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Abstract. Quasistatic simulations show that the topological changesor plastic events that occur when an aqueous foam flows
are confined within narrow regions. The width of these regions is shown to scale with a power of the polydispersity in bubble
area. The exponent is one-half for linear Couette flow and one-fifth for Poiseuille flow.
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INTRODUCTION

Liquid foams are familiar from domestic use and important inindustrial applications, including ore-separation and
enhanced oil recovery. They are elasto-visco-plastic complex fluids with a highly nonlinear response to applied forces:
at low strain they deform elastically, like a solid, while above a yield stress they flow like a viscous liquid. Of all
complex fluids, liquid foams provide one of the most experimentally accessible systems for study, since bubbles are
objects that can have millimetric dimensions. Moreover, Plateau’s laws mean that the internal structure of a foam is
well understood, at least at the level of the network of films [1]. Foams thus provide a prototypical complex fluid.

We study two-dimensional (2D) foams, such as can be made by squeezing a foam between parallel glass plates until
it consists of a single layer of bubbles. Despite its simplicity in comparison to the three-dimensional foams found in
applications, the dynamics of 2D foams are rich, and provideinsight into their 3D counterparts.

The mathematical idealization of a two-dimensional foam isas follows: a dry 2D foam at equilibrium consists of
bubbles with fixed areas surrounded by films that are circulararcs meeting threefold at angles of 120◦. These rules are
consequences of minimization of energy [2], which is in thiscase the total film length multiplied by surface tension. We
use the Surface Evolver software [3] to simulate, with high accuracy, foams consisting of many hundreds of bubbles
in order to predict their plastic response.

At low strain a foam responds as an elastic medium. As the strain increases, the foam begins to yield and bubbles
begin to slide past each other in plastic events known as T1 topological changes [1]. These occur when a film shrinks to
zero length and a fourfold vertex is formed. Such a vertex is unstable, and immediately dissociates into two threefold
vertices with the connecting film now perpendicular to the vanishing one.

Localization of T1 events, also referred to as shear banding, has been described in experiments in an annular wide-
gap Couette viscometer [4]. After an initial transient, themajority of T1 events occur close to the inner moving wall.
Similar results have been found in simulations [5]. In linear Couette shear between parallel side-walls, there is also
localization of T1s. In this geometry, since the shear stress should be homogeneous there is no preferred location for
the localized region based upon the boundary conditions, confirmed by Potts model [6] and Surface Evolver [7, 8]
simulations. However, strain ordering close to the boundary means that the localization does often occur there.

Previously, we predicted that thewidth of the localized region in linear Couette shear depends strongly on the area
disorder of the foam [8]. This is, in effect, a prediction of the degree to which the foam is fluidized under shear. In
the limit of zero area disorder - a monodisperse foam - T1 events tend to occur in a very narrow band and shear-
induced crystallization is evident. Making a foam more polydisperse widens the localized region and can thus reduce
the amount of static foam present.

We characterize the polydispersity, or volumetric disorder, of a foam by the second moment of the distribution of
bubble areasA:

µ2(A) =

〈

(A−〈A〉)2

〈A〉2

〉

(1)

where〈〉 denotes an average over the whole foam.
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FIGURE 1. (a) An example of the foams used to simulate Poiseuille flow ofa 2D foam forµ2(A) = 0.123. (b) They positions of
the T1s during flow forµ2(A) = 0.170.

In quasi-static simulations of linear Couette shear (force-driven flow), we found that the widthwl of the localized
region, normalized by the bubble size, is proportional to the square-root of area disorder [8]:

wl
√

〈A〉
≈ µ2(A)α , α = 0.489±0.0634. (2)

Here, we investigate whether a similar dependence onµ2(A) is found for Poiseuille (pressure-driven) flow. That is, we
consider a channel with a no-slip boundary condition and push the foam along the channel. Topological changes occur
as the bubbles slide past those fixed to the walls, and we ask how the width of the regions in which T1s occur varies
with the area dispersity of the foam.

NUMERICAL METHOD

We use the Surface Evolver [3] in a mode in which each film is represented as a circular arc. A typical foam is shown
in fig. 1(a): it consists ofN = 738 bubbles confined between parallel walls [8, 9] a distanceW = 0.804 apart, in a
channel of unit length. The value of surface tension, which should be thought of as a line tension with units of energy
per unit length, is taken equal to one throughout. In contrast to the disorder in the number of sidesn of each bubble,
µ2(n) = 〈(n−6)2〉, which varies in time due to T1s, the area disorder is fixed in each of our simulations; that is, we
exclude inter-bubble gas diffusion (coarsening) and film collapse.

The simulation procedure is as follows. A Voronoi construction [10] is first used to generate a fully periodic
tessellation of the plane. Bubbles at the top and bottom are sequentially deleted until the required number remains.
This structure is imported into the Surface Evolver and new bubble areas are determined randomly from a Weibull
distribution [8]. The channel is thus periodic in thex direction and films that meet the side-walls have their ends
pinned to the wall (no-slip condition). A realistic foam structure is found by minimizing the total film length subject
to the prescribed bubble areas. During this minimization T1s are triggered by deleting each film that shrinks below a
certain lengthlc and allowing a new film to form. The critical lengthlc is a measure of liquid fractionΦ [9, 11], but
we keep it small enough here (lc ≤ 0.005 throughout, corresponding toΦ ≤ 10−4) that it should not affect the results.

Flow is initiated by choosing at random a line of films connecting the two walls, defining a region of the foam
(shown shaded in figure 1(a)). At each step the area of this region is enlarged in small incrementsdA0 = 0.001; the
precise motion that ensues is a further variable in the minimization procedure [9].

RESULTS

For each value of area disorder, we record the(x,y) position of each T1 and the iteration number at which it happens.
As expected, many T1s occur around one bubble width from each wall – see fig. 1(b). We simulate the flow for 400
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FIGURE 2. Localized width as a function of polydispersity. The lines have slopes of one-half and one-fifth.

iterations, corresponding to an equivalentx-displacement equal to half the length of the channel (but since not all
bubbles move, a bubble close to the centre of the channel willmove farther than this). We discard data from the first
100 iterations, to eliminate any transient that might arisefrom any artificiality in the initial structure, and count the
number of T1s that are found in the upper and lower halves of the channel. Then we calculate the distancewlower from
the lower wall within which 90% of the T1s in the lower half of the channel occur, and do the same for the upper half,
marked with arrows and dashed lines on fig. 1(b). We combine these and subtract the diameter of the bubbles next to
the wall to find the localized width:

wl =
1
2

(wlower +(W −wupper))−

√

4〈A〉
π

. (3)

Figure 2 shows the localized widthwl/
√

〈A〉 for both linear Couette [8] and Poiseuille flows. The power-law
relationship between width and area dispersity is robust, and in this respect Couette and Poiseuille flows are similar.
However, the exponent is much less in the Poiseuille case - a fit givesα = 0.180±0.028 - indicating that in pressure-
driven flows such as this, in which the localization is confined to the walls, the localized width grows rather slowly
and polydispersity plays a lesser role in the flow dynamics.
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