

MA10110 Assignment 3: Vectors – Lines and Products
Attempt all questions

Solutions to questions marked with an asterisk (*) should be written out neatly, scanned, and uploaded to Blackboard.

Ensure that you include your name and AU email address,

1. * OAB is a triangle with $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$. C is a point on AB such that $AC : CB = 3 : 1$. Express the following vectors in terms of \underline{a} and \underline{b} :

$$(a) \overrightarrow{AB}, \quad (b) \overrightarrow{AC}, \quad (c) \overrightarrow{CB}, \quad (d) \overrightarrow{OC}.$$

[2,2,2,2]

2. $OABC$ is a trapezium with $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OC} = \underline{c}$ and $\overrightarrow{CB} = 3\underline{a}$. D is the mid-point of AB . Express the following vectors in terms of \underline{a} and \underline{c} :

$$(a) \overrightarrow{OB}, \quad (b) \overrightarrow{AB}, \quad (c) \overrightarrow{OD}, \quad (d) \overrightarrow{CD}.$$

[2,2,2,2]

3. $OABC$ is a trapezium with $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OC} = \underline{c}$ and \overrightarrow{CB} parallel to, and twice as long as, \overrightarrow{OA} . The points D and E are the midpoints of \overrightarrow{AB} and \overrightarrow{CB} respectively. Find the following vectors in terms of \underline{a} and \underline{c} :

$$(a) \overrightarrow{CA}, \quad (b) \overrightarrow{AB}, \quad (c) \overrightarrow{ED}.$$

Hence show that \overrightarrow{CA} is parallel to, and twice as long as, \overrightarrow{ED} .

4. * OAB is a triangle with $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$; C is the mid-point of OB , D is the mid-point of AB and E is the mid-point of OA ; OD and AC intersect at F .

If $\overrightarrow{AF} = h\overrightarrow{AC}$ and $\overrightarrow{OF} = k\overrightarrow{OD}$ show that

(a) $h = k = 2/3$,
 (b) B, F and E are collinear with $\overrightarrow{BF} = 2/3\overrightarrow{BE}$.

[6,4]

5. * The points A and B have position vectors $2\underline{i} + 3\underline{j} - 5\underline{k}$ and $\underline{i} + 2\underline{j} - 3\underline{k}$, respectively, relative to an origin O . Determine:

(a) \overrightarrow{AB}
 (b) The length AB
 (c) The unit vector in the direction of \overrightarrow{AB} .
 (d) The vector equation of the line through A parallel to AB .

[2,2,2,2]

6. The position vectors of two points A and B relative to an origin O are $2\underline{i} + 4\underline{j}$ and $6\underline{i} + 7\underline{j}$, respectively.

(a) Find the vector equation of the line through A and B and show that the point with position vector $14\underline{i} + 13\underline{j}$ lies on this line.
 (b) If C is the point with position vector $3\underline{i} - 4\underline{j}$, find the vector equation of the line OC and show that OC is orthogonal to AB .
 (c) Find the position vector of the point N at which AB meets OC . Hence find the perpendicular distance from O to AB .

7. The position vectors of the four points A, B, C, D relative to an origin O are $\underline{a}, \underline{b}, -3\underline{a}$, and $-2\underline{b}$ respectively. The lines BA produced and CD produced meet at L . Show that the position vector of L is $9\underline{a} - 8\underline{b}$. [12]

8. * Given the three points A, B, C with position vectors $3\underline{a} + 2\underline{b}$, $-\underline{a} + 6\underline{b}$, and $-2\underline{a} + 7\underline{b}$ respectively, write down the vector equation of the line through A and C . Hence show that A, B, C are collinear and find the ratio $AB : BC$. [3,2,2]

9. Show, in terms of the components of vectors $\underline{a}, \underline{b}$ and \underline{c} , that

(a) $\underline{c} + \underline{b} = \underline{b} + \underline{c}$ (commutative)
 (b) $(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$ (associative)
 (c) $\lambda(\underline{a} + \underline{b}) = \lambda\underline{a} + \lambda\underline{b}$ (distributive)

for any $\lambda \in \mathbb{R}$. [4,4,4]

10. Use components to show that:

(a) the scalar product is commutative, i.e. $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$;
 (b) the scalar product is distributive, i.e. $\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$;
 (c) the vector product is distributive, i.e. $\underline{a} \wedge (\underline{b} + \underline{c}) = \underline{a} \wedge \underline{b} + \underline{a} \wedge \underline{c}$.

11. If $\underline{a} = 5\underline{i} - \underline{j} + 2\underline{k}$ and $\underline{b} = 2\underline{i} - 3\underline{j} + \underline{k}$, find the lengths of the vectors \underline{a} and \underline{b} . Evaluate the scalar product $\underline{a} \cdot \underline{b}$ and hence the cosine of the angle between the vectors \underline{a} and \underline{b} .

12. * If $\underline{a} = xi + y\underline{j}$ and $\underline{b} = 3\underline{i} + 2\underline{j}$, write down a relationship between x and y in each of the following cases:

(a) \underline{a} has length 5.
 (b) \underline{a} and \underline{b} are parallel.
 (c) \underline{a} is orthogonal to \underline{b} .
 (d) $\underline{a} - \underline{b}$ is orthogonal to the vector $4\underline{i} + \underline{j}$. [2,2,2,4]

13. If $\underline{a} = \underline{i} - 2\underline{j} - 3\underline{k}$, $\underline{b} = 2\underline{i} + \underline{j} - \underline{k}$ and $\underline{c} = \underline{i} + 3\underline{j} - 2\underline{k}$, find

(a) $\underline{a} \cdot \underline{b}$;
 (b) $\underline{b} \wedge \underline{c}$;
 (c) $\underline{a} \cdot (\underline{b} \wedge \underline{c})$;
 (d) $\underline{a} \wedge (\underline{b} \wedge \underline{c})$.

14. Find the projection of the vector $2\underline{i} - 3\underline{j} + 6\underline{k}$ on the vector $\underline{i} + 2\underline{j} + 2\underline{k}$.

15. Find the volume of the parallelepiped spanned by the vectors $\underline{a} = 3\underline{i} - 2\underline{j} - \underline{k}$, $\underline{b} = \underline{i} + 3\underline{j} + 4\underline{k}$ and $\underline{c} = 2\underline{i} + \underline{j} - 2\underline{k}$.