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Abstract

The flow of a quasi-two-dimensional foam through a constriction is described.
The bubble velocity and elongation (texture) is compared between two sets of
experiments and two different quasi-static simulations using Surface Evolver
and Potts Model. The simulations capture the effect of changing the degree of
rounding of the corners of the flow geometry and the length of the constricted re-
gion. Validation of these simulation methods offers the possibility to easily vary
many parameters of interest and to explore parameter ranges that are inacces-
sible to experiments such as low liquid fraction and slow velocity. Perspectives
include characterisations of a 3D flow at the bubble scale.

Key words: Surface Evolver, Potts Model, 2D constriction flow, texture
tensor, quasi-2D foam
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1. Introduction

Flow through a constriction, or contraction-expansion flow, is a benchmark
used to establish and test rheological models of complex fluid flows such as
polymer solutions [1], since it requires the fluid to submit to both shear and ex-
tensional strains. In particular, such a flow geometry allows careful comparison
of the predictions of models with controlled laboratory experiments.

With their visible bubble-scale structure [2], foams are complex fluids [3] that
lend themselves naturally to such a comparison. They are one of the simplest
materials to exhibit behaviour that is simultaneously viscous, elastic and plastic
[4, 5, 6].

A foam is discrete by nature. In principle, this would imply that its be-
haviour can be described only by taking into account in detail all degrees of
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freedom of the bubbles. This task is at present inaccessible to analytical treat-
ment and can be handled only by simulations. A recurrent question is whether
the foam can be described as a continuous material. This would mean that
its behaviour could be understood and described by a smaller number of vari-
ables and of equations [5, 6, 7, 8], for example with fields such as velocity and
stress. In this respect simulations are a crucial step to link the discrete to the
continuous behaviour and the predictions of theory to experiment.

Aloui and Souhar [9, 10] were able to measure pressure drop and velocity of
bubbly flows in 2D through a sudden expansion, reminiscent of extrusion flows.
Deshpande and Barigou [11] studied the flow of foam past a sudden constriction
or expansion in a circular pipe; they treated the foam as a continuum, measuring
the effect of the change in geometry on the liquid fraction and bubble volumes.
Asipauskas et al. [12] measured the velocity field and elastic stress (and later
the local plasticity [6]) for a foam flowing into a 20:1 constriction in 2D; they
showed that the texture tensor [12, 6] is an appropriate way to quantify the
local strain in a flowing foam. Bertho et al. [13] measured bubble velocities into
a similar constriction, making the link with granular materials. More recently,
Dollet [14] performed a comprehensive set of experiments on quasi-2D foams
flowing through a number of different constriction geometries.

Our approach aims to quantify at the bubble-scale the effect of two specific
geometric features of the constriction: the degree of rounding of the corners and
the length of the constricted part of the geometry. Here, we report progress on
the ability of simulations to reproduce the flow of foams in two dimensions by
comparing the output of two experiments and two simulation tools. Experi-
ments consist of bubbles trapped between two parallel sheets of glass: a 2D flow
of a quasi-2D foam. The quasi-2D geometry offers the advantages that each
bubble’s deformation and velocity can be observed and measured straightfor-
wardly. Simulations offer the possibility to easily vary many parameters, and to
reach parameter ranges that are inaccessible to experiment. For instance, here
we simulate the slow flow rate and dry foam limits (while in experiments the
foam has finite velocity and liquid fraction). We expect that in this dry qua-
sistatic limit, the foam exhibits a bubble-scale geometry dictated by Plateau’s
laws: films are circular arcs (according to Laplace-Young law) which meet in
threes at 120° angles [2, 4].

2. Methods

The shape of the constriction is specified by three parameters — see figure
1 — each normalized by the width of the channel W: the constriction width
cw/W, the constriction length ¢;/W and the rounding of the corners ¢/W. The
constriction ratio is therefore ¢, = 1 — 2¢,,/W. Other parameters are the mean
bubble area A, and, in the experiments, the flow-rate ) and plate separation h.

To describe the foam flow and effect the comparisons between experiments
and simulations, we use quantitative statistical tools. They are measured on one
image or on the difference between two successive images (kinematical tools),
as averages over rectangular subregions (“boxes”) of the foam channel and over
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Figure 1: Geometrical parameters of the constriction flow. The width of the channel is W
and the width of the constriction is measured by c¢,,.

time, that is, successive images in steady flow. Here we compare (i) the velocity
v = (v, vy) of the bubbles, averaged over time, normalized by the value at the
centre of the inflow region, denoted vy; (ii) the texture tensor M [12, 6], which
is symmetric and can therefore be represented by an ellipse; we also show its
normalized extensional component

Mzy — My,
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(1)
which measures the stretching of the bubbles.

2.1. Ezperiment type A

A Hele-Shaw cell of length L = 70 cm and plate separation h = 1.5 mm was
constructed by cutting constriction profiles from 1.5 mm thick PTFE sheet and
sandwiching them between two horizontal glass plates. The channel width is
W =12 cm, ¢; = 3 cm, and a constriction ratio of 0.25 was obtained by setting
Cyw = 4.5 cm.

The foaming solution used was 2.5% Fairy liquid in de-ionised water. A foam
was created by blowing compressed air through a nozzle, and the over-pressure
generated created the driving force for the foam flow along the Hele-Shaw cell.
The volumetric flow rate was @ = 0.39 ml s~! and the average bubble area
was 0.096 4 0.026 cm?. We estimated the liquid fraction, by weighing the liquid
emerging from the end of the channel, to be ¢; ~ 0.005. The Hele-Shaw cell was
backlit to give good contrast, and the motion of the foam was recorded using
a digital video camera running at 30 fps. A typical image of the foam flow is
given in figure 2(a).

Data analysis was carried out using the ImageJ package with added mor-
phology and particle tracking plugins [15]. Having identified bubble centres,
“particle tracking” gave bubble velocities, and a Delauney triangulation was
used to calculate the texture tensor. The data given below was averaged over
4000 frames and over boxes with side-length 0.40 cm.
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Figure 2: Images of foams with flow from left to right. (a) Type A experiment. (b) Type B
experiment. (¢) Surface Evolver (SE) simulations: bubbles coloured by their number of sides;
owing to the periodic boundary conditions, the bubbles exiting on the right re-enter on the
left. (d) Potts simulations, for the same geometrical parameters, with the same colour code.
In contrast to SE, the foam is initially ordered, and the flow through the constriction creates
defects. The boundary conditions are again periodic. In both (c) and (d) the periodicity is
not apparent since the channel is longer than what is displayed.



2.2. FExperiment type B

We use a setup fully described in [14] and shown in figure 2(b). Briefly, a
dry foam (liquid fraction 0.002 < ¢; < 0.004) made of nitrogen bubbles in a
SDS solution (10 g/1) in ultrapure water flows in a Hele-Shaw channel of gap
h = 2 mm, which is small enough that the bubbles arrange in a monolayer.
The length of the channel is L ~ 75 cm, its width is W = 19.2 c¢m, and the
width of the constriction is ¢,, = 3.2 cm. In this paper, we revisit three of the
experiments presented in [14], with a varying constriction length: ¢; = 2 (see
figure 2(b)), ¢; = 5 and ¢; = 15 cm; the flow rate is 2.5, 2.5 and 7.5 ml s~ 1,
and the mean bubble area is 39, 33 and 34 mm?, respectively. Polydispersity is
about 20%.

The movies of the flow (1000 images at 50 fps) are analysed by home-made
image analysis [14]: the foam is skeletonised, and the motion of each bubble
tracked between consecutive frames, as well as the network of neighbouring
bubbles used for texture calculation. The fields describing the foam flow are
computed over boxes with side-length 0.64 cm.

2.8. Simulation: Surface Evolver (SE)

We use the Surface Evolver [16] to perform a quasi-static simulation of a
disordered monodisperse foam flowing through the constriction. Each film is
represented as a circular arc and the foams have 704 or 725 bubbles in a channel
of length L = 1 and width W = 0.5. There are free-slip boundary conditions
on the channel walls, and bubbles going out at the right re-enter on the left
(periodic boundary conditions) — see the example in figure 2(c). Flow is achieved
by choosing a line of films that span the channel and, at each iteration, moving
them downstream a distance ~ 5 x 10~% [17] before finding a minimum of surface
energy (total perimeter). We chose a cut-off length for topological changes,
l. = 0.001, appropriate to simulate the effect of a liquid fraction of 1075 [17].

We calculate the centre of each bubble as an average of its vertex positions,
so that in this way the displacement between iterations (velocity) and instan-
taneous texture tensor can be found. We assume that the flow is steady and
average the data over 1000 iterations and over boxes with side-length 0.017.

2.4. Simulation: Potts Model

Potts model simulations of foam flow minimize the same energy as the SE,
and with the same boundary conditions, but stochastically (Monte Carlo). This
increases the simulation speed and allows the simulation of a larger number of
bubbles: in SE the total simulation time is about two weeks while the Potts
simulations described here take only about two hours.

The method is described in detail elsewhere [17]. Briefly, in a channel of 1000
x 200 pixels, with a constriction of 10 x 20 pixels, each bubble is defined as a
connected set of pixels on a square lattice (as in experimental pictures). Thus,
bubbles tile the plane without gaps or overlaps; an example is shown in figure
2(d). The energy H has three contributions: an interface cost between bubbles,
with line tension A = 3; an area conservation term, with a bubble target area
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Figure 3: Fields for the experiment of type A with sharp corners: (a) velocity magnitude
|v|/vo and (b) texture, shown as ellipses [6] demonstrating the direction and magnitude of the
local strain.

of 100 pixels and bubble compressibility x = 2; and an external forcing of the
flow with bias equal to 1.1. The bias is chosen as the minimal value necessary
to overcome the pressure drop across the constriction, so that the flow is nearly
quasistatic; it is a constant across the simulation domain in any given simulation,
but must be recalculated for different constriction parameters. At each Monte
Carlo step, each pixel is visited once on average: its value is changed to that of a
neighbouring bubble (thus effectively moving the boundary between bubbles) if
and only if it decreases the total foam energy. A simulation is performed in 10°
to 5 x 10° Monte Carlo steps. Measurements are performed over all successive
images once the steady state is reached, using 20 x 20 pixel boxes.

3. Results

Fields of velocity magnitude and texture are shown in figure 3 for the ex-
periment of type A. We observe a wedge of low velocity near each upstream
corner, with almost no motion in the corners themselves, and a half-annulus of
low velocity downstream of the constriction. The texture shows that bubbles
upstream are stretched towards the constriction, and then perpendicular to it
downstream. These fields are broadly similar for all experiments and simula-
tions; we therefore don’t show them in the other cases, and instead make a more
quantitative comparison of the values along the centreline of the flow.

3.1. Rounded corners

We use two values of the corner curvature to compare the experiment of
type A with the SE simulations. First, a rounded corner, with a large value of
e/W = 0.04. Second, a sharp corner, with a value of /W as small as possible:
less than 1073 in experiment and ¢/W = 0.01 in the SE simulation, which
requires the gradient of the energy to be continuous so that it is not possible to
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Figure 4: Effect of corner sharpness on velocity and texture, comparing Type A experiment
(dashed lines) and SE simulation (solid lines). (a) Rescaled stream-wise velocity v /vg on
centreline for rounded corners. (b) Texture M,, on centreline for rounded corners. (c) and (d)
Same for square corners. The range of x corresponds to the limit of the SE simulation.

simulate sharp corners. Recall that the constriction dimensions are ¢;/W = 0.25
and ¢, /W = 0.375.

The streamwise velocity v, on the centreline in each case is shown in figure
4. w, rises from its free-stream value vy to a plateau, the length of which
depends upon the constriction length ¢;. The velocity then decreases smoothly
into the velocity trough at the constriction exit before returning back to vg. The
simulation with square corners has a less symmetrical plateau than that for the
rounded corners, and also exhibits a more gradual rise in velocity so that the
effect of the constriction is observed much further upstream with square corners
than with rounded corners.

The agreement between experiment and simulation is good in general, with
the best agreement being found for the square constriction. The slower rise in
the simulated velocity upstream of the constriction in the case of sharp corners
gives a much better prediction of the actual behaviour of the flow, with the
location and slope of the increase and decrease in velocity agreeing well. The
biggest discrepancy between the simulations and experiments is in the length of
the plateau region, with the experimentally-measured velocity starting to drop
significantly before the simulations predict that it will.

The texture M, increases from zero far upstream, indicating isotropy, drops
rapidly in the constriction, and then increases back towards zero, although the
regions of isotropy lie beyond the region shown. One failing of the SE simulation
becomes apparent: M, certainly passes through zero, but the channel is too
short to show a plateau in M, ; instead it is the periodic boundary conditions
that impose that M, has to increase again to return to its upstream value.
Nonetheless, close to the constriction the prediction of the position at which
M, decreases and its slope is good.
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Figure 5: Effect of constriction length on velocity and texture, comparing experiment (Type
B, dashed lines) and SE simulation (solid lines). (a), (c), (e) Rescaled stream-wise velocity
vz /vo on centreline for increasing constriction length. (b), (d), (f) Texture M, on centreline
for increasing constriction length.

3.2. Constriction length

In this case we fix the constriction ratio, taking ¢,,/W = 0.42, and choose
three different values of the constriction length to compare type B experiments
with SE simulations: (i) ¢;/W = 0.11; (ii) ¢;/W = 0.26; and (iii) ¢;/W = 0.78.
In the SE simulations, the corner rounding is fixed to be ¢/W = 0.02; in the
experiments it is clearly small but not measured.

The velocity on the centreline (figure 5) compares well: the magnitude is
slightly overestimated by the simulation, which can be attributed to the ab-
sence of dissipation, but both show the same slope and the slight overshoot in
velocity when entering and exiting the constriction. Close to the constriction
the prediction of texture is again slightly overestimated compared to the exper-
iment, which can be attributed to the higher liquid fraction in the experiment,
but the position and slope where M,, drops rapidly is successfully resolved.

3.8. Surface FEvolver vs. Potts Model

Here we choose one geometry with ¢, /W = 0.45 and ¢;/W = 0.06; this is a
very short, thin constriction section. In SE we take /W = 0.02, while in Potts
Model the corners have a precision of one pixel, corresponding to /W = 0.005.

Streamwise velocity and texture M,, on the centreline are shown in figure 6.
In both cases, the return to the free-stream values is much slower in Potts. Note
that averaging effects are stronger in Potts, due to the coarser grid on which
the velocity is averaged.
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Figure 6: Comparison of SE (solid lines) and Potts Model (dashed lines) simulations. (a)
Rescaled stream-wise velocity vz /vg on centreline. (b) Texture M, on centreline.

4. Discussion and perspectives

Since the bubbles are fairly incompressible, many of the details of a flow such
as those described here can be attributed to conservation of volume, and are thus
too generic to be discriminant. On the other hand, details of the chemistry of
the solution used to create the foam can contribute to specific effects, which the
simulations fail to take into account. In between these limits, Surface Evolver
simulations capture many discriminant effects that are independent of material
parameters and not wholly dictated by geometry. This includes for example
both velocity overshoots, at the entrance and exit to the constriction (figure
5e); and the slope of the texture in the exit region (figure 4).

Because the Potts model can simulate many more bubbles than SE, the re-
sults from the Potts model are much less noisy. This encourages our attempts
to use the Potts model to simulate 3D foam flows. Figure 7a shows the veloc-
ity field from a preliminary simulation of 3D constriction flow using the Potts
model. Detailed experimental measurements of 3D foam structures are now ap-
pearing thanks to X-ray tomography [18] (figure 7b) and possibly by MRI [19],
so that the comparison between experiment and simulation for 3D flow may
soon become possible.

In this slow-flow limit, the effects of inertia should be negligible; the fea-
tures of the flow result therefore from the subtle interplay between elasticity,
plasticity and dissipation [8]. In the future, we can further validate simulations
by comparing fields such as pressure and plasticity (T1s) in simulations and ex-
periments; this would be a benchmark to test tensorial continuum models [5, 7]
and their predictions of the flow, as in [8].
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Figure 7: Axisymmetric constriction flow of a foam in three dimensions: circular hole in a
cylindrical channel. (a) Velocity field in a 3D Potts simulation, with flow from left to right.
(b) Wet foam experiment in X-ray tomography, showing bubbles flowing upwards into the
constriction; unpublished image, 3D acquisition by J. Lambert et al., 3D rendering by P.
Cloetens (ESRF).
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