surface Evolver [3] in a mode in which each film iseegnted as a circular arc. A typical foam is shown
in fig. 1(a): it consists o = 738 bubbles confined between parallel walls [8, 9] a distakice 0.804 apart, in a
channel of unit length. The value of surface tension, whiatugd be thought of as a line tension with units of energy
per unit length, is taken equal to one throughout. In cohtmathe disorder in the number of side®f each bubble,
uz2(n) = ((n—6)2), which varies in time due to{B, the area disorder is fixed in each of our simulations; tave
exclude inter-bubble gas diffusion (coarsening) and filittapse.

The simulation procedure is as follows. A Voronoi constiautt[10] is first used to generate a fully periodic
tessellation of the plane. Bubbles at the top and bottomexqaentially deleted until the required number remains.
This structure is imported into the Surface Evolver and nebblle areas are determined randomly from a Weibull
distribution [8]. The channel is thus periodic in thalirection and films that meet the side-walls have their ends
pinned to the wall (no-slip condition). A realistic foamugtture is found by minimizing the total film length subject
to the prescribed bubble areas. During this minimizaties dre triggered by deleting each film that shrinks below a
certain lengti; and allowing a new film to form. The critical lengthis a measure of liquid fractiof [9, 11], but
we keep it small enough herk € 0.005 throughout, corresponding@®@< 10-4) that it should not affect the results.

Flow is initiated by choosing at random a line of films conmegthe two walls, defining a region of the foam
(shown shaded in figure 1(a)). At each step the area of thiemég enlarged in small increment#\, = 0.001; the
precise motion that ensues is a further variable in the maation procedure [9].

RESULTS

For each value of area disorder, we record(thg) position of each T and the iteration number at which it happens.
As expected, many{B occur around one bubble width from each wall — see fig. 1(le)sWmulate the flow for 400
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FIGURE 2. Localized width as a function of polydispersity. The linewé slopes of one-half and one-fifth.

iterations, corresponding to an equivalerdisplacement equal to half the length of the channel (uteshot all
bubbles move, a bubble close to the centre of the channemaeiie farther than this). We discard data from the first
100 iterations, to eliminate any transient that might afieen any artificiality in the initial structure, and counteth
number of Ts that are found in the upper and lower halves of the chanheh We calculate the distanag,e from

the lower wall within which 90% of the T1s in the lower half &t channel occur, and do the same for the upper half,
marked with arrows and dashed lines on fig. 1(b). We combiesetland subtract the diameter of the bubbles next to
the wall to find the localized width:

W = %(Wlower‘i‘(W—Wupper))— ﬂ 3
T
Figure 2 shows the localized widﬂm/\/W for both linear Couette [8] and Poiseuille flows. The povaa|
relationship between width and area dispersity is robungt,ia this respect Couette and Poiseuille flows are similar.
However, the exponent is much less in the Poiseuille casd gardisa = 0.180+ 0.028 - indicating that in pressure-
driven flows such as this, in which the localization is cordite the walls, the localized width grows rather slowly
and polydispersity plays a lesser role in the flow dynamics.
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