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We investigate the dynamics of millimeter sized droplets moved on a Liquid Infused Surface (LIS).
The motion of the droplet is driven by a small spherical bead, whose trajectory is precisely controlled,
which acts as a carrier. We first characterise the strength of the contact that maintains the adhesion
between the droplet and the bead as a function of the ratio r/R of their radii. When the bead is
moved at a fixed velocity, the droplet follows its trajectory until a critical value of the velocity is
reached at which the bead and the droplet lose contact. The critical velocity is rationalized as a
balance between the capillary contact force and the friction acting on the droplet where it is in
contact with the substrate. Experimental results are in good agreement with the model proposed.
This study highlights a very efficient actuation method for millimetric droplets.
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I. INTRODUCTION

The control and actuation of liquid droplets in contact with a substrate is fundamental to the development of milli-
and microfluidic devices [1] and surface cleaning technology [2, 3]. Surface energy gradients [4], thermal gradients [5],
chemical reactions [6] or electric fields [7, 8] can displace droplets with velocities up to 1 cm.s−1. Nevertheless full
control of the droplet is often a very difficult task due to the lateral adhesion exerted by the substrate associated with
pinning at defects. This results in contact angle hysteresis [9], enhanced dissipation [10, 11] and nonlinear features
analogous to solid friction [12], which require elegant actuation strategies such as vibration of the substrate [13–17].

In order to promote mobility and simplify droplet manipulation, the gap between the solid substrate and the moving
drop can be lubricated in a manner inspired by plants with slippery surfaces [18, 19]. Textured lubricantinfused surfaces
[20–26] or smooth lubricant-coated slippery surfaces [27–31] can be designed with appropriate surface engineering and
display spectacular slippery behaviors with negligible hysteresis [32].

Biswas et al. [33] have demonstrated that accurate motion and complex drop trajectories can be achieved with
magnetic substrates whose topography can be modulated with an external electromagnetic field. Similarly, textured
lubricant-infused surfaces can be impregnated with ferrofluids for active manipulation of droplets with a magnetic
field [34, 35].

In this study we demonstrate that both accurate and complex trajectories, as well as high velocities - up to 0.6
m.s−1 - can be achieved using a bead as a carrier, like a rickshaw, for the droplet. The bead is controlled by a magnet
placed under the substrate: the method is non-intrusive and allows complex trajectories described by the trajectory
of the magnet. In this system, the control of the droplet is effective as long as the droplet does not detach from the
bead.

This article is organized in two parts. First we study experimentally and numerically the integrity of the contact
between the bead and the droplet, and the maximal force that can be sustained in the particular geometry of interest.
Second we characterize the maximal velocity at which the drop can be moved with such a system, which corresponds
to the dynamical breaking of the bead/droplet contact and the detachment of the drop. We show that this limit is
imposed by the friction law between the droplet and the substrate.

II. GEOMETRY OF INTEREST

The basic geometry consists of a layer of PDMS, approximately 1 mm thick, laid on a flat aluminium substrate.
The layer of PDMS was initially impregnated by immersion in a bath of silicon oil of viscosity ηo = 5.1 mPa.s for
24 hours. With such a protocol, there is always a thin layer of silicon oil remaining at the surface of the PDMS. A
steel bead is deposited on the PDMS and its position is controlled with a cylindrical neodymium magnet (10 mm in
diameter and height) placed below the substrate. We have chosen beads with radii r between 0.5 and 1.5 mm.

One droplet of deionized water (density ρ = 1000 kg.m−3 and viscosity ηw = 1.0 mPa.s) is deposited with a high
precision syringe pump at the contact between the bead and the PDMS substrate. If its typical size is below the
capillary length, its shape is quasi hemispherical due to an apparent contact angle close to 90◦ [22–24]. Therefore,
we define its radius R from the volume of a hemisphere and its mass is given by m = ρ 2

3πR
3. A small of amount of

fluorescein salt is added to the water to improve the quality of the images. The surface tensions are estimated to be
around γo,a = 20 mN.m−1 for the oil-air interface [36] and around γo,w = 35 mN.m−1 for the oil-water interface [37].
We write γ = γo,a + γo,w for the effective surface tension at the surface of the water droplet since it is “cloaked” by a
thin film of silicon oil [23].

III. INTEGRITY OF THE BEAD/DROPLET CONTACT

A. Experiments

The integrity of the bead/droplet contact is tested by subjecting the system to gravity, g = 9.81 m.s−2. This is
realized with an inclined plane, whose angle θ can be increased from 0 to 50◦ (Fig. 1). As the angle is increased
from 0◦, the droplet is stretched by gravity but remains in contact with the bead and the contact area decreases.
We define θc to be the critical angle at which detachment occurs, which is displayed in Fig. 2a. For a given bead
radius r, the larger the drop the smaller θc. We find that sin(θc) increases linearly with the reciprocal of the volume,
sin(θc) ∝ 1/R3. The larger the bead radius, the larger the coefficient of proportionality between sin(θc) and 1/R3.
In our range of parameters, the coefficient of proportionality appears to depend linearly on r so that we propose the

scaling sin(θc) ∝
γr

ρgR3
to describe the experimental results (Fig. 2b).
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FIG. 1. a) Representation of the system on an inclined plane. Two images taken from above in the reference frame of the
substrate for θ = 0 (b) and at the critical inclination θc (c) respectively (r = 0.5 mm and R = 2 mm).

B. Dimensional analysis

In the pendant drop geometry, determination of the detachment force is a long-standing problem tackled by Lord
Rayleigh in 1899 [38], and more recently reviewed by Eggers [39]. The particular case of detachment from a sphere
has been considered in the context of a particle attached to a liquid interface [40, 41]. Detachment is intrinsically
linked to the collapse of the liquid neck that connects the drop to the sphere. Using dimensional analysis, we can
write a generic expression for the detachment force in the form

2π

3
Kγr, (1)

where r is the sphere radius, γ the surface tension and the factor 2π/3 is added for convenience. With λc =
√
γ/ρg

denoting the capillary length, K is a dimensionless function that depends only on r/λc and R/λc if the contact angle
is constant (fixed at 90◦ in what follows).

In our particular geometry of a drop attached to a spherical bead of radius r in contact with a surface tilted at
an angle θ, detachment occurs when the liquid neck can not support the effective weight mg sin(θ) of a drop of mass
m = ρ(2π/3)R3. As a consequence, K is inferred from the measurement of the critical angle θc as

K = sin(θc)
ρgR3

rγ
= sin(θc)

R3

rλ2c
. (2)

In what follows we study K(r/λc, R/λc).

C. Simulations

We now probe the effect of these two dimensionless quantities with numerical simulations.
The Surface Evolver software [42] allows us to find the static shape of a droplet for different bead sizes, different

droplet sizes and surface tensions, and different surface inclinations. The contact angles between the droplet and the
bead and between the droplet and the substrate are set to 90◦. We discretize the surface of the droplet, as in figure
2c, and constrain its boundary to lie either on the inclined surface or attached to the bead, including the weight of the
droplet as an integral over its surface. The triangulation is refined four times and, for each set of parameters r and γ,
we use just over 1000 gradient-descent steps with occasional Hessian iterations (using second derivative information) to
find a local minimum of surface area, checking the eigenvalues of the Hessian matrix to ensure stability [43]. We then
slowly increase the drop volume (in steps of 1 mm3) or increase the surface inclination θ (by changing the direction
of gravity, in steps of 0.1◦), again seeking a minimum of surface area, until the surface becomes unstable (measured
through a change in sign of the smallest eigenvalue).

In the simulations, γ is varied between 20 and 100 mN.m−1, r between 0.25 and 2 mm and R between 0.8 and
4 mm. This leads to values of r/λc and R/λc between 0.1 and 0.9 and between 0.5 and 1.8 respectively. The ranges
tested are significantly larger than what is expected in experiments to check the robustness of the trends. In figure
2d, K is plotted as a function of r/λc and a clear trend is found: K is almost independent of R/λc, the effect of which
is measured by the size of the error bars.
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FIG. 2. K-analysis in experiments and simulation. a) sin(θc) as a function of R−3 in experiments for beads of radius 0.5 (black
circles), 1 (red squares) and 1.5 mm (green diamonds). Proportionality relations are displayed by solid lines. b) Same data
with sin(θc) as a function of γr/(ρgR3) with γ = 55 mN.m−1. c) Snapshots from the simulation for θ = 0 and 42◦ respectively.
d) K as a function of r/λc for both experiments and simulations. In simulation, each point corresponds to one value of r/λc

and roughly 100 values of R/λc, whose effect is quantified by the error bars.

D. Discussion

As expected from figure 2b, K is almost constant in experiments, and we measure Kexp = 0.87± 0.08 on average.
The slight dispersion (figure 2d) is associated with experimental errors and to a small deviation from linearity. The
comparison with the simulations is good too, with the difference that Ksim is found to decrease slightly from 1 to 0.7
in our parameter range. In fact, differences between the experimental and numerical approaches might exist. As an
example, the substrate is soft in experiments and the bead can be slightly displaced with respect to the flat surface.
In what follows, we take K = Kexp constant in Eq. 1 to characterize the detachment force in our setup.

IV. CRITICAL VELOCITY ANALYSIS

A. Experiments

We now probe the maximal velocity of the drop with such a system. To do this, the system is mounted on a rotating
device (Fig. 3ab). The radial distance a of the magnet from the axis of rotation is fixed at 40 mm and the rotation
frequency Ω is typically varied between 0.2 and 2 rotations per second. In this setup, the magnet, the bead and the
droplet are fixed and the substrate moves with a velocity V = Ωa at the droplet position. In the typical procedure,
Ω is increased slowly and we record the critical value at detachment, Ωc. In our parameter range we found critical
velocities Vc = Ωca between 0.06 and 0.55 m.s−1. In this procedure, the radii of both the bead and the droplet are
varied. Looking for a scaling, we found that all the data collapse on a single curve by plotting Vc as a function of R/r
(Fig. 3c). The law can be well fitted by an exponent -3/2 but Vc seems to saturate for R/r . 1.
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FIG. 3. a) Rotating setup designed to determine the critical velocity. b) Snapshots taken for two velocities (the lower one is
taken just prior to detachment). c) Critical velocity Vc as a function of R/r. Inset: log-log scale. The solid line is a power law
interpolation (exponent -3/2, prefactor 0.85 m.s−1).

B. Model

Even though droplets on lubricated surfaces exhibit negligible hysteresis of the contact angle, they are subject to
friction. Keiser et al. [25] have shown different regimes of dissipation depending on the contrast of viscosity between
the two liquid phases. If ηo < ηw they have shown that dissipation for a millimetre-size drop remains classical
(Stokes-like). In the other limit ηo > ηw dissipation mainly occurs in the oil and a nonlinear friction law, with a
force proportional to V 2/3, is observed consistent with dissipation in the oil meniscus surrounding the droplet [44].
In this case, only the projected length of the meniscus in the direction perpendicular to the flow, estimated as 2R,
contributes to dissipation. Regarding our viscosity contrast (ηo ' 5ηw), we assume dissipation in the oil meniscus
and the following expression for the friction force:

Fvis = ξγ′Ca2/34R. (3)

Here ξ ≈ 6 is a parameter whose exact value depends on the nature of the motion of the meniscus interface [44], γ′

is the surface tension at the free interface of the meniscus (since oil is in contact with both air and water, we take
the average value γ′ = (γo,a + γo,w)/2 = γ/2 as the effective surface tension for calculations) and Ca = ηoV/γ

′ is
the capillary number. From the detachment analysis performed in Sec. III, we have measured that the maximal force
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the bead/droplet contact can sustain is given by (2π/3)Kγr (Eq. 1). If we balance these two forces, we obtain an
estimate of the critical velocity:

Vc =
γ

ηo

(
K

ξ

)3/2
π3/2

33/22

(
R

r

)−3/2
≈ (0.33 m.s−1)

(
R

r

)−3/2
. (4)

In experiments, we found a proportionality factor of 0.85 m.s−1 (Fig. 3c). We conclude that our estimate is in
good agreement with the data given the approximations. In fact it is not clear how the presence of the bead affects
dissipation in the meniscus, particularly in the regime R/r < 1 where we observe a saturation of the velocity. In this
regime, the capillary number may reach Ca ∼ 0.1 contradicting the assumption Fvis ∝ Ca2/3, which is only true in
the limit Ca� 1.

V. CONCLUSION

FIG. 4. Image sequence of a complex trajectory performed by a millimetric droplet. The circuit has an “8” shape and its
length of about 10 cm is travelled in about 2 s. Movies in Supplementary Material [45].

In summary, we have demonstrated an efficient and accurate way to actuate droplets on Liquid Infused Surfaces.
This method allows droplets to perform fast, precise and complex trajectories at the same time. The method pre-
sented here with millimeter-sized droplets could be further developed to transpose the principle to smaller scales for
microfluidic applications.

Our combined theoretical, numerical and experimental analysis clarifies the way in which the droplet and bead
interact. We determine the maximum force that the bead can exert on the droplet before detachment, and from our
analysis we conclude that dissipation limits the maximal velocity reached by the system. In particular, we measure
characteristics that emphasize dissipation inside the meniscus surrounding the droplet, in agreement with earlier work
[25, 46].

Finally we illustrate the high precision and velocity achieved by this system in figure 4: the droplet is forced to
perform an “8” shape in about two seconds. For this experiment the magnet is guided using an xy-plotter. We
estimate the typical length of the circuit to be 10 cm. Two movies are given in the Supplementary Material [45] with
two different periods of 2 and 1 seconds respectively.
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