

MA10110 Assignment 1: Coordinate Geometry – Lines and Circles
SOLUTIONS

1. (a) $y = \frac{3}{2}x + \frac{7}{2}$, (b) $y = -\frac{5}{3}x + \frac{1}{3}$, (c) $x = -\frac{3}{7}$,

The slope of the line $\alpha x + 2y - 1 = 0$ is $m = -\frac{\alpha}{2}$. This is equal to $\frac{3}{2}$ when $\alpha = -3$. [1,1,1,2]

2. (a) The length is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(7 - 3)^2 + (-3 - 9)^2} = \sqrt{16 + 144} = \sqrt{160} = 4\sqrt{10}$.

(b) $M : \left(\frac{7+3}{2}, \frac{-3+9}{2}\right) = (5, 3)$.

(c) The slope of AB is $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{12}{-4} = -3$. The slope of the perpendicular is therefore $\frac{1}{3}$ because the product of the slopes must be -1 . Then we have $y - 3 = \frac{1}{3}(x - 5)$, or $x - 3y + 4 = 0$.

(d) C is on a circle, centre M , with AB a diameter.

Therefore the length $MC = AM = MB = \sqrt{(3 - 5)^2 + (9 - 3)^2} = \sqrt{40} = 2\sqrt{10}$.

3. The line through the intersection point has equation $3x - y + 3 + \lambda(x + y - 1) = 0$ for some real number λ .

We write this in the form $(3 + \lambda)x + (\lambda - 1)y + 3 - \lambda = 0$, which has slope $m = \frac{3+\lambda}{1-\lambda}$.

Setting $m = 1$ gives $\lambda = -1$, so the required line is $x - y + 2 = 0$. [1,2,2]

4. $y - 3 = m(x + 2)$, where m is the slope. In general form this is $mx - y + 2m + 3 = 0$.

5. The line through the intersection point has equation $3x - 5y + 41 + \lambda(5x + 6y - 8) = 0$, or $(3 + 5\lambda)x - (5 - 6\lambda)y + 41 - 8\lambda = 0$.

To pass through $(8,3)$, we need $3 \times 8 - 5 \times 3 + 41 + \lambda(5 \times 8 + 6 \times 3 - 8) = 0$, giving $\lambda = -\frac{50}{50} = -1$.

Then the line is $2x + 11y - 49 = 0$. [2,2,1]

6. The slope of $ax + by + c = 0$ is $m = -a/b$. The line is therefore $y - q = -\frac{a}{b}(x - p)$. Rearrange to find the given answer. [5]

7. The line through the intersection point has equation $2x - 3y + 1 + \lambda(5x + 8y - 3) = 0$, or $(2 + 5\lambda)x - (3 - 8\lambda)y + 1 - 3\lambda = 0$.

To pass through $(-2,1)$ requires that $-4 - 3 + 1 + \lambda(-10 + 8 - 3) = -6 - 5\lambda = 0$.

Thus $\lambda = -\frac{6}{5}$ and substituting for λ shows that the line is $-4x - \left(3 + \frac{48}{5}\right)y + 1 + \frac{18}{5} = 0$, or $20x + 63y - 23 = 0$. [2,1,2]

8. The line through the intersection point has equation $3x - 2y + 10 + \lambda(4x + 7y - 3) = 0$, or $(3 + 4\lambda)x - (2 - 7\lambda)y + 10 - 3\lambda = 0$.

To pass through $(0,1)$ requires that $-2 + 10 + \lambda(7 - 3) = 8 + 4\lambda = 0$.

Thus $\lambda = -2$ and substituting for λ shows that the line is $5x + 16y - 16 = 0$. [2,3]

9. The slope of $3x - 6y + 1 = 0$ is $m = \frac{1}{2}$. The orthogonal line has slope -2 , since the product of the slopes must be -1 . Thus the required line has equation $y + 1 = -2(x - 3)$, or $2x + y - 5 = 0$. [1,2,2]

or

The line orthogonal to $3x - 6y + 1 = 0$ is of the form $6x + 3y + d = 0$ for some d . Substitute for $x = 3, y = -1$ to give $d = -15$. Then $6x + 3y - 15 = 0$, which reduces to the answer above. [1,2,2]

10. The midpoint of $(5, -3)$ and $(3, 7)$ is $M : (4, 2)$.

The slope of the line joining the points is $m = \frac{7+3}{3-5} = -5$, so the slope of the perpendicular is $\frac{1}{5}$.

Then the line is $y - 2 = \frac{1}{5}(x - 4)$, or $x - 5y + 6 = 0$. [1,2,2]

11. The line $3x - 6y - 5 = 0$ has slope $m = \frac{1}{2}$.

(a) The orthogonal line is of the form $6x + 3y + d = 0$ for some d . Substitute for $x = 3, y = -5$ to give $d = -3$. Then $6x + 3y - 3 = 0$, or $2x + y - 1 = 0$.

(b) With slope $\frac{1}{2}$, passing through (3,-5), the parallel line has equation is $y + 5 = \frac{1}{2}(x - 3)$ or $x - 2y - 13 = 0$. [1,2,2]

12. We use the formula $\Delta = \frac{ax' + by' + c}{\sqrt{a^2 + b^2}}$ for the distance of the point (x', y') from the line $l : ax + by + c = 0$. Here $x' = 2, y' = 3, a = 4, b = -3, c = 5$, giving $\Delta = \frac{5+8-9}{\sqrt{4^2+3^2}} = \frac{4}{5}$. [2,3]

13. Write $F(x, y) = 3x - 9y + 112$.

Calculate $F(-30, 8) = -90 - 72 + 112 = -50 < 0$, and $F(4, 11) = 12 - 99 + 112 = 25 > 0$. Since the signs are different, the points lie on opposite sides of the line.

$F(0, 0) = 112 > 0$, so (4,11) is on the same side of the line as the origin.

We need $0 < F(5, c) = 15 - 9c + 112 = 127 - 9c$, giving $c < \frac{127}{9}$. [2,1,2]

14. Write $F(x, y) = 4x - y + c$, with $F(-3, -6) = -12 + 6 + c = c - 6$ and $F(7, 20) = 8 + c$.

We require these two expressions to have opposite signs, i.e. either $-8 < c < 6$ or $c < -8, c > 6$.

A sketch indicates that the latter is not possible, so $-8 < c < 6$ is the required solution. [2,1,2]

15. For each line we evaluate $\frac{ax + by + c}{\sqrt{a^2 + b^2}}$: $\frac{4x - 3y + 5}{5}$ and $\frac{x + 4}{1}$. Now equate with different signs:

(i) positive: $4x - 3y + 5 = 5x + 20 \Rightarrow x + 3y + 15 = 0$.

(ii) negative: $4x - 3y + 5 = -5x - 20 \Rightarrow 9x - 3y + 25 = 0$.

16. The line $y = 3x - 5$ has slope $\tan \theta_1 = 3$. The line $x + 4y = 1$ has slope $\tan \theta_2 = -\frac{1}{4}$.

The angles $\phi^+ = \theta_2 - \theta_1$ and $\phi^- = \theta_1 - \theta_2$ are given by

$$\tan \phi^+ = \frac{\tan \theta_2 - \tan \theta_1}{1 + \tan \theta_2 \tan \theta_1} = \frac{-\frac{1}{4} - 3}{1 + \frac{1}{4} \cdot 3} = -13 \text{ and } \tan \phi^- = \frac{\tan \theta_1 - \tan \theta_2}{1 + \tan \theta_1 \tan \theta_2} = \frac{\frac{1}{4} - (-3)}{1 + \frac{1}{4} \cdot (-3)} = \frac{13}{\frac{1}{4}} = 52.$$

(So $\phi^+ \approx 94.4^\circ$ and $\phi^- \approx 85.6^\circ$.)

17. Any line through the intersection of $U_2 = 0$ and $U_3 = 0$ has equation $U_2 + \lambda U_3 = 0$. Its slope is $-\frac{a_2 + \lambda a_3}{b_2 + \lambda b_3}$,

which we equate to $-\frac{a_1}{b_1}$ to give $\lambda = \frac{a_2 b_1 - a_1 b_2}{a_1 b_3 - a_3 b_1}$. Substitute this value for λ in $U_2 + \lambda U_3 = 0$ and multiply by the denominator of λ (i.e. $a_1 b_3 - a_3 b_1$) to give the required result.

18. The line $ax + by + c = 0$ has slope $m = -\frac{a}{b}$. The orthogonal line has slope $\frac{b}{a}$, and therefore equation $y = \frac{b}{a}x + \bar{d}$, for arbitrary \bar{d} . Rearranging gives $bx - ay + d = 0$, with d replacing $a\bar{d}$.

If this line passes through (p, q) then we must have $bp - aq + d = 0$, which gives $d = aq - bp$, as required.

19. The line $y = 2x - 1$ has slope 2; if its inclination is θ , then $\tan \theta = 2$.

We seek lines with inclination $\phi_1 = \theta + \hat{\theta}$ and $\phi_2 = \theta - \hat{\theta}$, with $\hat{\theta} = 30^\circ$ and therefore $\tan \hat{\theta} = \frac{1}{\sqrt{3}}$.

The slopes of these lines are therefore

$$\tan \phi_i = \tan(\theta \pm \hat{\theta}) = \frac{\tan \theta \pm \tan \hat{\theta}}{1 \mp \tan \theta \tan \hat{\theta}} = \frac{2 \pm \frac{1}{\sqrt{3}}}{1 \mp \frac{2}{\sqrt{3}}} = \frac{2\sqrt{3} \pm 1}{\sqrt{3} \mp 2} = \frac{(2\sqrt{3} \pm 1)(\sqrt{3} \pm 2)}{(\sqrt{3} \mp 2)(\sqrt{3} \pm 2)} = \frac{8 \pm 5\sqrt{3}}{-1} = -8 \mp 5\sqrt{3},$$

as required.

20. The area of the triangle is given by the determinant

$$\mathcal{A} = \frac{1}{2} \begin{vmatrix} 2 & -3 & 1 \\ 1 & -1 & 1 \\ 5 & 1 & 1 \end{vmatrix} = \frac{1}{2} |2(-2) + 3(-4) + 6| = \left| \frac{-10}{2} \right| = 5.$$