

MA10110 Assignment 2: Coordinate Geometry – Circles, Polars, Loci and Conics
SOLUTIONS

1. (a) If $A : (-3, 8)$ and $B : (5, 2)$ then $|AB| = 10$ so the radius is 5. The midpoint of AB is $(1, 5)$. Then $(x-1)^2 + (y-5)^2 = 25$, or $x^2 + y^2 - 2x - 10y + 1 = 0$.
(b) Substitute $x = 3, y = -1$ in the equation to give: $3^2 + 1 - \lambda - 2 = 0$, so $\lambda = 8$. Then $x^2 + y^2 + 8y - 2 = 0$.
2. (a) Let $S(x, y) = x^2 + y^2 - x - y - \frac{1}{2}$. In standard form we have $a = -\frac{1}{2}$, $b = -\frac{1}{2}$ and $c = -\frac{1}{2}$. Therefore the centre of the circle is at $(\frac{1}{2}, \frac{1}{2})$ and its radius is $r^2 = \frac{1}{4} + \frac{1}{4} - (-\frac{1}{2}) = 1$, so $r = 1$.
(b) The equation of the tangent to a circle at (x_1, y_1) is $(x_1 + a)x + (y_1 + b)y + ax_1 + by_1 + c = 0$. In this case we have $(x_1 - \frac{1}{2})x + (y_1 - \frac{1}{2})y - \frac{1}{2}x_1 - \frac{1}{2}y_1 - \frac{1}{2} = 0$.
(i) $S(\frac{3}{2}, \frac{1}{2}) = 0$, so this point is on the circle. Equation of tangent is $2x - 3 = 0$.
(ii) $S(\frac{1}{2}(1 + \sqrt{3}), 0) = 0$, so this point is on the circle. Equation of tangent is $2\sqrt{3}x - 2y - (3 + \sqrt{3}) = 0$.
3. (a) Write $S(x, y) = x^2 + y^2 + 2x + 4y - 2$. Comparing to standard form, we have $a = 1, b = 2$, and $c = -2$ so the centre is at $(-1, -2)$ and the radius is $r = \sqrt{1^2 + 2^2 - (-2)} = \sqrt{7}$.
(b) Now $S(4, 3) = 16 + 9 + 8 + 12 - 2 = 43$, so the tangential distance is $\sqrt{43}$.
4. We have $x = 5$ and $y = 12$. So $r = \sqrt{5^2 + 12^2} = 13$ and $\theta = \tan^{-1}(12/5)$ (which is $\approx 67^\circ$).
5. $xy = x + y$ becomes $r^2 \sin \theta \cos \theta = r(\cos \theta + \sin \theta)$, so $r = \frac{\cos \theta + \sin \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta} + \frac{1}{\cos \theta} = \operatorname{cosec} \theta + \sec \theta$, as required.
6. Expand the $\cos 2\theta$ to give $r^2(\cos^2 \theta - \sin^2 \theta) = 1 + r \cos \theta$. Now substitute Cartesians to give $x^2 - y^2 = 1 + x$.
7. Substitute x and y in polars: $(r \cos \theta - 3)^2 + (r \sin \theta + 4)^2 = 2$. This expands to $r^2 - 6r(\cos \theta - \frac{4}{3} \sin \theta) + 23 = 0$. This can be written $r^2 - 6r \cos(\theta + \theta_0)/\cos \theta_0 + 23 = 0$, where $\tan \theta_0 = \frac{4}{3}$ and so $\cos \theta_0 = \frac{3}{5}$. Hence the polar equation for the circle is $r^2 - 10r \cos(\theta + \theta_0) + 23 = 0$ with $\theta_0 = \tan^{-1}(\frac{4}{3})$.
8. Assume that the circle is at the origin: $x^2 + y^2 = 16$. Write $S(x, y) = x^2 + y^2 - 16$, then the tangential distance is $3 = \sqrt{S(x, y)} = \sqrt{x^2 + y^2 - 16}$. Expanding gives $x^2 + y^2 = 16 + 9 = 25$ which is a circle with the same centre but radius 5.
9. W.l.o.g. move the circle to the origin and let it have unit radius; we can shift and magnify afterwards if required.
If P has coordinates (\hat{x}, \hat{y}) then $\hat{x}^2 + \hat{y}^2 = 1$. Write the coordinates of K as (a, b) . Call M the midpoint of PK , with coordinates (x, y) , since it is the motion of M that we seek.
From the definition of the midpoint we have $x = \frac{1}{2}(a + \hat{x})$ and $y = \frac{1}{2}(b + \hat{y})$. Now substitute for $P : (\hat{x}, \hat{y})$ to give $(2x - a)^2 + (2y - b)^2 = 1$. Rearrange to find $x^2 + y^2 - ax - by + \frac{1}{4}(a^2 + b^2 - 1) = 0$, which is a circle with centre $(\frac{1}{2}a, \frac{1}{2}b)$, i.e. half way between K and the centre of the circle, and radius $r = \frac{1}{2}$, i.e. half the radius of the original circle.
10. (a) Perpendicular bisector of AB ;
(b) Two semi-infinite straight lines from A at angle θ to AB ;
(c) Angle \widehat{APB} is therefore a right angle, so P is on a circle with diameter AB ;
(d) Circle of radius $\frac{1}{2}|AB| + 1$. Also, if $|AB| > 2$, a circle of radius $\frac{1}{2}|AB| - 1$.
(e) Two arcs of circles with AB as chord (long arcs if $\theta < \pi/2$, short arcs if $\theta > \pi/2$);
11. Write $P : (x_1, y_1), Q : (x_2, y_2)$ and the midpoint of PQ as $M : (x, y)$. We have $Ax_1 + By_1 + C = 0$ and $Ax_2 + By_2 + D = 0$. The midpoint has coordinates $(\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2))$, so we can substitute $x_1 = 2x - x_2$ and $y_1 = 2y - y_2$ into $Ax_1 + By_1 + C = 0$ to give $Ax + By + \frac{1}{2}(C - Ax_2 - By_2) = 0$. But we know that $-Ax_2 - By_2 = D$, so the equation of the line is $Ax + By + \frac{1}{2}(C + D) = 0$; its slope is $-\frac{A}{B}$, which is the same as the slope of the two given lines, so they are indeed parallel.

12. Put $K : (a, b)$, so that $P : (x = \frac{1}{2}(a+2), y = \frac{1}{2}b)$.

- (a) Here $a = 0$, so this is the line $x = 1$, parallel to the y -axis.
- (b) We have $b = a - 1$, so $2x = a + 2$ and $2y = a - 1$; eliminating a gives the line $2x - 2y - 3 = 0$ parallel to the given line.
- (c) Now $a^2 + b^2 = 1$, so $(2x-2)^2 + (2y)^2 = 1$, or $4x^2 + 4y^2 - 8x + 4 = 1$, or $x^2 + y^2 - 2x + \frac{3}{4} = 0$. This is a circle, centre $(1, 0)$ and radius $\frac{1}{2}$.

13. Eccentricity is distance to focus divided by distance to directrix.

- (a) $e = \frac{1}{2}$, ellipse;
- (b) $e = \frac{3}{3} = 1$, parabola;
- (c) $e = \frac{\sqrt{5}}{4}$, ellipse;
- (d) $e = \frac{5}{6}$, ellipse.

14. W.l.o.g. take the focus to be at the origin, then in polars the conic is $r = \frac{ke}{1 + e \cos \theta}$. The value of $\Delta = \frac{1}{AF} + \frac{1}{BF}$ is the sum of the reciprocals of the distances from the origin of each of the points A and B . Then if θ denotes the inclination of ℓ we have:

$$\Delta = \frac{1}{r(\theta)} + \frac{1}{r(\theta + \pi)} = \frac{1 + e \cos \theta}{ke} + \frac{1 + e \cos(\theta + \pi)}{ke} = \frac{(1 + e \cos \theta) + (1 - e \cos \theta)}{ke} = \frac{2}{ke}$$

which is constant for any given conic, since every conic has fixed k and e .

15. The slope of the tangent is given by $\frac{dy}{dx}$; implicit differentiation yields $\frac{dy}{dx} = \frac{1}{2y}$, which is equal to $\frac{1}{2}$ at the given point. Then the tangent has equation $y - 1 = \frac{1}{2}(x - 1)$, or $x - 2y + 1 = 0$.

16. (a) Slope of the tangent is $\frac{dy}{dx} = \frac{4a}{2y} = \frac{2a}{y} = \frac{1}{t}$. The slope of the normal is therefore $-t$.

Tangent: $y - 2at = \frac{1}{t}(x - at^2)$, or $x - ty + at^2 = 0$;

Normal: $y - 2at = -t(x - at^2)$, or $tx + y - 2at - at^3 = 0$.

(b) The directrix lies along $x = -a$, so any point on the directrix has coordinates $(-a, b)$ for some $b \in \mathbb{R}$. The equation of the tangent to the parabola is $x - ty + at^2 = 0$. Substitution gives $-a - tb + at^2 = 0$ which is a quadratic for t with solution $t^\pm = \frac{1}{2a}(b \pm \sqrt{b^2 + 4a^2})$. This always has two real solutions, so there are indeed two possible tangents.

Each has slope $1/t$, and if they are orthogonal, then the product of their slopes should be -1 . This product is

$$\frac{1}{t^+ t^-} = \frac{2a}{(b + \sqrt{b^2 + 4a^2})} \frac{2a}{(b - \sqrt{b^2 + 4a^2})} = \frac{4a^2}{b^2 - (b^2 + 4a^2)} = -1,$$

as required.

(c) For each value of t^\pm , the tangent hits the curve at $(at^{\pm 2}, 2at^\pm)$. The slope of the line between these points is

$$m = \frac{2a(t^+ - t^-)}{a(t^{+2} - t^{-2})} = \frac{2}{t^+ + t^-} = \frac{2a}{b},$$

and therefore its equation is $y - 2at^+ = \frac{2a}{b}(x - at^{+2})$ or

$$y = \frac{2a}{b}x + 2at^+ - \frac{2a^2}{b}t^{+2} = \frac{2a}{b}x + \frac{2a}{b}(bt^+ - at^{+2}) = \frac{2a}{b}x - \frac{2a^2}{b}$$

from the quadratic for t . This equation does indeed have $y = 0$ when $x = a$, as required.

17. The tangent has slope $\frac{dy}{dx} = -\frac{1}{x^2} = -\frac{1}{t^2}$ and therefore its equation is $y - \frac{1}{t} = -\frac{1}{t^2}(x - t)$, or $x + t^2y - 2t = 0$. It meets the x axis at $A : (2t, 0)$ and the y axis at $B : (0, \frac{2}{t})$. The area of the triangle AOB is $\frac{1}{2} \times 2t \times \frac{2}{t} = 2$, which is independent of t .

18. The slope of the tangent $\frac{dy}{dx}$ can be calculated from implicit differentiation of the equation of the ellipse: $\frac{2x \, dx}{a^2} + \frac{2y \, dy}{b^2} = 0$.

Since it is perpendicular to the tangent, the slope of the normal is $-\frac{dx}{dy} = \frac{a^2}{b^2} \frac{y}{x} = \frac{a^2}{b^2} \frac{b \sin \theta}{a \cos \theta} = \frac{a}{b} \tan \theta$, as required.