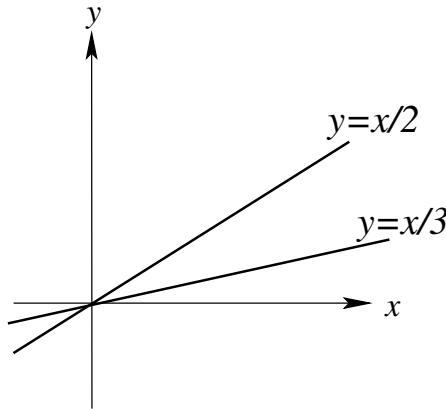


1.2 Curves

In general, the function $F(x, y)$ may not be linear, and therefore $F(x, y) = 0$ describes a curve.

Example 1.13.

- (i) $F(x, y) = x^2 + y^2 - 4$. The curve described by $F(x, y) = 0$ is the circle centred at the origin with radius 2.
- (ii) $F(x, y) = x^2 - y - 1$. $F(x, y) = 0$ describes a parabola.
- (iii) $F(x, y) = x^2 + y^2 + 1$. The curve described by $F(x, y) = 0$ is empty, i.e. there are no points in the plane that satisfy $x^2 + y^2 = -1$.
- (iv) $G(x, y) = x^2 + y^2$. $G(x, y) = 0$ consists of one point, the origin.
- (v) $G(x, y) = x^2 - 5xy + 6y^2$. We can factorise this, giving $G(x, y) = (x - 2y)(x - 3y)$; then $G(x, y) = 0$ consists of all the points on the lines $y = x/2$ and $y = x/3$.



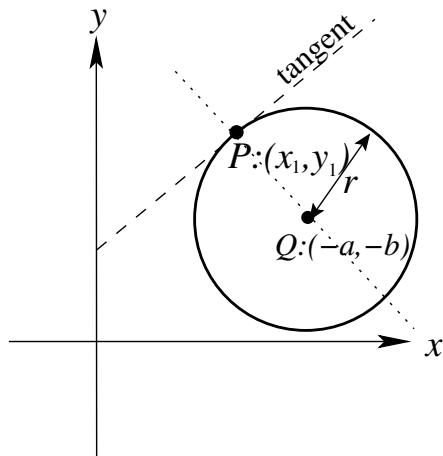
1.2.1 General Equation of a Circle

Consider the expression $S(x, y) = x^2 + y^2 + 2ax + 2by + c$, where $a, b, c \in \mathbb{R}$. We complete the square (twice) to give: $S(x, y) = (x + a)^2 + (y + b)^2 + c - a^2 - b^2$. Then $S(x, y) = 0$ is a circle, centre $(-a, -b)$ and radius $r^2 = a^2 + b^2 - c$.

Example 1.14.

- (i) If $S(x, y) = x^2 + y^2 - 6x + 8y + 21$, then $S(x, y) = 0$ describes a circle (with $2a = -6$, $2b = 8$ & $c = 21$) centred at $(3, -4)$ with radius $r = \sqrt{3^2 + 4^2 - 21} = 2$.
- (ii) If $S(x, y) = x^2 + y^2 + 5x - 1$, then $S(x, y) = 0$ describes a circle centred at $(-\frac{5}{2}, 0)$ with radius $r = \sqrt{(5/2)^2 + 1} = \frac{1}{2}\sqrt{29}$.
- (iii) If $S(x, y) = 5x^2 + 5y^2 + 10x - 12y - 2$, then we write $S(x, y) = 5(x^2 + y^2 + 2x - \frac{12}{5}y - \frac{2}{5})$ to show that $S(x, y) = 0$ describes a circle centred at $(-1, \frac{6}{5})$ with radius $r = \sqrt{1^2 + (\frac{6}{5})^2 + \frac{2}{5}} = \frac{1}{5}\sqrt{71}$.
- (iv) If $S(x, y) = x^2 + y^2 + 4x + 6y + 15$, then $S(x, y) = 0$ appears to be a circle centred at $(-2, -3)$ but the radius is $r = \sqrt{4 + 9 - 15}$ which is not a real number, so this does not describe a circle.

1.2.2 Tangent to a circle



Consider the circle S with centre $Q: (-a, -b)$, radius $r = \sqrt{a^2 + b^2 - c}$ and equation $x^2 + y^2 + 2ax + 2by + c = 0$. We define $S(x, y) = x^2 + y^2 + 2ax + 2by + c$. If $P : (x_1, y_1)$ lies on the circle, we have $S(x_1, y_1) = 0$. The tangent to the circle at P is perpendicular to the line PQ and goes through P . The slope of PQ is $\frac{y_1 + b}{x_1 + a}$ so the tangent has slope $-\frac{x_1 + a}{y_1 + b}$ and thus equation $y - y_1 = -\left(\frac{x_1 + a}{y_1 + b}\right)(x - x_1)$. We expand to give $yy_1 + by - y_1^2 - by_1 + xx_1 + ax - x_1^2 - ax_1 = 0$. Now, since P satisfies $S(x_1, y_1) = 0$, we can substitute $-(x_1^2 + y_1^2) = c + 2ax_1 + 2by_1$ to give $yy_1 + xx_1 + a(x + x_1) + b(y + y_1) + c = 0$. As a sanity check, note that this is linear in both x and y , so it really is a line. Rearranging shows that:

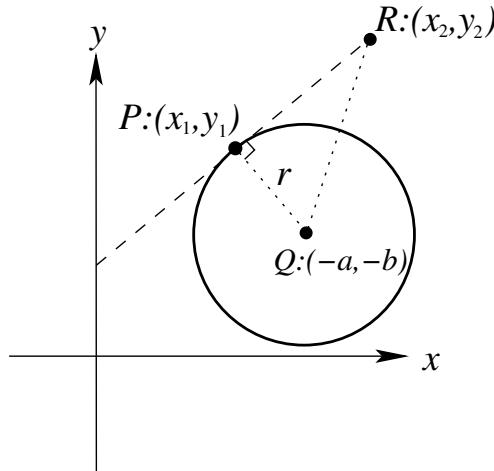
Definition 1.9. In standard form the equation of the tangent to the circle $x^2 + y^2 + 2ax + 2by + c = 0$ at the point (x_1, y_1) is

$$(x_1 + a)x + (y_1 + b)y + ax_1 + by_1 + c = 0.$$

Example 1.15. Find the tangent to the circle $S : x^2 + y^2 - 6x - 3y - 5 = 0$ at $(1, -2)$.

1.2.3 Tangential distance

Definition 1.10. The distance of a point $R : (x_2, y_2)$ from the point P at which the tangent through R touches the circle $S : x^2 + y^2 + 2ax + 2by + c = 0$ with centre Q is called the tangential distance of R from S , and is given by $\sqrt{S(x_2, y_2)}$.



To see this, note that

$$\begin{aligned}
 (RP)^2 &= (RQ)^2 - (PQ)^2 \\
 &= (x_2 + a)^2 + (y_2 + b)^2 - (a^2 + b^2 - c) \\
 &= x_2^2 + 2ax_2 + y_2^2 + 2by_2 + c \\
 &= S(x_2, y_2).
 \end{aligned}$$

This does *not* hold if R is inside the circle, although it is true that $S(x_2, y_2) < 0$ in this case.

Thus, given a circle $S(x, y) = 0$ and a point R: (x_2, y_2) we have:

$S(x_2, y_2) < 0$ if R is inside the circle;

$S(x_2, y_2) = 0$ if R is on the circle (circumference);

$S(x_2, y_2) > 0$ if R is outside the circle, with tangential distance of $\sqrt{S(x_2, y_2)}$.

Example 1.16. Given the circle $S : x^2 + y^2 - 3x + 5y + 2 = 0$, determine if the point $(2, 1)$ is inside or outside the circle and, if outside, how far it is from the point where the tangent through it meets the circle.

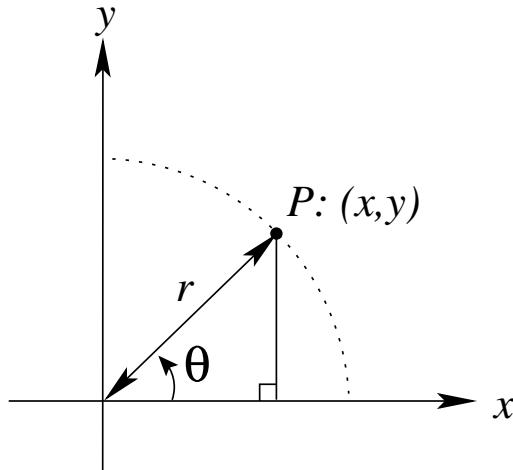
Example 1.17. For which values of c is the point $(c, -1)$ outside the circle $S : x^2 + y^2 - 3x + 5y + 2 = 0$?

1.2.4 Polar coordinates

Instead of Cartesian (x, y) coordinates, we can describe the position of a point in terms of polar coordinates (r, θ) , where r is distance from the origin and θ is (anticlockwise) angular distance from the x -axis. The two coordinate systems are related by

$$\begin{aligned}
 x &= r \cos \theta & r &= \sqrt{x^2 + y^2} \\
 y &= r \sin \theta & \theta &= \tan^{-1} \left(\frac{y}{x} \right),
 \end{aligned}$$

as can be seen from the right-angled triangle in the diagram below. The angle θ is usually restricted to the range $-\pi < \theta \leq \pi$ or $0 \leq \theta < 2\pi$.



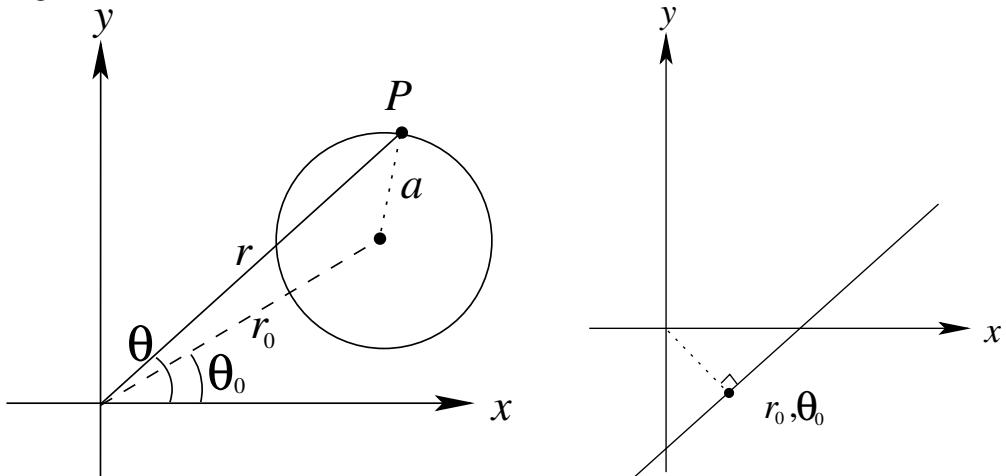
Then the circle $x^2 + y^2 - a^2 = 0$ can be written $r = a$; the line $y = x \tan \theta_0$ can be written $\theta = \theta_0$; and the line $x = 2$ can be written $r \cos \theta = 2$.

Example 1.18. Find a polar equation for the circle $(x - 1)^2 + (y - 3)^2 = 16$.

Definition 1.11. The polar equation of a circle of radius a centred at $r = r_0, \theta = \theta_0$ is

$$r^2 - 2r_0 r \cos(\theta - \theta_0) = a^2 - r_0^2.$$

To see this, consider a point P on the circumference of the circle, with distance r from the origin and subtending an angle θ , and use the cosine law.



Definition 1.12. *The polar equation of a line is*

$$r \cos(\theta - \theta_0) = r_0,$$

where the point $r = r_0, \theta = \theta_0$ lies on the line at the foot of the perpendicular through the origin. This can be derived using the sine law.

Example 1.19. Find a polar equation for the line $x + \sqrt{3}y - 2 = 0$.