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Abstract

The motion of liquid into a foam under low gravity conditions is studied both
experimentally and theoretically. The foam is confined to two dimensions in a Hele-
Shaw cell and the liquid fraction measured by image analysis. The foam imbibition
is shown to be a diffusive process. Two models are analysed, corresponding to the
limits of rigid and mobile interfaces in the Plateau borders. Liquid fraction profiles
are compared to experimental ones.
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1 Introduction

The fluid motion through the network of Plateau borders that make up a foam
is a complex problem involving various physical processes such as capillarity,
gravity and viscosity [1]. The study of such phenomena is of great interest since
they play an important role during the life of a foam, from the foam production
(bubbling/nucleation) to the foam decay (bubble popping/coalescence).

On Earth, gravitational forces cause most of the liquid to drain out of the foam.
This drainage destabilizes the foam and changes its rheological properties.
Thus, in both fundamental research and industrial applications drainage is
important. In research it is desirable to avoid such an effect, and for this the
microgravity environment appears as a useful solution.

In this paper, we present the results of microgravity experiments on aqueous
foams [2], in which liquid invades the foam from below [3]. These were per-
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formed during a parabolic flight campaign organized by the European Space
Agency (ESA). About 30 parabolas each allowing 20 s of microgravity were
dedicated to this experiment. A theoretical description of the problem based
upon drainage theory is given in two limiting cases, showing how the surface
viscosity of the interfaces in the foam plays a key role. Comparison between
experiments and theory confirms the validity of drainage theory.

2 Experiments

The experimental setup consisted of a vertical Hele-Shaw (HS) cell filled with
a few millilitres of soap-water mixture [2]. The commercial soap was mainly
composed of dodecylsulfate (surface tension σ = 3.0 × 10−2 N/m, viscosity
η = 1 × 10−3 N s/m2). The HS cell was a closed rectangular (20 × 20 × 0.2
cm3) vessel made of Plexiglas. Its thickness was such that only one layer of
bubbles was allowed, i.e. the foam was two-dimensional. Microgravity prevailed
during 20 s of each of the 30 parabolas described by the aircraft. Before each
parabola, the HS cell was shaken in order to create the foam. The bubbles had
a typical diameter ℓ = 5 mm. During the flight, a CCD camera recorded the
foam evolution. Liquid fractions, interpreted as the thickness of the Plateau
borders (PBs) pressed against the wall of the cell, were later measured by
image analysis. On each image of the movie, a threshold is applied in order to
emphasize the PBs. Then, at a given height in the cell, the liquid fraction is
given by the mean width of the PBs compared to the width of the cell.

Fig. 1. Illustrations of part of a 2D foam in a Hele-Shaw cell during a single parabola:
(left) hypergravity (2g) phase, (centre) 1 s after microgravity is established, (right)
after 15 s of microgravity.

In Figure 1 a part of the foam is presented during both hyper- and microgravity
phases. The hypergravity phase (left picture) led to a general drying of the
foam. Except near the foam/liquid interface where the foam was composed of
small “wet” circular bubbles, polygonal bubbles were observed. Some motion
of the small bubbles was observed at the bottom due to the aircraft vibrations.

When microgravity was attained, the situation changed drastically: the liquid
invaded the foam from below so that the average thickness of all PBs increased,
as seen in Figure 1. The bubbles became more rounded and slipped past each
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other. Aircraft vibrations caused them to move freely in the fluid. Moreover,
the foam inflated and invaded the liquid phase. When the microgravity phase
ended, an acceleration of about 2g led to a fast and global drainage of the
foam and it returned to the initially dry situation quite rapidly.

The capillary rise of the liquid into the foam is clearly revealed by the profiles
of liquid fraction, Φl. A typical temporal evolution of such a profile is presented
in Figure 2. At first, the bottom of the foam was wet (Φl ≈ 35 %) while the
top was dry (Φl ≈ 5 %). As time increased, the amount of liquid in the foam
increased. This caused the foam inflation and rigidity loss [2]. It should be
noted that the small growth of Φl at ≈ 1 cm height for large times comes from
the downwards motion of small bubbles that create empty regions.
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Fig. 2. Typical experimental profiles of the liquid fraction evolution. The amount
of liquid in the foam increased over time. From left to right, profiles correspond to
times : 4 s, 8.8 s, 9.6 s, 10 s, 10.8 s, 11.6 s, 12 s

The imbibition is characterized by a liquid front propagating into the foam.
No fingering was observed. We measure the position of the front at a given
time by finding the highest point at which the liquid fraction rises rapidly
above its equilibrium value. (In Figure 2, the earliest (lowest) profile of liquid
fraction at time t = 4 s shows the front at a position 2.5 cm above the base
of the foam.) As a function of time, this wetting front is seen to rise in the
liquid according to a square-root law (see Figure 3):

h =
√

D (t − t0) , (1)

where, without loss of generality, we choose the time t0 = 0 as the beginning
of the microgravity stage. D is the diffusivity, measured as D = 1.19 ± 0.07
cm2 s−1, which characterizes the capillary rise. The velocity of this front de-
pends on geometric properties of the foam as well as on the surfactant chem-
istry, as shown below.
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Fig. 3. The position of the wetting front that moved through the foam after the
microgravity phase commenced. The measurement is taken at a value of 5% liquid
fraction, since this is the driest value at the start of the microgravity phase. A
square-root law in which the position of the front increases with time was observed
[2].

3 Comparison with theory

The theoretical approach to analyzing such experiments [4] is based upon
the use of partial differential drainage equations. These, generally nonlinear,
diffusion equations [1,5] describe the evolution of the liquid profile in the
network of PBs. That is, they neglect any flow through the soap films, since
these make only a small contribution to the volume of liquid in the foam.
The effects of surface rheology on the drainage process are poorly understood,
leading us to consider two limiting cases which provide bounds on the rapidity
with which liquid moves into the foam [6]. We can solve these equations to
give the profiles of liquid fraction and the position of the wetting front that
invades a dry foam, without recourse to free fitting parameters.

The first equation is based upon Poiseuille flow through the PBs, while the
second assumes a plug flow in the PBs, with viscous dissipation occurring
in the vertices where they meet. The former appears to be appropriate for
foams made from surfactants with high surface viscosity (“rigid interfaces”),
such as the commercial detergent “Fairy Liquid”, and emulsions, while the
latter describes surfactants with low surface viscosity (“mobile interfaces”)
such as pure SDS [7]. These are recognised as two limiting cases, with real
foams often lying close to one or other of the limits. However, the details of
the interpolation between these limits remains to be fully understood.

The diffusion equations express the variation of PB area A with position x
and time t. For our purposes it is sufficient to take parameter values for a
monodisperse, hexagonal bubble structure: the average length of a PB is taken
as the relevant length-scale. Rather than a global average, we choose a value
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of the length-scale appropriate to the small bubbles near the bottom of the
foam, L = 1 mm. Comparison between the experimental and numerical results
suggests that the front velocity is governed by these small bubbles rather than
the mean bubble size.

The liquid fraction is then given by the total length of PBs associated with
each bubble, divided by the bubble volume. For each bubble there are 6 PBs
of length H that span the gap between the plates and are shared by three
bubbles, and 12 PBs of length L that lie along the plates and are each shared
by two bubbles. Thus

Φl =
2A(6L + 2H)

3
√

3L2H
≈ 1.92

A

L2
.

where H is the thickness of the HS cell.

A slight change to the familiar drainage equations is entailed by the change in
geometry – the experiments were two-dimensional, so the liquid-transporting
PBs are pressed against the walls of the Hele-Shaw cell, i.e. we assume that
liquid transport through the PBs of length H , spanning the gap between the
plates, is negligible.

The time-scale is given by

T =
ηL

δσK

where the geometrical constant is δ = (1

2
(4 − π))1/2 ≈ 0.655. The parameter

K measures the permeability of the foam; its value depends upon the nature
of the flow, and thus on the choice of model. In the rigid-interface case it is
found from the velocity profile of Poiseuille flow in each PB, and it can be
shown that Kr varies little between PBs in the bulk and on the surface of a
foam. We use the value Kr = 9.9 × 10−3. (This includes a factor of one-half,
due to averaging the possible orientations of a PB in two dimensions.) The
permeability in the mobile-interface case is governed by the shearing flow in
the vertices. It has been obtained empirically [5,8] for bulk vertices with a
value of Km = 2.3 × 10−3. In the absence of experiments on the dissipation
in surface vertices, we must here assume that it also does not vary greatly
and use this value. The relevant time-scales are then Tr = 5.14 × 10−3 s and
Tm = 2.21 × 10−2 s.

In each case, we reduce the equations to a dimensionless form, using α = A/L2,
ξ = x/L and τ = t/T , to give

∂α

∂τ
=

∂

∂ξ

(√
α

2

∂α

∂ξ

)

rigid
interfaces (2)
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and

∂α

∂τ
=

∂

∂ξ

(

1

2

∂α

∂ξ

)

mobile

interfaces (3)

which is the diffusion equation.

We set α(ξ = 0, τ) = α0, where the parameter α0 corresponds to the critical
liquid fraction Φl ≈ 35% at which the foam becomes a bubbly liquid. The
appropriate solutions of (2) and (3) are shown in Figure 4. Note that in the
second case, an exact solution exists in the form of an error function [6], while
we solve the former numerically.
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Fig. 4. Profiles of liquid fraction are shown at 2 second intervals in each of both
cases: (a) Rigid interfaces, (b) Mobile interfaces. Although the foam extends to a
height of 20 cm, only the 4 cm of the foam closest to the liquid pool are shown,

In both cases, analysis of the drainage equations in (2) and (3) shows that
the amount of liquid in the foam increases with the square-root of time. The
position of the wetting front also increases with the square-root of time, as
shown in Figure 5. We measure a diffusion coefficient in each case, in the
form D = L2/T , the difference being due to the variation in the permeability
constant K. For rigid interfaces we have D = 1.94 cm2 s−1 while for mobile
interfaces it is D = 0.452 cm2 s−1 [9]. As expected, the value measured in the
experiments lies between these two extremes.
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Fig. 5. The position of the wetting front that moves through the foam after the
microgravity phase commences increases with the square-root of time. The value
of liquid fraction at which the position of the front is calculated is arbitrary: we
take it to be the most distant point from the origin that has liquid fraction greater
than either 0.2% or 5%; the latter case is compared with experiment below. In the
mobile-interface case the foam is slightly wetted everywhere very rapidly (compare
the profiles at 0.2% liquid fraction), but the bulk of the liquid enters the foam more
quickly in the rigid-interface case (compare the profiles at 5% liquid fraction). As
the value of liquid fraction at which the front is calculated is increased, the velocity
of the front decreases.

4 Conclusions

The experimental results have shown that foam imbibition in low-gravity en-
vironment is a diffusive process. For the sample used, the liquid front propa-
gation from bottom to top is characterized by a diffusivity D = 1.19 ± 0.07
cm2 s−1. Theoretical predictions have shown that this behavior lies in-between
the expected limits of rigid and mobile interfaces with D = 1.94 cm2 s−1 and
D = 0.452 cm2 s−1 respectively.

Both liquid fraction profiles and front propagation dynamics are well repro-
duced by the drainage theory, as emphasized by Figure 6 where theoretical
predictions of the front position as a function of time are compared with ex-
perimental data.

It should be noted that the experimental value of D depends on the surfactant
molecules as well as on the bubble size and liquid fraction. Both surfactant and
foam properties play a role in the selection of the flow regime. In the future,
experiments with well defined surfactants would surely help in emphasizing
the key parameters.
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Fig. 6. The position of the wetting front that moves through the foam after the
microgravity phase commences. Theoretical predictions in both cases of rigid and
mobile interfaces are also shown, illustrating the excellent agreement between theory
and experiment.
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