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Synopsis

The effect of the interplay between surface tension and gravity on the sedimentation of objects in

structured fluids is investigated by simulating the quasi-static motion of a spherical particle through

an ordered foam. We describe the path which a sphere takes as it descends through bamboo (1,1,0),

staircase (2,1,1), chiral (3,2,1), and double staircase (4,2,2) foams, and measure the degree of con-

trol of the sphere’s motion that each foam offers. For an ordered foam contained within a vertical

cylinder, the resulting sphere motion depends strongly on the structure itself, on how the films are

deformed near the sphere, and on how the motion of the sphere deforms them further. For staircase

and chiral foams, the distance that a sphere is pulled away from the center-line of the cylinder by

the foam is found to depend on the Bond number with a power-law relation. By tilting the cylinder

at an angle to the vertical, we show that there exists a critical tilt angle above which the sphere falls

out of the foam. This angle is dependent on the choice of foam structure and the Bond number. For

a sphere of given size and given Bond number in the ordered foams studied here, the greatest tilt

can be imposed on the double staircase foam. VC 2012 The Society of Rheology.
[http://dx.doi.org/10.1122/1.3687415]

I. INTRODUCTION

An area of application in which foams [Cantat et al. (2010); Weaire and Hutzler

(1999)] find wide use is separation, using the process known as froth fractionation or flo-

tation. When applied to the recovery of ores, the efficiency of the separation process is

directly related to the profit that can be obtained, so that being able to predict the motion

of particles in foams is of paramount importance [Neethling and Cilliers (2002)].

Another, more recent, use of foams is in microfluidics for sample testing [Whitesides

and Stroock (2001)]. Small samples of gas (or liquid, in an emulsion, with properties

very similar to that of a foam) can be pushed through narrow channels and re-directed at

will. When the liquid content is low, the foams form ordered structures that have
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remarkable properties [Drenckhan et al. (2005); Raven and Marmottant (2009)], includ-

ing the ability to switch between them by a single dislocation [Boltenhagen and Pittet

(1998); Pittet et al. (1996)], which can be controlled, for example, purely by liquid

fraction.

Here, we study the motion of a spherical particle in an ordered foam structure, with

the aim of describing its motion and showing how it can be controlled by the choice of

foam structure. For example, an appropriate choice of structure can keep the sphere in

the center of the channel, even when gravity acts to pull it towards the side walls, or can

cause the sphere to move in an oscillatory manner.

The flow of a foam past a sphere, and in particular its 2D equivalent, has been used as

a testing ground for the validation of discrete simulations [Cox et al. (2006); Raufaste

et al. (2007); Wyn et al. (2008)] and continuum models of foam [Cheddadi et al. (2011)]

against experiments [Dollet et al. (2005a, 2005b); Lambert et al. (2005)]. In simulations,

the different components of the force on an object embedded in the foam can be sepa-

rated: the network of soap films pull on the object with a surface tension force; bubbles

apply a pressure force to the object; and there is a viscous resistance to motion of the

soap films over the object. The rich collection of elastic, plastic, and viscous responses of

the foam, depending on flow-rate, mean that the network and pressure forces are asym-

metric and have a nonzero resultant. For example, films stretch behind the object (elastic-

ity), exerting a drag force on it, until the short films that connect them shrink in area to

trigger a neighbor-switching T1 topological change (plasticity). Here, we use these mech-

anisms in elasto-plastic (quasi-static) simulations with the Surface Evolver [Brakke

(1992)] to show how the drag and lift due to network and pressure forces can be used to

control the descent of a sphere through a foam.

In the two-dimensional case, Raufaste et al. (2007) showed how the network drag

force depends on the bubble area Ab, disc diameter d0, line tension c2D, and effective liq-

uid fraction Ul,

Fn � c2Dd0ffiffiffiffiffi
Ab

p
U1=4

l

: (1)

Thus sphere and bubble size are expected to have a large effect on the network force in

the 3D case described here. The dependence of the pressure drag on these parameters is

less clear: since bubble pressure increases with decreasing bubble size and the area over

which the force acts increases with sphere diameter squared, we can expect that the pres-

sure force will be low for large bubbles and small spheres.

The ordered foams that we use can be made by generating bubbles in a vertical cylin-

der [Boltenhagen and Pittet (1998); Pittet et al. (1996)]. The structure that results depends

strongly on the ratio of cylinder radius to bubble size (defined as the radius of a sphere of

the same volume), which we denote by k. They can be described with a phyllotactic nota-

tion [Weaire and Hutzler (1999)], of which the first few, with which we shall be con-

cerned here, are shown in Fig. 1: bamboo (1,1,0), consisting of parallel circular films; the

staircase structure (2,1,1), with two bubbles in the unit cell, each filling half the cylinder;

a chiral structure (3,2,1) with three bubbles in the unit cell; a double staircase structure

(4,2,2) with four bubbles in the unit cell, and so on.

Consider first the bamboo structure, and in particular the motion of a sphere under

gravity through an initially horizontal film confining a bubble of fixed volume (Fig. 2).

Once the sphere meets the film [Fig. 2(b)], the pressure in the bubble below the film drops

below that in the bubble above it, so that there is a net downward pressure force; in addi-

tion, the soap film pulls downwards on the sphere. Thus network and pressure forces both
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act to increase the velocity of the sphere. This is, however, a small effect, because the

film moves to a position close to the equator of the sphere, so as to satisfy the 90� condi-

tion. When the film touches the equator it becomes horizontal again [Fig. 2(c)], although

it is slightly higher than at the start because the volume in the bubble is conserved, and

both forces are zero. Once the center of the sphere moves below the film, the pressure

and network forces retard the sphere motion [Figs. 2(d) and 2(e)]. The asymmetry of the

motion then becomes apparent because the film now moves right up to the north pole

before detachment [Fig. 2(f)].

Clearly, if the weight of the sphere is too small, this asymmetry can cause it to be held

by the foam. The trapping of spheres by a bamboo foam was examined by Le Goff et al.
(2008); note that in the noninertial case considered here, the deformation of the films is

much smaller. In what follows, we ensure that the sphere weight is sufficiently large that

this does not happen. In effect, this means that the Bond number (defined below) of the

flow is always greater than one. Figure 2(g) shows that the network force is an order of

magnitude greater than the pressure contribution to the force in this case.

We first describe the 3D simulations (Sec. II) which allow us to predict sphere motion

in ordered foams. We show how the deviation of the sphere of given radius and density

from the center-line of a vertical cylinder is described purely by the Bond number

(Sec. III). We then investigate the degree by which a cylinder containing an ordered

structure can be tilted without the sphere leaving the center of the cylinder (Sec. IV).

II. SIMULATION METHODOLOGY

The Surface Evolver allows us to resolve bubble pressures and film shapes and thus to

measure both the network and pressure forces on the sphere independently. Dry ordered

foam structures were constructed in a cylinder of radius 1.5, with axis in the z direction.

For nonchiral structures we employ periodic boundary conditions at the ends of the cylin-

der, while for the chiral (3,2,1) (for which we want to allow the structure to choose the

degree of twist, which may a priori depend on the position of the sphere) we use free

boundary conditions. Each ordered foam results from a different choice of the bubble vol-

ume V, which fixes the value of k: it is equal to k ¼ 1:33 (V¼ 6.06) for the (2,1,1) foam,

1.42 (V¼ 4.95) for the (3,2,1) foam, and 1.58 (V¼ 3.53) for the (4,2,2) foam.

FIG. 1. Snapshots of a sphere in four ordered cylindrical foams: (a) A bamboo (1,0,0) foam, through which the

sphere moves vertically downwards (z direction). The rectangular region shows the view in the axisymmetric

calculation of Fig. 2(f). (b) A staircase (2,1,1) foam, where the sphere’s motion is in the x and z directions only

(the y-axis is into the page). (c) A chiral (3,2,1) foam in which the sphere spirals in a three-dimensional motion.

(d) A double staircase (4,2,2) foam with the cylinder tilted in the (x, z) plane so that its center-line makes an

angle h with the z-axis.
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The initial structure is tessellated with triangular facets. We use up to 104 triangles,

which gives a sufficiently accurate representation of the foam structure to resolve film

curvature and pressures, without making the computational burden too great. The surface

area is then minimized subject to the volume constraint imposed on each bubble.

FIG. 2. Axisymmetric simulation of a sphere moving downwards under gravity through one film of a bamboo

foam; the images represent a slice through the structure shown in Fig. 1(a). The sphere has unit weight, the ratio

of sphere radius to cylinder radius is 1 to 6, and the film has unit tension. Images are shown at iteration (a) 8

(sphere above film), (b) 11 (lowest point of contact between film and sphere), (c) 18 (film meets equator), (d)

25, (e) 32, and (f) 63 (highest point of contact). (g) As a function of iteration number we show the vertical posi-

tion of the center of the sphere, the vertical position of the point of contact between the film and the sphere, and

the pressure and network contributions to the drag force on the sphere. The letters correspond to the images

above.

476 I. T. DAVIES and S. J. COX



Topological changes are triggered when a film shrinks below a critical cut-off area

Ac ¼ 2� 10�3; this defines an effective liquid fraction [Raufaste et al. (2007)], here

appropriate for a dry foam, Ul < 10�3.

The network and pressure forces on the sphere are calculated as described by Wyn

et al. (2008), but extended to 3D in the natural way. The network force ð~FnÞ exerted on

the sphere is the sum over all film edges i contacting it; each pulls with a force equal to

twice the value of surface tension, 2c, since the films represent a gas-liquid-gas interface,

over the length li of the edge. This force is applied in the direction of the outward normal

to the sphere at the midpoint of the edge, denoted ~ni. Thus, the resultant network force is

given by,

~Fn ¼ 2c
X

i

li~ni: (2)

The pressure force ð~FpÞ is calculated by summing over all facets k of the sphere the pres-

sures pk in the bubbles that contact the sphere multiplied by each (planar) facet’s area Ak

and outward normal~nk,

~Fp ¼ �
X

k

pkAk~nk: (3)

The minus sign results because the pressure force acts towards the center of the sphere.

The resultant force is, therefore,

~F ¼ � 4

3
pqsr

3
s g~zþ ~Fp þ ~Fn; (4)

where qs and rs denote the density and radius of the sphere, g is the acceleration due to

gravity, and~z is a unit vector in the positive z direction.

The motion of the sphere through each foam is quantified in terms of a dimensionless

Bond number, Bo, relating the balance of surface tension effects to gravitational effects,

Bo ¼ qsgr2
s

c
: (5)

We work within the quasi-static regime, in which the motion of the sphere in the foam is

assumed to be slow and steady. This allows for simplification of the governing equation

for the motion of the sphere [Wyn et al. (2008)]. Briefly, we choose a small constant �,
here taken equal to 1= 40Boð Þ, which sets the effective time-scale for our simulations. At

each iteration, the sphere is moved a small distance �j~Fj in the direction of the resultant

force and the foam structure returned to equilibrium with the sphere fixed. The latter

requires a total of 600 conjugate gradient steps, interspersed with tests for topological

changes and upkeep of the tesselation.

III. RESULTS: ORDERED FOAMS IN VERTICAL CYLINDERS

A. Staircase foam (2,1,1)

Releasing a sphere into a staircase foam results in two-dimensional motion, dictated

by the symmetry of the three-dimensional foam structure [Fig. 1(b)]. For small Bo, the

periodicity of the structure causes the forces, and thus the sphere motion, to be oscillatory
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[Fig. 3(a)]. The sphere is pulled to the right by films in contact with the right hand side of

the cylinder and vice-versa. The films are deformed by the presence and passage of the

sphere, which causes the bubble pressures to change. There is, therefore, a resultant pres-

sure force, which acts in the same sense as the network force, but is much smaller in mag-

nitude [Fig. 3(b)].

The staircase foam pulls the sphere from the center-line of the cylinder; how far the

sphere is pulled away from the center-line is dependent on the interplay between surface

tension and gravity, for example a lighter sphere will deviate a greater distance than a

heavier sphere of the same radius. By varying the Bond number, we can quantify the am-

plitude of the motion (Fig. 4): the relation between the amplitude (a) and the Bond num-

ber can be fitted to the following power-law:

a ¼ 0:29 Bo�0:88: (6)

For small Bo, the surface tension of the films has a greater effect than the weight of the

sphere, resulting in the sphere’s path deviating by a fairly large amount from the center

of the cylinder. For large Bo, gravity dominates, reducing the amplitude. The result is

FIG. 3. Motion of a sphere in a staircase foam, in the case Bo¼ 2.34. (a) The position of the sphere oscillates in

the (x, z) plane, here with amplitude a¼ 0.14. (b) The network and pressure components of the (horizontal) lift

force exerted on the sphere versus its vertical position.

FIG. 4. The amplitude of the oscillatory motion of the sphere in the staircase and chiral foams versus Bond

number. Also shown are power-law fits for each case.
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independent of how the Bond number is varied, i.e., whether sphere radius or density is

changed.

B. Chiral foam (3,2,1)

Releasing a sphere from a central position at the top of a chiral (3,2,1) foam [Fig.

1(c)] results in a spiraling downward motion [Fig. 5(a)]. As for the staircase, the pressure

contribution to the lift is much smaller than from the network. In the case shown, with

Bo¼ 2.58, the sphere follows the column of Plateau borders close to the center-line of

the cylinder. By viewing the path of the sphere from above [Fig. 5(a)], one can see that it

resembles a triangular spiral. The angular shifts in this path are a signature of the chirality

of the structure.

As for the staircase foam, the deviation of a sphere’s path from the cylinder’s center-line

depends on the Bond number. The spiraling motion of a heavy sphere deviates less than that

of a lighter sphere of the same size. Figure 4 shows that the maximum displacement of the

sphere from the center of the cylinder can be fitted to a power-law in Bo:

a ¼ 0:56 Bo�1:36: (7)

If the Bond number is small, a sphere is pulled slightly further from the center-line than

in the staircase foam. Conversely, at large Bond number a sphere remains closer to the

center-line.

Having seen what happens when a sphere is released from a central position in the chi-

ral foam, we consider what happens when the initial position of the sphere is varied, in

order to quantify how far a sphere can be positioned from the center of the cylinder and

still find a spiral path within the foam. This will allow us to make predictions concerning

the range over which the foam can be used to control the motion of the sphere. In this

case, we consider the descent of a light, small sphere (Bo¼ 2.58) from three noncentral

positions, with the (x, y) coordinates of the sphere’s center at (0.2,0.2), (0.4,0.4), or

(0.6,0.6). It can be seen in Fig. 5(b) that the first two positions are close enough to the

center of the cylinder that the sphere finds the same path that it traveled when positioned

FIG. 5. Sphere motion in a chiral foam, with Bo¼ 2.58. (a) The path of a sphere which is initially positioned at

the center of the top of the cylinder, viewed from above. (b) Tracking the path of the same sphere from three

different, noncentral, initial positions. Each initial position is labeled with a cross. If the sphere starts too far

away from the center then it moves towards the wall; otherwise it is brought back to the central region of the

foam.
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centrally in the cylinder. Therefore the same path will be found if the initial distance sep-

arating the centers of the sphere and the cylinder is less than about one-third of the cylin-

der’s radius. If the sphere is initially further from the cylinder’s center, then it moves

towards the wall. In this case, any control that could be exerted over the motion of the

particle is lost. The motion of the sphere towards the wall is the result of the films being

deformed by the sphere and tilting towards the wall. Several other initial positions for the

sphere were also tested and it was found that the resulting path of the sphere depends

only on the radial coordinate of the initial position and not the angular coordinate.

C. Double staircase foam (4,2,2)

A sphere dropped from the center of a double staircase (4,2,2) foam falls in a straight

line (not shown). The motion of the sphere is directed by vertically aligned films posi-

tioned close to the center of the cylinder [see Fig. 1(d)], which prevent the sphere from

moving towards the wall. The initial position of the sphere was varied away from the cen-

ter of the cylinder and if the sphere starts “inside” the vertically aligned films then it

returns to its vertical path. Otherwise it moves to the wall as above.

IV. RESULTS: ORDERED FOAMS IN TILTED CYLINDERS

Here we investigate how far a cylinder containing an ordered foam can be tilted with-

out a sphere falling to the wall. This is, in a sense, a measure of the stability conferred on

the sphere’s motion by the choice of foam structure. We anticipate a critical tilt angle hc,

dependent on the Bond number, above which the sphere falls out of the foam to rest on,

or slide down, the wall. We measured this critical angle using the following trial-and-

error method. A simulation was run with the cylinder tilted at a given angle h. Then,

depending on whether or not the sphere remained within the foam and its distance from

the wall reached a plateau, a new simulation was run with an increased ðhþ 1�Þ or

decreased tilt angle ðh� 1�Þ. The critical value recorded for the tilt angle (hc) is the aver-

age of the smallest angle at which the sphere falls out of the foam and the greatest angle

at which the foam supports the sphere.

A. Staircase foam (2,1,1)

We tilt a cylinder containing a staircase foam in the same direction (x) as the oscilla-

tory motion occurs, since there is little resistance to sphere motion in the y direction,

and investigate the relationship between the critical tilt angle and the Bond number. It

can be seen in Fig. 6 that hc decreases with increasing Bo, which we fit with a power-

law,

hc ¼ 17:28 Bo�0:59:

In this case, the cylinder can be tilted up to angles of between 5 and 12� while control

over the motion of a sphere is retained.

B. Chiral foam (3,2,1)

Repeating the procedure described above, we show that the degree of control we have

over the spiraling motion of the sphere in the chiral foam is similar to that obtained in the

staircase foam. The relationship between the critical angle and the Bond number is

approximated by
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hc ¼ 20:43 Bo�0:66;

shown in Fig. 6. Here, the cylinder can be tilted up to angles of between 5 and 14� while

maintaining control over the motion of a sphere.

C. Double staircase foam (4,2,2)

Recall that the motion of a sphere through the double staircase (4,2,2) foam in a verti-

cal cylinder was straight down. By tilting this foam, we show that it is possible to control

the motion of the sphere for larger tilt angles than in the staircase and chiral foams, with

the following fit to the dependence of critical angle on Bond number,

hc ¼ 33:55 Bo�0:80;

shown in Fig. 6. For small Bond number (Bo¼ 1.72), it is possible to tilt the cylinder at

an angle of 21� without losing control over the sphere motion. The greater degree of con-

trol here is due to the foam having more films in contact with the sphere compared to the

other foams. The vertically aligned films along the center of this structure provide a

slightly stronger support for the sphere as it descends through the cylinder. To increase

the critical angle further, we would need to consider higher-order foams with smaller

bubbles (larger k), as in the experiments of Tobin et al. (2011).

V. CONCLUSIONS

Investigating the motion of spherical particles through ordered foam structures provides

an insight into the interplay between surface tension effects and gravity during sedimenta-

tion. Here we have shown how a sphere descends through bamboo (1,1,0), staircase

(2,1,1), chiral (3,2,1), and double staircase (4,2,2) foams and measured the degree of con-

trol of the sphere’s motion that each foam offers. For an ordered foam contained within a

vertical cylinder, the resulting sphere motion depends strongly on the structure itself, on

FIG. 6. We find the critical angle hc which is the maximum value for h [see Fig. 1(d)] before the sphere falls

out of the foam to touch the cylinder wall. The critical tilt angle for the staircase, chiral and double staircase

foams decreases with increasing Bond number. The given fits to a power-law have an exponent that increases

with k.
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how the films are deformed near the sphere, and on how the motion of the sphere deforms

them further.

For a staircase foam, the motion is two-dimensional. A spiraling descent is observed

in a chiral foam and in the double staircase foam a sphere falls straight down, as in a

bamboo foam. For staircase and chiral foams, the distance that a sphere is pulled away

from the center-line of the cylinder by the foam is found to depend on the Bond number

through a power-law relation.

By tilting the cylinder at an angle to the vertical, we show that there exists a critical

angle above which the sphere falls out of the foam. This angle is dependent on the choice

of foam structure and the Bond number. For a sphere of given size and given Bond num-

ber in the ordered foams studied here, the greatest tilt can be imposed on the double stair-

case foam, since the bubbles are smaller and so more films are in contact with the sphere

at all times.

We expect that our conclusions could be confirmed by experiment. These ordered

foams have low values of k, meaning that it should be possible to track the position of

a falling spherical bead without recourse to tomography, although it may be necessary

to use mirrors or a pair of cameras to observe full details of the motion. An ordered

foam can be obtained by carefully calibrating the flow of gas into a reservoir of surfac-

tant solution beneath a glass cylinder so that the values for k are matched. With a cylin-

der of radius around 15 mm, the required bubble sizes will be of the order of 103 mm3,

and a sphere of radius 3 mm, and density 950 kg/m3 (taking Bo � 1:7) would be

appropriate.

We expect that changes in the liquid fraction of the foam will affect the drag and lift

forces, and thus the sphere motion, only weakly. Raufaste et al. (2007) showed in 2D that

increasing the liquid fraction reduces the forces exerted on a solid object since T1 events

are more easily triggered on its boundary. However, for the ordered foams we consider

here, T1 events do not occur, and the motion of a sphere is governed by the orientation of

the soap films and the bubbles’ shape. Increasing the liquid fraction slightly will only

impose slight changes on the shape of bubbles and orientation of the films, so that its

effect on sphere motion will also be minimal.

Including the effect of viscosity may be more significant, since this affects the angles

at which films meet the sphere and therefore the network force. It could also lead to rota-

tion of the sphere as it descends through the ordered structures.

At low k, we expect the order of magnitude of the forces on a sphere in a disordered
foam to be close to the values given here (note that disorder does not, for example, ex-

plicitly enter Eq. (1)). By making the bubbles smaller (increasing the value of k), it would

be increasingly difficult to generate an ordered foam, but the techniques described here

will remain appropriate for an investigation of the motion of a sphere in a disordered

foam.

Finally, we note that the structures described here can be made in cylinders of differ-

ent cross-section [Tobin et al. (2011)], which may provide further applications of this

work.
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Cantat, I., S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, and A. Saint-Jalmes, Les

mousses-structure et dynamique (Belin, Paris, 2010).

Cheddadi, I., P. Saramito, B. Dollet, C. Raufaste, and F. Graner, “Understanding and predicting viscous, elastic,

plastic flows,” Euro. Phys. J. E 34, 1 (2011).

Cox, S. J., B. Dollet, and F. Graner, “Foam flow around an obstacle: simulations of obstacle-wall interaction,”

Rheol. Acta 45, 403–410 (2006).

Dollet, B., F. Elias, C. Quilliet, A. Huillier, M. Aubouy, and F. Graner, “Two-dimensional flows of foam: Drag

exerted on circular obstacles and dissipation,” Colloids Surf., A 263, 101–110 (2005a).

Dollet, B., F. Elias, C. Quilliet, C. Raufaste, M. Aubouy, and F. Graner, “Two-dimensional flow of foam around

an obstacle: Force measurements,” Phys. Rev. E 71, 031403 (2005b).

Drenckhan, W., S. J. Cox, G. Delaney, H. Holste, and D. Weaire, “Rheology of ordered foams—On the way to

discrete microfluidics,” Colloids Surf. A 263, 52–64 (2005).

Lambert, J., I. Cantat, R. Delannay, A. Renault, F. Graner, J.A. Glazier, I. Veretennikov, and P. Cloetens,

“Extraction of relevant physical parameters from 3D images of foams obtained by X-ray tomography,” Col-

loids Surf. A 263, 295–302 (2005).
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