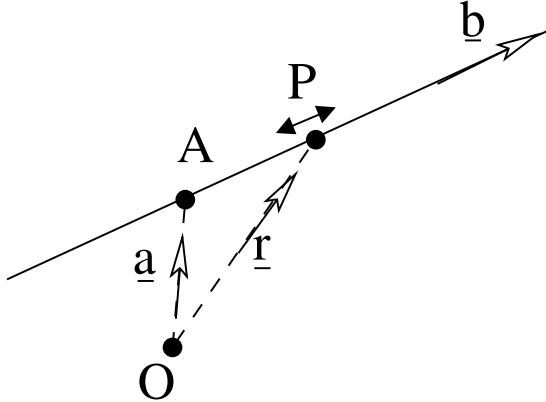


2.3 Vector equation of a straight line

Consider a line which passes through a point A with position vector \underline{a} , parallel to a given direction \underline{b} , in three dimensional space. Let P be any point on this line, with position vector \underline{r} .



Since \overrightarrow{AP} is parallel to \underline{b} , it is equal to $\lambda \underline{b}$ for some $\lambda \in \mathbb{R}$. Then the equation of the line is

$$\underline{r} = \overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \underline{a} + \lambda \underline{b}.$$

For each value of λ we get a different point on the line; we say that λ *parametrizes* the line. In components, we have that the position of any point (x, y, z) on the line is given by $x = a_1 + \lambda b_1$, $y = a_2 + \lambda b_2$ and $z = a_3 + \lambda b_3$.

We can find the line through two points A , at $a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}$, and B , at $b_1 \underline{i} + b_2 \underline{j} + b_3 \underline{k}$, in the same way, since the line is parallel to

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (b_1 - a_1) \underline{i} + (b_2 - a_2) \underline{j} + (b_3 - a_3) \underline{k}.$$

Example 2.8. Find the vector equation of the line through points A and B with position vectors \underline{a} and \underline{b} respectively.

Example 2.9. Give the vector equation of the line through A , with position vector $-3 \underline{i} + 2 \underline{j} - 3 \underline{k}$, and B , with position vector $\underline{i} - \underline{j} + 4 \underline{k}$.

Example 2.10. Find the position vector of the point of intersection of the two lines $\underline{r} = \underline{i} + \underline{j} - \underline{k} + 2t \underline{j}$ and $\underline{r} = \underline{i} + s \underline{k}$, where t and s parametrize the lines.

Example 2.11. Given two distinct non-zero vectors \underline{a} and \underline{b} , find the position vector of the point of intersection of the two lines $\underline{r} = \underline{a} + t \underline{b}$ and $\underline{r} = (2 \underline{a} + \underline{b}) + s(\underline{a} - \underline{b})$, where t and s parametrize the lines.