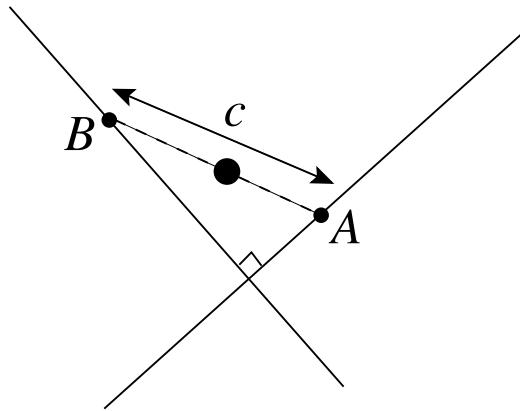


1.3 Locus of a point

The *path* of a point P that moves subject to certain conditions is called the *locus* of P . For example,

- (i) the locus of a point that is always at a distance R from the fixed point (a, b) is a circle of radius R with centre (a, b) ;
- (ii) if l is a fixed line, the locus of a point P which is always a fixed distance d from l consists of two lines parallel to l ;
- (iii) if k and l are distinct lines and P is at the same distance from both k and l , then there are two cases to consider: either k and l are parallel, in which case the locus of P is a straight line parallel to l and k and halfway between them; or if k and l are not parallel, then the locus of P is the two angular bisectors of k and l .

Example 1.20. A point A moves on a line k and a point B moves on a line l perpendicular to k such that the length AB is a constant, c . What is the locus of the midpoint of AB ?



Example 1.21. A point P moves such that its distance from the point $(1,1)$ is always half the distance from the point $(-1,1)$. Find its locus.

Example 1.22. A point P moves such that it is the same distance from the line $y = -1$ as from the point $(0,2)$. Find its locus.

Example 1.23. A point P moves such that its distance from the point $(2,0)$ is always two less than its distance from the point $(-2,0)$. Find its locus.

Solution: Write $P:(x, y)$. Then we have $2 + \sqrt{(x-2)^2 + y^2} = \sqrt{(x+2)^2 + y^2}$. First, square both sides. Then rearrange to get the remaining square-root on one side of the equation; then square again. After some manipulation this becomes $x^2 - \frac{1}{3}y^2 = 1$, or $y = \pm\sqrt{3(x^2 - 1)}$, which is a hyperbola. (Note that the other branch, at negative x , would be appropriate if the distance from $(2,0)$ was two *more* than the distance from $(-2,0)$.) \square

Example 1.24. A point P moves such that the sum of its distances from the points $(0,2)$ and $(0,-2)$ is a constant, $2c$. Find its locus if $c > 2$.

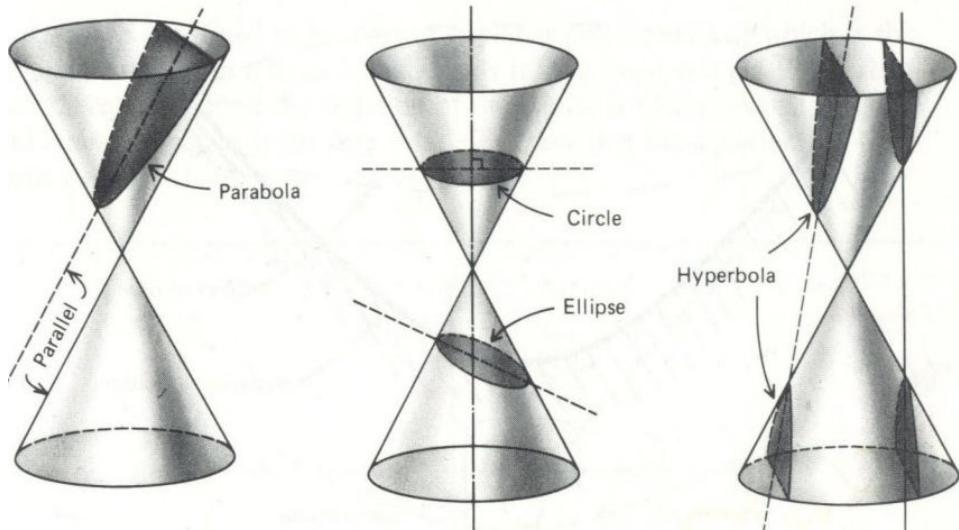
Solution: Write $P:(x, y)$. Then we have $\sqrt{x^2 + (y-2)^2} + \sqrt{x^2 + (y+2)^2} = 2c$. Move one square-root to the other side of the equation and square both sides. Then rearrange to get the remaining square-root on one side of the equation; then square again. After some manipulation this becomes $\frac{x^2}{c^2-4} + \frac{y^2}{c^2} = 1$ which is an ellipse.

Note that we must have $c > 2$, else the locus would be empty. \square

1.4 Conic Sections

1.4.1 Focus and directrix

Parabolas, ellipses (including the special case of the circle) and hyperbolas are called *conic sections*, or *conics*, because they can be visualized as cuts (or sections) through a double cone, as shown below.



An alternative definition, as we have seen above, can be given in terms of the locus of a point (see figure 1):

Definition 1.13.

The **parabola** is the set of points in the plane that are equidistant from a given fixed point (the focus) and a given fixed line (the directrix). In **standard form** the focus is at $(a, 0)$, the directrix is at $x = -a$, and the equation of a parabola is $y^2 = 4ax$.

The **ellipse** is the set of points in the plane whose distance from two given fixed points (the foci) have a constant sum. In **standard form** the foci are at $(\pm c, 0)$, the sum of distances from the foci is $2a$, and the equation of an ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with $b^2 = a^2 - c^2$.

The **hyperbola** is the set of points in the plane whose distance from two given fixed points (the foci) have a constant difference. In **standard form** the foci are at $(\pm c, 0)$, the difference in distances from the foci is $2a$, and the equation of a hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with $b^2 = c^2 - a^2$.

Example 1.25. Show that the equation $y^2 = k(x + k)$ represents a parabola. Find its focus and directrix.

Example 1.26. Show that the equation $x^2 - 3y^2 = 2\alpha y - \alpha^2$ represents a hyperbola. Find its foci and asymptotes.

1.4.2 Eccentricity

The eccentricity of an ellipse measures how far from a circle it is. We define the dimensionless number

$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 - \left(\frac{b}{a}\right)^2} < 1.$$

So when $b = a$ we have a circle, with $e = 0$, and in the limit $b \rightarrow 0$ we find $e \rightarrow 1$.

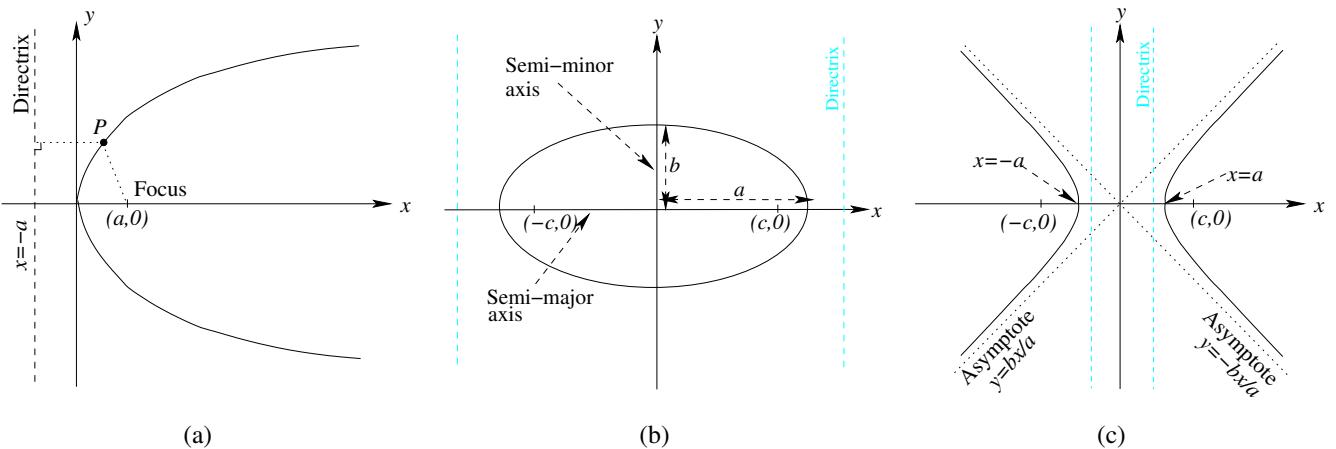


Figure 1: (a) Parabola. (b) Ellipse, with foci at $x = \pm c = \pm\sqrt{a^2 - b^2}$. (c) Hyperbola, with foci at $x = \pm c = \pm\sqrt{a^2 + b^2}$.

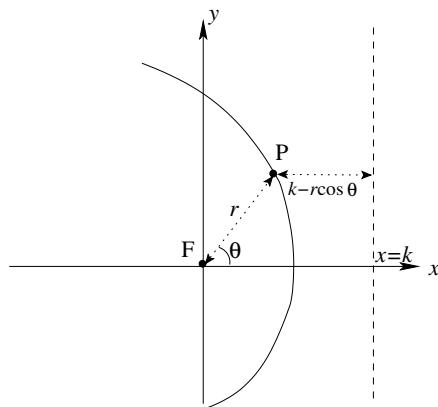
This definition of eccentricity can be extended to a parabola ($e = 1$) and a hyperbola $e = \sqrt{1 + \left(\frac{b}{a}\right)^2} > 1$ if we define an ellipse and a hyperbola to have (notional) directrices at $x = \pm \frac{a}{e}$. Then the eccentricity is the ratio of the distance of a point on the conic from the focus to the distance from the directrix:

$$e = \frac{\text{distance to focus}}{\text{distance to directrix}}.$$

Thus each point on an ellipse is closer to the (nearest) focus than to the (nearest) directrix ($e < 1$); each point on a hyperbola is farther from the (nearest) focus than from the (nearest) directrix ($e > 1$); each point on a parabola is equidistant from the focus and the directrix ($e = 1$);

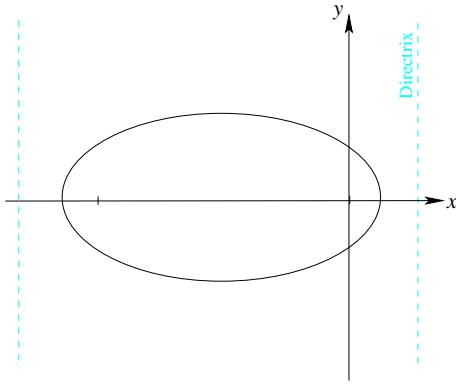
Definition 1.14. If we place the focus at the origin and the directrix at $x = k$ then in polar form the equation of a conic is $r = \frac{ke}{1 + e \cos \theta}$.

Remark: To see this note that $e = r/(k - r \cos \theta)$, since eccentricity is distance to focus divided by distance to directrix.



If there is a change of sign in the denominator, to $1 - e \cos \theta$, the directrix is at $x = -k$. If $\pm \cos \theta$ is replaced by $\pm \sin \theta$, then the directrix is at $y = \pm k$ respectively.

Example 1.27. Find a polar equation for the conic with eccentricity $e = \frac{1}{2}$, one focus at the origin and corresponding directrix at $x = 1$.



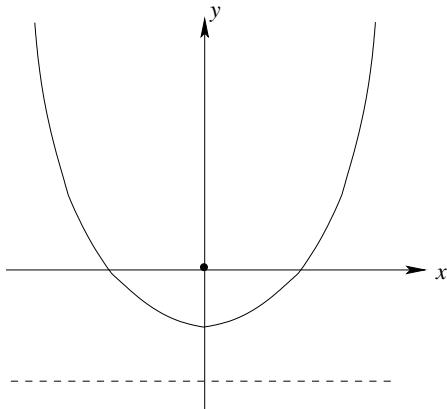
Example 1.28. Find the directrix of the conic with focus at the origin and polar equation $r = \frac{8}{2 - 2 \sin \theta}$.

Solution: First re-write in the simpler form $r = \frac{4}{1 - \sin \theta}$, and compare with $r = \frac{ke}{1 + e \cos \theta}$.
 sin instead of cos means that the directrix is $y = cst$.

The coefficient of $\sin \theta$ is one, so this is a parabola ($e = 1$).

The minus sign indicates that the directrix is at negative y .

Therefore the directrix is at $y = -4$. □



1.4.3 Parametric representation of a conic

Circle: Any point (x, y) on the unit circle can be expressed in terms of a parameter t (or, equivalently, θ) in the range $[0, 2\pi]$ through $x = \cos(t)$, $y = \sin(t)$. Eliminating t by squaring and adding shows that this is indeed the unit circle $x^2 + y^2 = 1$. The parameter t labels points around the circle, starting and finishing at $(1,0)$. We can find an expression for the slope $\frac{dy}{dx}$ at any point on the circle in terms of t , and hence the equation of the tangent to the circle using the expression after Definition 1.4, and similarly for the normal.

Parabola: any point P on a parabola can be written in terms of a parameter $t \in (-\infty, \infty)$, e.g. $x = at^2$, $y = 2at$: we can eliminate t from these two expressions to give $y^2 = 4ax$, the standard equation.

The gradient at any point is $\frac{dy}{dx} = \sqrt{\frac{a}{x}} = \frac{2a}{y} = \frac{1}{t}$. The equation of the tangent to the parabola is therefore $y - 2at = \frac{1}{t}(x - at^2)$, or

$$x - ty + at^2 = 0.$$

In the same way, the equation of the normal is $y - 2at = -t(x - at^2)$, or $tx + y = at^3 + 2at$.

Example 1.29. Show that the normal to the parabola $y^2 = 4ax$ at the point $P:(at^2, 2at)$ meets the parabola again at the point $(au^2, 2au)$ with $u = -\frac{1}{t}(2 + t^2)$.

Remark: The parametric representation of a conic, or any curve in general, is not unique. In its standard form, an ellipse has parameterisation $x = a \cos t, y = b \sin t$, with $t \in (-\pi, \pi]$ often replaced with θ . The standard form of the hyperbola can be parameterised by $x = a \sec t, y = b \tan t$, with $t \in (-\infty, \infty)$, or $x = a \cosh u, y = b \sinh u$, with $u \in (-\infty, \infty)$.