
1.3 Locus of a point
The path of a point P that moves subject to certain conditions is called the locus of P. For example,
(i) the locus of a point that is always at a distance R from the fixed point (a, b) is a circle of radius R with
centre (a, b);
(ii) if l is a fixed line, the locus of a point P which is always a fixed distance d from l consists of two lines
parallel to l;
(iii) if k and l are distinct lines and P is at the same distance from both k and l, then there are two cases to
consider: either k and l are parallel, in which case the locus of P is a straight line parallel to l and k and halfway
between them; or if k and l are not parallel, then the locus of P is the two angular bisectors of k and l.

Example 1.20. A point A moves on a line k and a point B moves on a line l perpendicular to k such that the
length AB is a constant, c. What is the locus of the midpoint of AB?

c
B

A

Example 1.21. A point P moves such that its distance from the point (1,1) is always half the distance from the
point (-1,1). Find its locus.

Example 1.22. A point P moves such that it is the same distance from the line y = −1 as from the point (0,2).
Find its locus.

Example 1.23. A point P moves such that its distance from the point (2,0) is always two less than its distance
from the point (-2,0). Find its locus.

Solution: Write P:(x, y). Then we have 2 +
�

(x− 2)2 + y2 =
�

(x+ 2)2 + y2. First, square both sides.
Then rearrange to get the remaining square-root on one side of the equation; then square again. After some
manipulation this becomes x2 − 1

3
y2 = 1, or y = ±

�
3(x2 − 1), which is a hyperbola.

(Note that the other branch, at negative x, would be appropriate if the distance from (2,0) was two more than
the distance from (-2,0).)

Example 1.24. A point P moves such that the sum of its distances from the points (0,2) and (0,-2) is a constant,
2c. Find its locus if c > 2.

Solution: Write P:(x, y). Then we have
�

x2 + (y − 2)2 +
�

x2 + (y + 2)2 = 2c. Move one square-root to
the other side of the equation and square both sides. Then rearrange to get the remaining square-root on one
side of the equation; then square again. After some manipulation this becomes x2

c2−4
+ y2

c2
= 1 which is an

ellipse.
Note that we must have c > 2, else the locus would be empty.
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1.4 Conic Sections
1.4.1 Focus and directrix

Parabolas, ellipses (including the special case of the circle) and hyperbolas are called conic sections, or conics,
because they can be visualized as cuts (or sections) through a double cone, as shown below.

An alternative definition, as we have seen above, can be given in terms of the locus of a point (see figure
1):

Definition 1.13.
The parabola is the set of points in the plane that are equidistant from a given fixed point (the focus) and

a given fixed line (the directrix). In standard form the focus is at (a,0), the directrix is at x = −a, and the
equation of a parabola is y2 = 4ax.

The ellipse is the set of points in the plane whose distance from two given fixed points (the foci) have
a constant sum. In standard form the foci are at (±c,0), the sum of distances from the foci is 2a, and the

equation of an ellipse is
x2

a2
+

y2

b2
= 1 with b2 = a2 − c2.

The hyperbola is the set of points in the plane whose distance from two given fixed points (the foci) have
a constant difference. In standard form the foci are at (±c,0), the difference in distances from the foci is 2a,

and the equation of a hyperbola is
x2

a2
− y2

b2
= 1 with b2 = c2 − a2.

Example 1.25. Show that the equation y2 = k(x+ k) represents a parabola. Find its focus and directrix.

Example 1.26. Show that the equation x2 − 3y2 = 2αy − α2 represents a hyperbola. Find its foci and
asymptotes.

1.4.2 Eccentricity

The eccentricity of an ellipse measures how far from a circle it is. We define the dimensionless number

e =
c

a
=

√
a2 − b2

a
=

�
1−

�
b

a

�2

< 1.

So when b = a we have a circle, with e = 0, and in the limit b → 0 we find e → 1.
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Figure 1: (a) Parabola. (b) Ellipse, with foci at x = ±c = ±
√
a2 − b2. (c) Hyperbola, with foci at x = ±c =

±
√
a2 + b2.

This definition of eccentricity can be extended to a parabola (e = 1) and a hyperbola e =
�

1 +
�
b
a

�2
> 1

if we define an ellipse and a hyperbola to have (notional) directrices at x = ±a
e
. Then the eccentricity is the

ratio of the distance of a point on the conic from the focus to the distance from the directrix:

e =
distance to focus

distance to directrix
.

Thus each point on an ellipse is closer to the (nearest) focus than to the (nearest) directrix (e < 1);
each point on a hyperbola is farther from the (nearest) focus than from the (nearest) directrix (e > 1);
each point on a parabola is equidistant from the focus and the directrix (e = 1);

Definition 1.14. If we place the focus at the origin and the directrix at x = k then in polar form the equation

of a conic is r =
ke

1 + e cos θ
.

Remark: To see this note that e = r/(k − r cos θ), since eccentricity is distance to focus divided by distance
to directrix.

x

y

F

P

r

θ

k−rcos θ

x=k

If there is a change of sign in the denominator, to 1− e cos θ, the directrix is at x = −k.
If ± cos θ is replaced by ± sin θ, then the directrix is at y = ±k respectively.

Example 1.27. Find a polar equation for the conic with eccentricity e = 1
2
, one focus at the origin and

corresponding directrix at x = 1.

15



x

D
ir
e
c
tr
ix

y

Example 1.28. Find the directrix of the conic with focus at the origin and polar equation r =
8

2− 2 sin θ
.

Solution: First re-write in the simpler form r =
4

1− sin θ
, and compare with r =

ke

1 + e cos θ
.

sin instead of cos means that the directrix is y = cst.
The coefficient of sin θ is one, so this is a parabola (e = 1).
The minus sign indicates that the directrix is at negative y.
Therefore the directrix is at y = −4.

x

y

1.4.3 Parametric representation of a conic

Circle: Any point (x, y) on the unit circle can be expressed in terms of a parameter t (or, equivalently, θ) in the
range [0, 2π] through x = cos(t), y = sin(t). Eliminating t by squaring and adding shows that this is indeed
the unit circle x2 + y2 = 1. The parameter t labels points around the circle, starting and finishing at (1,0). We

can find an expression for the slope
dy

dx
at any point on the circle in terms of t, and hence the equation of the

tangent to the circle using the expression after Definition 1.4, and similarly for the normal.

Parabola: any point P on a parabola can be written in terms of a parameter t ∈ (−∞,∞), e.g. x = at2, y =
2at: we can eliminate t from these two expressions to give y2 = 4ax, the standard equation.

The gradient at any point is dy
dx

=
�

a
x
= 2a

y
= 1

t
. The equation of the tangent to the parabola is therefore

y − 2at = 1
t
(x− at2), or

x− ty + at2 = 0.

In the same way, the equation of the normal is y − 2at = −t(x− at2), or tx+ y = at3 + 2at.

Example 1.29. Show that the normal to the parabola y2 = 4ax at the point P:(at2, 2at) meets the parabola
again at the point (au2, 2au) with u = −1

t
(2 + t2).

16



Remark: The parametric representation of a conic, or any curve in general, is not unique. In its standard
form, an ellipse has parameterisation x = a cos t, y = b sin t, with t ∈ (−π, π] often replaced with θ. The
standard form of the hyperbola can be parameterised by x = a sec t, y = b tan t, with t ∈ (−∞,∞), or
x = a cosh u, y = b sinh u, with u ∈ (−∞,∞).
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