

2.4 Products of vectors

We will describe four products of vectors (some more useful than others).

2.4.1 Scalar product

Definition 2.4. The scalar product² $\underline{a} \cdot \underline{b}$ of two vectors \underline{a} and \underline{b} is the scalar quantity $|\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b} :

$$\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta.$$

In component form it is $\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Example 2.12. Find the cosine of the angle between the vectors $\underline{u} = \underline{i} - 2\underline{j} - 2\underline{k}$ and $\underline{v} = 6\underline{i} + 3\underline{j} + 2\underline{k}$.

Remarks:

- Two non-zero vectors are perpendicular if their scalar product is zero (since $\cos \pi/2 = 0$);
- For any vector \underline{a} , $\underline{a} \cdot \underline{a} = |\underline{a}| |\underline{a}| \cos(0) = |\underline{a}|^2$;
- Using components, it is possible to prove commutativity of the scalar product: $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$;
- Using components, it is possible to prove distributivity of the scalar product: $\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$.

These last two proofs are left as an *exercise*.

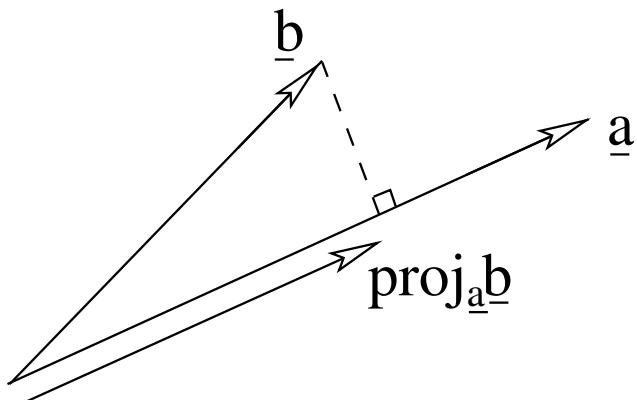
Example 2.13. Give the vector equation of the line through the point $\underline{a} = 2\underline{i} + 3\underline{j}$ perpendicular to the vector $\underline{b} = -\underline{i} + 2\underline{j}$.

Example 2.14. Points A , B , C , and D have position vectors $-2\underline{i} + 3\underline{j}$, $3\underline{i} + 8\underline{j}$, $7\underline{i} + 6\underline{j}$, and $7\underline{i} - 4\underline{j}$ respectively. Show that \overrightarrow{AC} is perpendicular to \overrightarrow{BD} .

2.4.2 Projection of vectors

Definition 2.5. The projection of a vector \underline{b} onto a vector \underline{a} is defined to be the component of \underline{b} in the direction of \underline{a} , given by

$$\text{proj}_{\underline{a}} \underline{b} = |\underline{b}| \cos \theta \underline{\hat{a}} = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}|} \underline{\hat{a}} = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}|^2} \underline{a}.$$



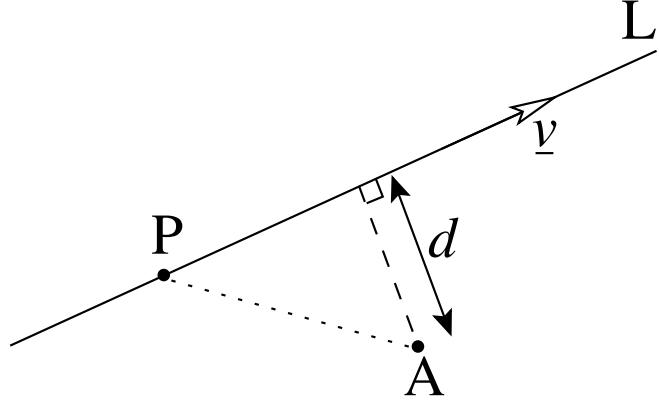
Its length – the scalar projection of \underline{b} on \underline{a} – is $|\text{proj}_{\underline{a}} \underline{b}| = |\underline{b}| \cos \theta = \frac{|\underline{a} \cdot \underline{b}|}{|\underline{a}|}$.

Example 2.15. Find the projection of $\underline{a} = 2\underline{i} + 5\underline{j}$ on the vector $\underline{b} = \underline{i} + \underline{j}$.

Example 2.16. Given $\underline{a} = \underline{i} - 2\underline{j} + 3\underline{k}$ and $\underline{b} = 3\underline{i} - 4\underline{k}$, find the scalar projection of \underline{a} on \underline{b} .

²Also called the dot product

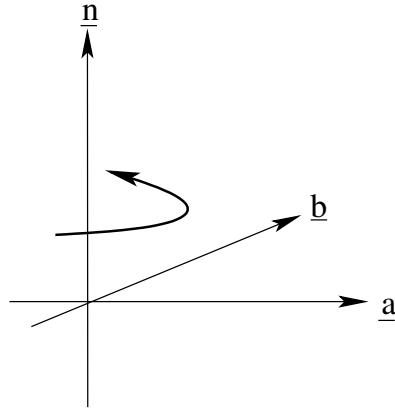
Example 2.17. Find the perpendicular distance of the point A with position vector $4\underline{i} + 5\underline{j}$ from the line L with vector equation $\underline{r} = -3\underline{i} + \underline{j} + \lambda(\underline{i} + 2\underline{j})$.



Example 2.18. Find the perpendicular distance of the point C with position vector $5\underline{i} - 9\underline{j} + 2\underline{k}$ from the line L with vector equation $\underline{r} = 5\underline{i} + 3\underline{j} - \underline{k} + \lambda(2\underline{i} + 5\underline{j} + 7\underline{k})$.

2.4.3 Vector product

Definition 2.6. The vector product³ $\underline{a} \wedge \underline{b}$ of two vectors \underline{a} and \underline{b} is the vector $|\underline{a}||\underline{b}|\sin\theta\hat{n}$, where \hat{n} is a unit vector perpendicular to the plane of \underline{a} and \underline{b} such that $\underline{a}, \underline{b}, \hat{n}$ form a right-handed set.



In component form, the vector product can be written as a determinant:

$$\underline{a} \wedge \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Example 2.19. For vectors $\underline{a} = 5\underline{i} - \underline{j} + 2\underline{k}$ and $\underline{b} = \underline{i} - 2\underline{j} + 3\underline{k}$, the scalar product of \underline{a} and \underline{b} is

$$\underline{a} \cdot \underline{b} = 5 \times 1 + (-1) \times (-2) + 2 \times 3 = 13$$

and the vector product of \underline{a} and \underline{b} is

$$\underline{a} \wedge \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 5 & -1 & 2 \\ 1 & -2 & 3 \end{vmatrix} = \underline{i} - 13\underline{j} - 9\underline{k}.$$

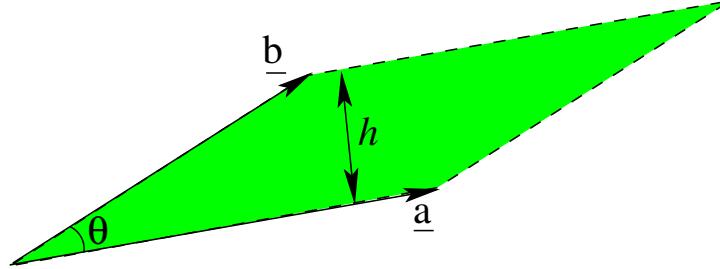
³Also called the cross product

Remarks:

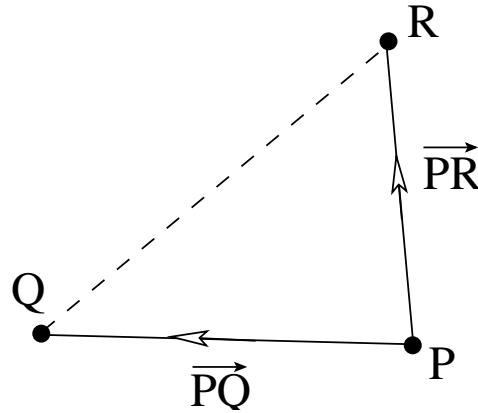
- The length of the resulting vector is $|\underline{a} \wedge \underline{b}| = |\underline{a}||\underline{b}||\sin \theta|$;
- Two non-zero vectors are parallel if their vector product is zero (since $\sin 0 = 0$);
- The vector product does *not* commute. Instead, $\underline{b} \wedge \underline{a} = -(\underline{a} \wedge \underline{b})$;
- The vector product is distributive: $\underline{a} \wedge (\underline{b} + \underline{c}) = \underline{a} \wedge \underline{b} + \underline{a} \wedge \underline{c}$;

(Exercise: test this using components.)

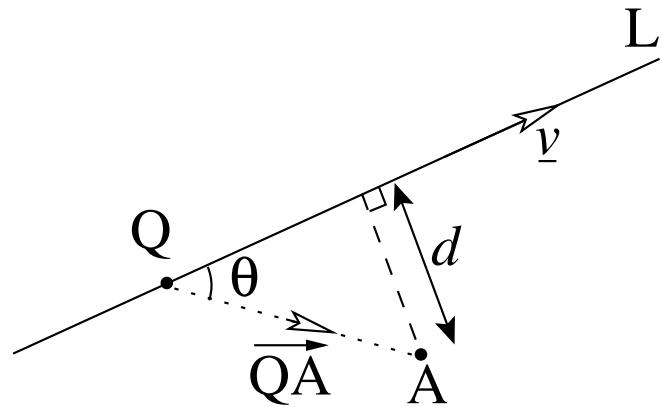
- For the unit vectors in the directions of the coordinate axes we have: $\underline{i} \wedge \underline{j} = \underline{k}$, $\underline{j} \wedge \underline{k} = \underline{i}$, and $\underline{k} \wedge \underline{i} = \underline{j}$, but $\underline{i} \wedge \underline{k} = -\underline{j}$ etc.;
- $|\underline{a} \wedge \underline{b}|$ is the area of the parallelogram formed by \underline{a} and \underline{b} . The height of the parallelogram is $h = |\underline{b}| \sin \theta$.



Example 2.20. Find a vector perpendicular to the plane containing the points $P : (1, -1, 0)$, $Q : (2, 1, -1)$, $R : (-1, 1, 2)$, and the area of the triangle with these vertices.



Example 2.21. Repeat example 2.17 (find the perpendicular distance of the point with position vector $4\underline{i} + 5\underline{j}$ from the line $\underline{r} = -3\underline{i} + \underline{j} + \lambda(\underline{i} + 2\underline{j})$) with the vector product.



2.4.4 Triple products

Definition 2.7. The scalar triple product of vectors \underline{a} , \underline{b} , \underline{c} is

$$[\underline{a}, \underline{b}, \underline{c}] = \underline{a} \cdot (\underline{b} \wedge \underline{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

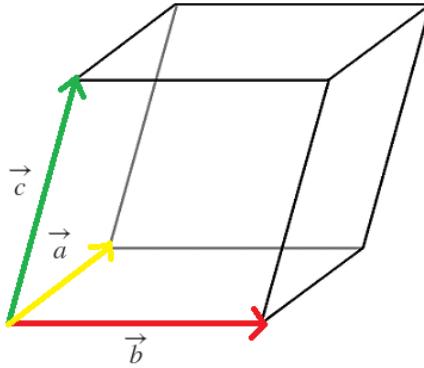
Remarks:

- To see that this is indeed equal to the given determinant, note that

$$\begin{aligned} \underline{a} \cdot (\underline{b} \wedge \underline{c}) &= (a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}) \cdot [(b_2 c_3 - b_3 c_2) \underline{i} - (b_1 c_3 - b_3 c_1) \underline{j} + (b_1 c_2 - b_2 c_1) \underline{k}] \\ &= a_1(b_2 c_3 - b_3 c_2) - a_2(b_1 c_3 - b_3 c_1) + a_3(b_1 c_2 - b_2 c_1), \end{aligned}$$

which is the result of evaluating the given determinant.

- The result is a scalar, which represents the volume of the parallelepiped formed by the three vectors.



- A special case is when the points at the ends of the three vectors all lie in the plane $z = 1$. The tetrahedron formed by these three points and the origin has one-sixth the volume of the parallelepiped and, since its perpendicular height is one, its volume is also equal to one-third the area of the triangle in the plane $z = 1$. This proves the result we used in §1.1.6, that the area of the triangle is one half of the triple scalar product.
- Repeated vectors: $[\underline{a}, \underline{a}, \underline{b}] = 0$ since $\underline{a} \wedge \underline{b}$ is perpendicular to \underline{a} .
- If \underline{a} , \underline{b} , \underline{c} are non-zero and co-planar, then $[\underline{a}, \underline{b}, \underline{c}] = 0$.

Example 2.22. Calculate the scalar triple product of vectors $\underline{a} = \underline{i} - 2\underline{j} + \underline{k}$, $\underline{b} = 3\underline{i} + \underline{j} + 2\underline{k}$ and $\underline{c} = -\underline{i} - 2\underline{j} + 5\underline{k}$.

Solution:

$$[\underline{a}, \underline{b}, \underline{c}] = \begin{vmatrix} 1 & -2 & 1 \\ 3 & 1 & 2 \\ -1 & -2 & 5 \end{vmatrix} = 1(5 + 4) + 2(15 + 2) + 1(-6 + 1) = 9 + 34 - 5 = 38$$

□

Definition 2.8. The vector triple product of vectors \underline{a} , \underline{b} , \underline{c} is

$$\underline{a} \wedge (\underline{b} \wedge \underline{c}) = (\underline{a} \cdot \underline{c})\underline{b} - (\underline{a} \cdot \underline{b})\underline{c}.$$

We can demonstrate this result using components. Without loss of generality, we show that it is true for

the \underline{i} component:

$$\begin{aligned} [\underline{a} \wedge (\underline{b} \wedge \underline{c})]_i &= [\underline{a} \wedge ((b_2c_3 - b_3c_2)\underline{i} + (b_3c_1 - b_1c_3)\underline{j} + (b_1c_2 - b_2c_1)\underline{k})]_i \\ &= a_2(b_1c_2 - b_2c_1) - a_3(b_3c_1 - b_1c_3) \\ (\text{expand}) &= a_2b_1c_2 - a_2b_2c_1 - a_3b_3c_1 + a_3b_1c_3 \end{aligned}$$

Now we add and subtract $a_n b_n c_n$ to the n^{th} component:

$$\begin{aligned} &= a_2b_1c_2 - a_2b_2c_1 - a_3b_3c_1 + a_3b_1c_3 + \textcolor{red}{a_1b_1c_1 - a_1b_1c_1} \\ (\text{collect}) &= b_1(a_1c_1 + a_2c_2 + a_3c_3) - c_1(a_1b_1 + a_2b_2 + a_3b_3) \\ &= [(\underline{a} \cdot \underline{c})\underline{b} - (\underline{a} \cdot \underline{b})\underline{c}]_i. \end{aligned}$$

Example 2.23. Calculate the vector triple product of $\underline{a} = \underline{i} - 2\underline{j} + \underline{k}$, $\underline{b} = 3\underline{i} + \underline{j} + 2\underline{k}$ and $\underline{c} = -\underline{i} - 2\underline{j} + 5\underline{k}$.

Solution: First

$$\underline{b} \wedge \underline{c} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 3 & 1 & 2 \\ -1 & -2 & 5 \end{vmatrix} = 9\underline{i} - 17\underline{j} - 5\underline{k}.$$

Then

$$\underline{a} \wedge (\underline{b} \wedge \underline{c}) = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 1 & -2 & 1 \\ 9 & -17 & -5 \end{vmatrix} = 27\underline{i} + 14\underline{j} + \underline{k}.$$

As a check, note that $\underline{a} \cdot \underline{c} = 8$ and $\underline{a} \cdot \underline{b} = 3$, so $8\underline{b} - 3\underline{c} = 24\underline{i} + 8\underline{j} + 16\underline{k} - (-3\underline{i} - 6\underline{j} + 15\underline{k}) = 27\underline{i} + 14\underline{j} + \underline{k}$. \square