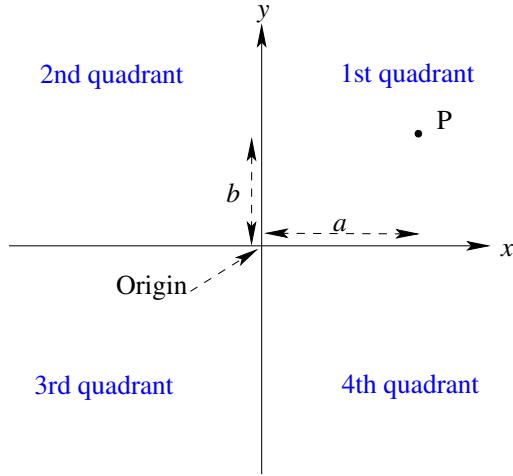


1 Cartesian Geometry (or analytic plane geometry)

1.1 Points and Lines

1.1.1 Points

Consider a point $P:(a, b)$, where a and b can be any real numbers ($a, b \in \mathbb{R}$), referred to perpendicular axes x (abscissa) and y (ordinate); a is the x -coordinate of P and b the y -coordinate. With $a > 0, b > 0$ P is drawn in the *first quadrant*.



1.1.2 Lines

Definition 1.1. General equation of a line: A line between two points P & Q is represented by the linear equation $ax + by + c = 0$, where $a, b, c \in \mathbb{R}$ are constant and a and b cannot both be zero.

Definition 1.2. Slope-intercept equation: If $b = 0$ then we have the vertical line $x = \hat{c}$; otherwise we can write the equation in the unique form $y = mx + c$, where m is called the slope and c the intercept.

Example 1.1. The line $2x + 3y - 5 = 0$ can be written $y = \frac{-2x + 5}{3} = -\frac{2}{3}x + \frac{5}{3}$. It has slope $-\frac{2}{3}$ and intercept $\frac{5}{3}$.

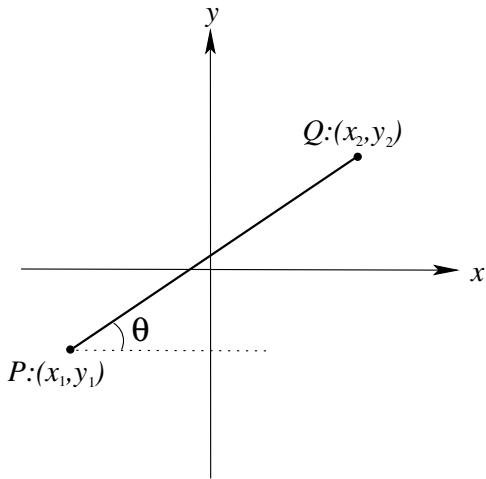
Example 1.2. The line $6x + 9y - 15 = 0$ is the same one, since in slope-intercept form it is also $y = -\frac{2}{3}x + \frac{5}{3}$. It is useful to always cancel common factors in equations to help us identify when two geometric entities (e.g. lines) are equivalent.

Example 1.3. The line $3x + 4 = 0$ can be written $x = -\frac{4}{3}$; it is a vertical line with infinite slope.

Remark: In general, $ax + by + c = 0$ has slope $\begin{cases} -a/b & \text{if } b \neq 0 \\ \infty & \text{if } b = 0 \end{cases}$.

Definition 1.3. Two lines are parallel iff they have the same slope. Thus lines parallel to $ax + by + c = 0$ all have equation $ax + by + d = 0$ for arbitrary d .

Equivalently, $ax + by + c = 0$ is parallel to $a'x + b'y + c' = 0$ iff $-\frac{a}{b} = -\frac{a'}{b'}$ iff $a'b = ab'$.



Definition 1.4. Given two points $P:(x_1, y_1)$ and $Q:(x_2, y_2)$ we have:

- the distance PQ is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$;
- the midpoint of PQ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$;
- the slope of PQ is $\tan \theta = \frac{y_2 - y_1}{x_2 - x_1} = m$.

Remark: The line of slope m through the point (x_1, y_1) has equation

$$y - y_1 = m(x - x_1)$$

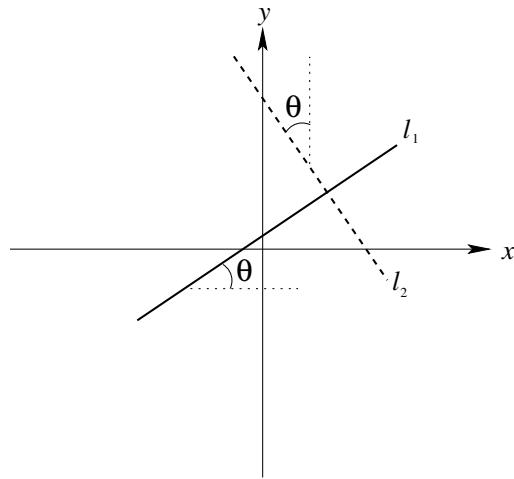
or $y - mx = y_1 - mx_1$ or, in general form, $mx - y + (y_1 - mx_1) = 0$.

Remark: The line joining the points (x_1, y_1) and (x_2, y_2) , with $x_1 \neq x_2$, has equation

$$y - y_2 = \left(\frac{y_1 - y_2}{x_1 - x_2}\right)(x - x_2),$$

with slope $m = \frac{y_1 - y_2}{x_1 - x_2}$.

Definition 1.5. If two lines $l_1 : y = m_1 x + c_1$ and $l_2 : y = m_2 x + c_2$ are **perpendicular** then their slopes satisfy $m_1 m_2 = -1$.



To see this, note that if we write $m_1 = \tan(\theta)$, then

$$m_2 = \tan(\pi/2 + \theta) = \frac{\sin(\pi/2 + \theta)}{\cos(\pi/2 + \theta)} = \frac{\cos(\theta)}{-\sin(\theta)} = -\frac{1}{\tan(\theta)}.$$

Remark: Therefore a line perpendicular or *orthogonal* to the line $l_1 : ax + by + c = 0$ has equation $bx - ay + d = 0$.

Example 1.4. Find the equations of the lines which are parallel and orthogonal to $2x + 3y + 5 = 0$ and pass through $P:(2, -5)$.

Remark: We can write $F(x, y) = ax + by + c$. (F is a function of two variables, x and y . For example, $F(1, 0) = a + c$.) The equation of a line is then $F(x, y) = 0$.

1.1.3 Shortest distance from a point to a line

How do we find the shortest distance from a point $P:(x', y')$ to a line $l : ax + by + c = 0$? The shortest distance should be along a line that is perpendicular to l , going through P . So we find the equation of the perpendicular line through P , and the point (x_1, y_1) where it intersects l . The distance from the point to the line is then just the distance between these two points.



The perpendicular takes the form $l' : bx - ay + d = 0$. We find d by substituting the coordinates of P to give $l' : bx - ay - bx' + ay' = 0$. We find the intersection of l and l' (simultaneous equations) to be

$$(x_1, y_1) = \left(\frac{-ac + b^2x' - aby'}{a^2 + b^2}, \frac{-bc - abx' + a^2y'}{a^2 + b^2} \right).$$

Then (by definition 1.4) the distance between P and (x_1, y_1) is

$$\begin{aligned} \Delta &= \sqrt{(x' - x_1)^2 + (y' - y_1)^2} \\ &= \sqrt{\left(\frac{(a^2 + b^2)x' + ac - b^2x' + aby'}{a^2 + b^2} \right)^2 + \left(\frac{(a^2 + b^2)y' + bc + abx' - a^2y'}{a^2 + b^2} \right)^2} \\ &= \frac{1}{a^2 + b^2} \sqrt{(a^2x' + ac + aby')^2 + (b^2y' + bc + abx')^2} \\ &= \frac{1}{a^2 + b^2} \sqrt{a^2(ax' + c + by')^2 + b^2(by' + c + ax')^2} \\ &= \frac{c + ax' + by'}{\sqrt{a^2 + b^2}}. \end{aligned}$$

If we write $F(x, y) = ax + by + c$, then $\Delta = \frac{F(x', y')}{\sqrt{a^2 + b^2}}$.

Since the distance must be a positive number, we should take the absolute value, distance = $|\Delta|$.

Remark: Note that we can evaluate F for any other point Q ; if the sign of $F(x_Q, y_Q)$ is the same as the sign of $F(x_P, y_P)$, then P & Q lie on the same side of the line.

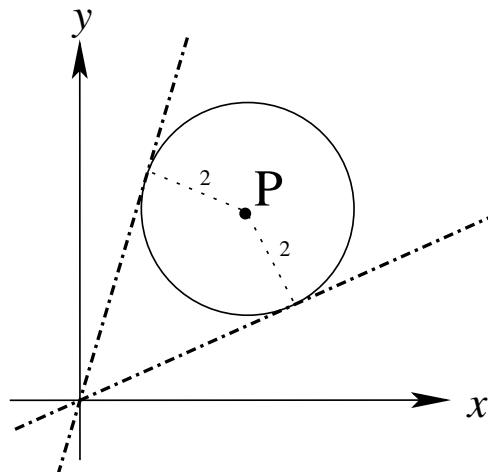
Example 1.5. If l is the line $5x - 7y + 3 = 0$, then we put $F(x, y) = 5x - 7y + 3$.

Now $F(0, 0) = 3$, $F(-3, -2) = 2$, $F(-3, -1) = -5$, and $F(5, 4) = 0$.

So $(5, 4)$ is on the line l , $(-3, -2)$ is on the same side of the line as the origin, and $(-3, -1)$ is on the other side.

Example 1.6. Evaluate the perpendicular distance of the point $P:(2, 5)$ from the line $4x + 7y + 14 = 0$. For what values of c is the point $(c, 5)$ on the same side of the line as P ?

Example 1.7. Find the equations of the lines through the origin whose perpendicular distance from $P:(3, 4)$ is 2.



1.1.4 Intersecting lines

Consider two lines k and l with equations $F(x, y) = 0$ and $G(x, y) = 0$ respectively. Since F and G are functions of two variables, so is $F(x, y) + \lambda G(x, y)$, for some constant $\lambda \in \mathbb{R}$. Moreover, as F and G are linear, so is $F + \lambda G$; therefore $F(x, y) + \lambda G(x, y) = 0$ is the equation of a line, call it h .

If k and l are not parallel, then they intersect at some point $P:(x_1, y_1)$, and at that point $F(x_1, y_1) = 0$, $G(x_1, y_1) = 0$, and so $F(x_1, y_1) + \lambda G(x_1, y_1) = 0$. Thus (x_1, y_1) is on the line h .

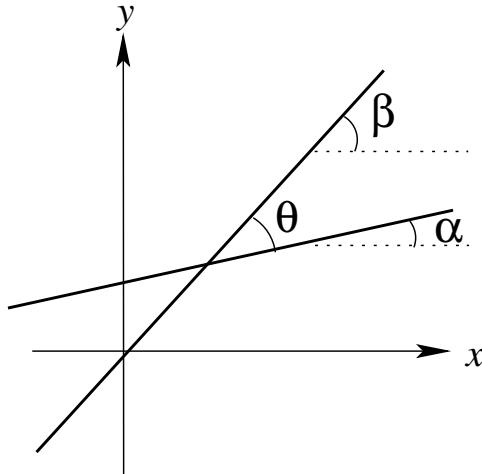
Definition 1.6. *We have shown that the general equation of a line through the intersection of two lines with equations $F(x, y) = 0$ and $G(x, y) = 0$ is $F(x, y) + \lambda G(x, y) = 0$.*

Example 1.8. *Find the equation of the line through the point $Q:(1, -1)$ and the intersection of the lines $2x - 7y + 3 = 0$ and $5x + y - 8 = 0$.*

Example 1.9. *Find the equation of the line of slope 5 through the intersection of the lines $2x - 7y + 3 = 0$ and $5x + y - 8 = 0$.*

1.1.5 Angles between lines

Consider two lines that pass through the same point (intersect). What is the angle between them? That is, given line 1 with slope $m_1 = \tan \alpha$ and line 2 with slope $m_2 = \tan \beta$, what is $\tan(\beta - \alpha)$? (Note that angles are measured anticlockwise from the positive x -axis.)



We write $\theta = \beta - \alpha$, then

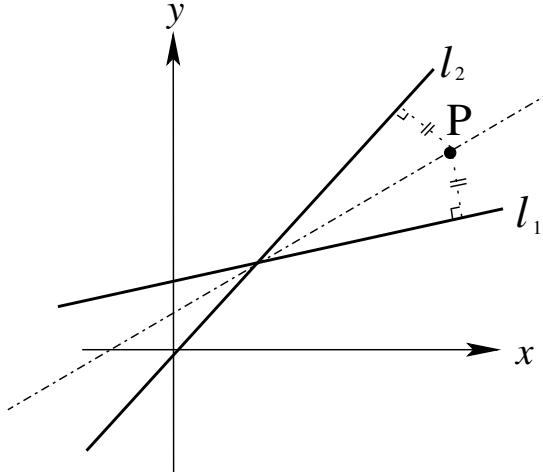
$$\tan \theta = \tan(\beta - \alpha) = \frac{\tan \beta - \tan \alpha}{1 + \tan \alpha \tan \beta} = \frac{m_2 - m_1}{1 + m_1 m_2}.$$

Thus, two lines with slopes m_1 and m_2 meet at an angle $\theta = \tan^{-1} \left(\frac{m_2 - m_1}{1 + m_1 m_2} \right)$.

Note that the other valid answer is $\theta' = \pi - \theta$, given by $\tan \theta' = \frac{m_1 - m_2}{1 + m_1 m_2}$.

Example 1.10. *Find the angle between the lines $3x - y + 1 = 0$ and $x + 2y - 1 = 0$.*

Definition 1.7. *The angular bisector of two lines is the line consisting of points which have the same perpendicular distance from each line.*



Since the distance of a point $P:(x, y)$ from the line $ax + by + c = 0$ is $\Delta = \pm \frac{ax + by + c}{\sqrt{a^2 + b^2}}$ (if we take the other sign, then we will bisect the obtuse angle instead), then the equation of the angular bisector of $l_1 : ax + by + c = 0$ and $l_2 : a'x + b'y + c' = 0$ is

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = \pm \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}.$$

Example 1.11. Find the angular bisectors (acute and obtuse) of the lines $3x - 4y + 2 = 0$ and $12x + 5y - 2 = 0$.

1.1.6 Collinearity

Given a line through two points $A:(x_1, y_1)$ and $B:(x_2, y_2)$, how do we determine if the point $P:(\bar{x}, \bar{y})$ is on it? One possibility is to evaluate the area of the triangle APB : if it is zero, then the points are collinear. Another is to substitute for P in the equation of the line to see if it is satisfied. We will show that these are equivalent.

The equation of the line through A and B is

$$y = y_1 + \left(\frac{y_2 - y_1}{x_2 - x_1} \right) (x - x_1),$$

or $(y_2 - y_1)x - (x_2 - x_1)y + y_1x_2 - x_1y_2 = 0$ in general form. So the condition for A , B and P to be collinear is

$$(y_2 - y_1)\bar{x} - (x_2 - x_1)\bar{y} + y_1x_2 - x_1y_2 = 0.$$

Definition 1.8. The area of the triangle with vertices A , B and P can be evaluated from the following determinant¹:

$$\mathcal{A} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \bar{x} & \bar{y} & 1 \end{vmatrix} = \frac{1}{2} [x_1(y_2 - \bar{y}) - y_1(x_2 - \bar{x}) + x_2\bar{y} - y_2\bar{x}].$$

If $\mathcal{A} = 0$, then we have $x_1(y_2 - \bar{y}) - y_1(x_2 - \bar{x}) + x_2\bar{y} - y_2\bar{x} = 0$ which, after rearrangement, is the same as above.

The determinant therefore provides an easy way to determine the equation of a line: put $x \ y \ 1$ in the first row and 1s in the third column and complete the determinant with the coordinates of two points through which the line passes.

¹we will explain this later in the module using vectors

Example 1.12. Given points $A:(3,-1)$ and $B:(-2,3)$, the equation of the line through A and B is

$$0 = \begin{vmatrix} x & y & 1 \\ 3 & -1 & 1 \\ -2 & 3 & 1 \end{vmatrix} = (-1 - 3)x - (3 + 2)y + (9 - 2) = -4x - 5y + 7.$$

Given A , B , and $C:(4,7)$, the area of the triangle ABC is

$$A = \frac{1}{2} \begin{vmatrix} 3 & -1 & 1 \\ -2 & 3 & 1 \\ 4 & 7 & 1 \end{vmatrix} = \frac{1}{2} [3(3 - 7) + (-2 - 4) + (-14 - 12)] = \frac{1}{2} |-12 - 6 - 26| = 22.$$

So A , B and C are not collinear.