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ABSTRACT 
 

Wall-slip is an important phenomenon for the rheological behavior of various 
dispersions, including foams. In a previous study [Denkov et al., Colloids & Surfaces A 263 
(2005) 129] we showed experimentally that the viscous stress between a foam and sliding 
solid wall is proportional to Ca1/2 for a foam generated from potassium carboxylate 
surfactants at air volume fraction of Φ3D = 90 % (Ca = µV0/σ is the capillary number). This 
experimental finding was explained by a theoretical model, whose main assumptions were: 
(1) the foam bubbles had tangentially immobile surface, and (2) the viscous friction occurred 
only in the dynamic wetting films formed between the bubbles and the solid wall. The current 
study is a continuation of our previous work, with the major aim to clarify theoretically the 
effect of air volume fraction, Φ, on the foam-wall friction (the variation of Φ is equivalent to 
varying the ratio of the film to Plateau border radii, RF/RP). By using the lubrication 
approximation, we show with numerical calculations that for bubbles with tangentially 
immobile surfaces, more generally, the bubble-wall friction force could be represented as a 
superposition of two components: friction inside the wetting film, which is proportional to 
Ca1/2 and friction in the transition zone film-meniscus, which is proportional to (A1Ca3/4 – 
A2Ca), where A1,2 are numerical constants depending on Φ. The numerical calculations show 
also that the term describing the friction in the transition zone film-meniscus, is very well 
approximated by A3Ca2/3 in the range of capillary numbers 10-6 ≤ Ca ≤ 10-3. An explicit 
expression is proposed, which describes rather well the numerical results for the friction force. 
The calculations show that the relative contribution of the friction inside the film dominates at 
Φ3D ≥ ca. 90 %. However, at lower air volume fractions (i.e. at smaller ratio RF/RP) the 
friction in the transition zone film-meniscus could be significant and the effective power law 
index could have a value close to 2/3, as predicted in Bretherton’s model [F.P. Bretherton, J. 
Fluid Mech. 10 (1961) 166]. The predictions of the current model are verified with literature 
data about the bubble-wall friction force, as well as with original experimental results about 
the thickness of the dynamic wetting films, formed between bubbles and moving solid wall. 
The obtained results could be useful in the analysis of the particle-wall friction in other 
systems, such as emulsions and dispersions of gel particles. The theoretical approach could be 
modified to describe various phenomena, such as motion of drops/bubbles in capillaries 
(including microfluidic applications) and hydrodynamic lubrication of deformable solid 
particles.  
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1. Introduction.  
 
The foam-wall friction is an important phenomenon, which should be taken into 

account when considering the foam flow and the rheological measurements of foams [1-11]. 
This friction occurs in the contact zones of the foam bubbles with the solid wall, and from 
physico-chemical viewpoint it is related to other phenomena, which have recently attracted a 
considerable interest in several research areas: emulsion-wall friction in relation to emulsion 
rheology [3-5,12], wall-slip in dispersions of gel particles or vesicles [13-15], and motion of 
bubbles, drops and other deformable particles (vesicles, biological cells) in narrow capillaries 
[1,7,16-26], including the recent activity in microfluidics [27-31]. The common feature of all 
these systems is the formation of a dynamic film between the deformable particles and the 
solid wall. The thickness of this dynamic film depends on the relative velocity of the particle 
and the wall, which has important consequences for the particle-wall friction. 

Experimental and theoretical studies [1,7,9,11,16-23] showed for foams, emulsions, 
and bubbles in narrow capillaries that various properties, such as the viscous stress created by 
the particle-wall friction and the average thickness of the dynamic films are well represented 
by power-law functions of the capillary number, Ca = µV0/σ, where µ is the fluid viscosity, V0 
is the relative velocity of the particle and the wall, and σ is the interfacial tension. However, a 
significant uncertainty still exists in the literature on the reasons why different power-law 
indexes, n, are measured in various experiments, and moreover, why the experimental results 
are often in an apparent contradiction with the available theoretical models. From this 
viewpoint, further experimental and theoretical efforts, aimed to reveal the relations between 
the various systems and to reconcile the theoretical predictions with the experimental results, 
seem well justified.  

In our previous study [11] we showed experimentally and theoretically that the 
viscous stress between sheared foam and solid wall could be proportional to Ca1/2 or Ca2/3, 
depending on the used surfactant. In the first case, the viscous dissipation occurs mainly 
inside the wetting films formed between the bubbles and the solid wall. Experimentally, this 
case was realized by using a mixture of potassium carboxylates with relatively long 
hydrocarbon chains (12 to 18 carbon atoms) as surfactants, and foams with air volume 
fraction, Φ3D = 90 %. In the second case, analysed originally by Bretherton [18] and studied 
numerically in detail by Saugey et al. [9], the viscous friction occurs mainly in the transition 
zone between the wetting film and the Plateau border region around the film, which is a 
typical case for synthetic surfactants, which render tangential mobility of the bubble surface. 
This behavior was observed with foams stabilized by sodium dodecyl sulfate (SDS), 
cocoamidopropyl betaine (Betaine), and other surfactants [11].   

The current study is a continuation of our previous work [11], with a major aim to 
describe theoretically the effect of air volume fraction, Φ, on the viscous friction between 
bubbles with tangentially immobile surfaces and solid wall. We take into account the fact that 
the viscous friction in the real systems occurs simultaneously in the two zones mentioned 
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above, namely, inside the wetting film and in the transition zone film-meniscus. The volume 
fraction, Φ, controls the relative size of the wetting films between the bubbles and the wall, 
viz., the ratio RF/RP, where RF is the film radius and RP is the radius of curvature of the 
Plateau border. Thus, Φ is one of the key parameters controlling the relative contributions of 
the two friction zones into the total friction force. 

The theoretical analysis and the numerical calculations performed in the current study 
show that the bubble-wall viscous friction depends primarily on two types of factors: (1) 
geometrical, which include the bubble size, R0, and the ratio RF/RP; (2) dynamic, which are 
accounted for by the capillary number, Ca. Simple explicit expression for the total friction 
force is constructed, which describes the numerical results from the model calculations as a 
superposition of the viscous stresses inside the aforementioned two friction regions. The 
results show that the contributions originating from the two friction zones have different 
power-law dependences on the capillary number, Ca, which are similar to those considered 
separately in the previous studies [11,18]. At high air volume fractions, the friction inside the 
film dominates and the friction force is proportional to Ca1/2, whereas at lower volume 
fractions the friction stresses originating from the film and meniscus regions are comparable. 
Therefore, the current model predicts different power-law indexes, depending on the values of 
Φ and Ca, and the conditions for the transition from film-dominated to mixed friction regime 
are clarified. The theoretical predictions for the thickness of the dynamic wetting film 
between a bubble and a moving wall are compared with original experimental results 
(determined by optical microscopy in reflected light) and a very good agreement is found. 

The paper is structured as follows: In Section 2 we describe the theoretical model. In 
Section 3 we present the numerical results. In Section 4 we show how the foam-wall viscous 
stress could be calculated from the friction force between a single bubble and a wall. Section 
5 describes the experimental procedure used to measure the film thickness and the comparison 
of theory and experiment. Section 6 contains a brief discussion of the results and their relation 
to previous studies by other authors. Section 7 summarizes the conclusions. 

 
 
2. Theoretical model. 
 
2.1. System under consideration 
 
Following our previous study [11], we consider first the viscous friction between an 

infinitely-long cylindrical 2D-bubble and a wall, with the bubble axis being parallel to the 
wall surface. The coordinate system is fixed to the bubble, which is thus considered as 
immobile. The velocity of the solid substrate, V0, is directed along the x-axis, which is 
perpendicular to the axis of the 2D-bubble, see Fig. 1. The radius of the wetting film is 
denoted with RF, whereas the profile of the meniscus regions unperturbed by the viscous 
friction, is represented by circular arcs with radius RP, see Fig. 1.  
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In static system (immobile solid wall), the scaled film and Plateau-border radii, RF/R0 
and RP/R0, are functions of the air volume fraction only, Φ, where R0 is the radius of a non-
deformed cylindrical bubble with the same cross-section (volume) as that of the deformed 
bubble. With the increase of Φ, the radius of the wetting film, RF, increases at the expense of 
the decrease of the radius of the meniscus region, RP. For hexagonally packed, infinitely-long 
2D-bubbles, RF and RP can be calculated by equations derived by Princen [3,4,32,33]: 

 

( )
1 21 2

0
0

0

11
1FR R

  Φ −Φ   Φ = −   Φ −Φ     
    (1) 

 

( )
1 2 1 2

0
0

0

1
1PR R
 Φ −Φ Φ =    −Φ Φ  

     (2) 

 
where the air volume fraction Φ0 = 0.9069 corresponds to hexagonally close-packed circular 
cylinders of radius R0. The length of the projection of the bubble on the surface of the solid 
wall, L, can be found from the geometrical relation 
 

( ) ( )
1 2

0
02 2F PL R R R Φ Φ = + =  Φ 

      (3) 

 
The capillary pressure of the bubble is defined as PC = (PB – P0) = σ/RP, where PB is the 
pressure inside the bubble, P0 is the pressure of the aqueous phase in Plateau border region 
(PB region) away from the film, and σ is the surface tension. 

In the consideration below we assume that RF, RP, L and PC do not depend on the 
velocity of the moving solid wall, V0, and can be determined by Eqs. (1)-(3), despite the fact 
that the thickness and the shape of the wetting film depend strongly on V0. In other words, we 
assume that the moving wall leads to an increase of the liquid layer thickness in the bubble-
wall contact zone, without affecting the curvature of the bubble surface far away from the 
wetting film. 

The modification of the results obtained for 2D-bubbles to describe the friction in the 
film formed between an actual foam bubble (called for brevity 3D-film) and a solid wall is 
presented in Section 4.2. It is instructive to note from the very beginning that the relevant 
comparison of the 2D and 3D films with respect to foam-wall friction is at similar values of 
RF and RF/RP. As seen from the comparison shown in Table 1, similar ratio RF/RP is observed 
at rather different air volume fractions in the case of 2D and 3D films. For example, the 
results for 2D systems with Φ = 0.925, 0.965, and 0.985 should be compared with 3D systems 
having air volume fractions of Φ3D ≈ 0.733, 0.872, and 0.945, respectively, because the 
respective ratios, RF/RP, are similar for the corresponding volume fractions.  
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2.2. Shape of the bubble surface in the contact zone. 
 
In our previous study [11] we used the simplifying assumption that the fluid film 

surface had a certain pre-described shape. Two different profiles, linear and curved ones were 
compared, and we showed that the calculated friction forces differed by less than 3 % for 
these two film shapes. This result demonstrated that the assumption for a particular shape of 
the upper film surface does not affect strongly the final result for the calculated friction force.  

In the current study we also use two model profiles for the fluid surface of the liquid 
layer, which are chosen as to allow us to account for the friction in both the film and the 
meniscus regions. In both model profiles, the meniscus region is represented by circular arcs 
of radius RP (see Eqs. (4a)-(4c); (5a)-(5d) below), whereas for the film region we use two 
different shapes, linear and curved – see Figs. 2 and 3, and Eqs. (4b) and (5b)-(5c) below. The 
linear profile for the film region is chosen, because this is the simplest possible configuration 
of the system and it allows us to make a comparison with the results from our previous study 
[11]. The model curved profile in the current study was chosen to represent the main regions 
in the dynamic films, as observed in the experiments described in Section 5 below, cf. Figs. 
3B and 3C (see also Refs. [34,35]).  
 

(A) Linear profile of the upper film surface. 
 

Here we assume that the bubble surface consists of three regions - two meniscus 
regions and one film region, which are connected as shown in Fig. 2. The first meniscus 
region, placed at the entrance of the film, is described by a circular arc with radius RP and a 
geometrical center with co-ordinates {x1 = RP; z1 = h1 + RP}, where x1 is the position of the 
transition point between the meniscus and the film, and h1 = h(x=x1) is the respective film 
thickness. Thus, the equation describing the entrance meniscus region is: 
 

( ) ( )22
1 1; 0P P Ph x h R R x R x x= + − − − ≤ ≤   (4a) 

 
The profile of the bubble surface in the film region is assumed linear: 
 

        ( ) ( )2 1
1 1 1;

2 F

h hh x h x x x x x
R 2
−

= + − ≤ ≤    (4b) 

 
where x2 = RP + 2RF corresponds to the end of the film region (the exit), and h2 is the 
respective film thickness. 

The profile of the bubble surface in the second PB region is described by a circular arc 
with radius RP 
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( ) ( )22
2 2 ;P Ph x h R R x x x x L= + − − − ≤ ≤2    (4c) 

 
where L is the x-coordinate of the end of the bubble projection on the wall surface, L = 2RF + 
2RP. 

The functions describing the linear profile contain two unknown geometrical 
constants: h1 and h2, which are found while solving the complete set of equations, as 
described in Section 2.4.   
 

(B) Curved profile of the upper film surface. 
 
The second model profile was constructed on the basis of microscope observations of 

the actual dynamic films between bubbles and moving solid wall (see Section 5.1 below for 
explanations about the experimental procedure). In Fig. 3A we show a typical photograph in 
reflected light of the contact region between a bubble and a moving solid wall. As explained 
in Section 5.1, from such a photograph one can reconstruct the profile of the upper surface of 
the wetting film, which is formed between the bubble and the moving wall, see Fig. 3B. One 
sees that the bubble surface has a complex shape, which consists of several distinct regions. 
To perform self-contained numerical calculations (without the necessity to use specific 
experimental information about the film shape and thickness), we approximated the bubble 
surface with a combination of several model functions: one parabolic and one cosine 
functions in the region of the wetting film, plus two circular arcs for the two meniscus regions 
around the film, see Fig. 3C. The parameters describing these functions are determined while 
solving the hydrodynamic problem for the liquid flow between the bubble and the wall, as 
described in Sections 2.3 and 2.4. 

In this model, the bubble surface is divided into four regions, as shown in Fig. 3C: two 
meniscus regions (between 0 and x0, and between x2 and L), and two regions for the wetting 
film (between x0 and x1, and between x1 and x2). The following equations were used to 
describe these regions: 
 

  ( ) ( )22
0 0; 0c P P Ph x h R R x R x x= + − − − ≤ ≤    (5a) 

 

( ) ( )2
1

1 ;
2 P

m x x
h x h x x x

R
−

= + ≤ ≤0 1      (5b) 

 

( ) ( )12 1
1 1

2 1

1 cos ;
2

x - xh hh x h x x x
x - x

 π −
= + − ≤ ≤  

   
2   (5c) 
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( ) ( )22
2 2 ;P Ph x h R R x x x x L= + − − − ≤ ≤2    (5d) 

 
Two important differences between the linear and curved model profiles are worthy 

mentioning: 
(1) For the curved profile we assume that the transition between the circular arc and 

the parabola describing the first film region occurs at a coordinate x0, which differs from RP, 
whereas the transition between the meniscus and the film is assumed to occur always at x1 = 
RP for the linear profile. For the curved profile, the transition point, x0, is found by requiring 
equal slopes of the circular arc with radius RP representing the meniscus region and the 
parabola representing the dynamic wetting film, see Eq. (6) below. 

(2) To close the set of equations and based on the experimental observations (Section 
5.2), we assume for the curved profile that the maximum of the dynamic pressure is always at 
the transition point between the parabola and the cosine function, while no such assumption is 
used for the linear profile.  

The curved profile is described by three unknown constants – the thickness of the film 
at the transition between the parabola and the cosine function, h1, the minimal thickness of the 
film, h2, and the radius of curvature of the parabola describing the first film region, mRP. The 
parameter m is the ratio of the curvatures of the parabola and the circular arc describing the 
meniscus region, RP. All other geometrical parameters describing the shape of the upper film 
surface can be found from h1, h2 and m, by using the following relations:  

The film thickness, h0=h(x=x0) is determined from Eq. (5b). On its turn, x0 is 
determined by matching the derivatives of the two functions h(x) at the transition point, x=x0, 
which leads to the following transcendental equation for x0: 

 

( )
( )0 10

22
0

P

PP P

m x xx R
RR x R

−−
=

− −
     (6) 

 
To determine the value of x1, we pre-set the ratio of the film, which is occupied by the 

parabola and by the cosine function. For simplicity, we assume that the cosine function 
occupies always a given fraction of the film region, (x2-x1) = k(2RF), where k is assumed to be 
constant, which does not depend on the capillary number and on the air volume fraction. This 
assumption is in a reasonably good agreement with the experimental observations - see Fig. 
12A below, in which the film shape is represented for different velocities, V0. In addition, 
direct numerical calculations showed that the results for the friction force depend slightly on 
the chosen value of k, while the latter is varied between 0.1 and 0.3 (the range observed in the 
experiments). Thus, we set for the calculations: x1 = [RP + 2(1-k)RF] and x2 = (RP + 2RF). All 
numerical results presented below are obtained with k = 0.1. 
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Concluding, the curved film profile is characterized by three unknown constants, h1, h2 
and m, which are determined while solving the overall problem, as explained at the end of 
Section 2.4.  

 
2.3. Basic equations and boundary conditions.  
 
For description of the liquid flow between the bubble and the solid wall we use the 

lubrication equation  
2

x
2

V
z

dP
dx

∂
= µ

∂
      (7) 

 
where µ is the liquid viscosity and P(x) is the local pressure in the liquid layer. In the 
lubrication approximation this pressure is a function of the x-coordinate only and does not 
depend on z. In contrast, the lateral component of the fluid velocity, Vx(x,z), is a function of 
both coordinates, x and z. Due to the assumed 2D-configuration of the bubble, no dependence 
on y-coordinate is considered for any of the studied quantities. All intensive quantities, such 
as the friction force, FFR, are given per unit length of the bubble.   

Equation (7) is solved under the assumption that the bubble surface is tangentially 
immobile, which corresponds to the following boundary conditions for the fluid velocity at 
the upper and lower surfaces of the film 

 

0( , 0)
( , ) 0

x

x

V x z V
V x z h

= =
= =

     (8) 

 
where h(x) is the local thickness of the liquid layer.  

For determination of the dynamic pressure inside the liquid layer we use the following 
boundary conditions:  

( ) ( ) 00P x P x L P= = = =      (9) 

 
which implies that the pressure in the liquid between two neighbouring bubbles in the foam is 
equal. Note that this boundary condition is justified when studying the foam-wall friction with 
3D foams, because the PB regions between the bubbles are interconnected. For some of the 
related research problems (e.g., bubble/drop moving in a capillary) the boundary condition, 
Eq. (9), should be modified, because the pressures on both ends of the bubble could be 
different.     

The lubrication equation is solved along with the equation for mass conservation, 
which could be written in the following form [11,36] 
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( )x
0

const
h

Q V x,z dz= =∫     (10) 

 
Equation (10) expresses the fact that the hydrodynamic flux, Q, should be conserved along the 
film. The flux Q is not known in advance and has to be found while solving the entire 
hydrodynamic problem. 

 
2.4. Set of equations solved numerically. 
 
In this section we present the set of equations, which are solved to determine the 

geometrical parameters describing the film shape, as well as the equations used to determine 
the dynamic pressure inside the film, the viscous stress on the solid wall, and the friction force 
(see also the Appendix).   

Double integration of Eq. (7) along with the boundary conditions, Eq. (8), leads to the 
following expression for the liquid velocity Vx(x,z)  

 

0
1( , ) ( ) 1

2x
dP zV x z z z h V
dx h

 = − − −
 µ      (11) 

 
By introducing Eq. (11) into Eq. (10), one derives the following equation for P(x): 

 

0
3 2

V26dP Q
dx h h

 = − +  
µ      (12) 

 
which is integrated to derive an expression for the dynamic pressure Pd[h(x)]  

 

0
0 3 2

0

V2( ) ( ) 6
x

d
QP x P x P dx

h h
 ≡ − = − +  ∫µ    (13) 

 
In the above equations, Q is unknown constant. By using the boundary condition Pd(x = L) = 
0, one obtains the following expression for Q: 

  

0
2 3

0 0

/
2

L LV dx dxQ
h h

    
=     

     
∫ ∫      (14) 

 
The above equation is used for determination of Q for the linear profile of the upper film 
surface, Eqs. (4a)-(4c). For the curved film profile, Eqs. (5a)-(5d), we assumed that the 
maximum in the dynamic pressure occurs at x = x1, i.e. dP/dx = 0 at x = x1 (see Fig. 12A and 
Section 5.2 for argumentation), which leads to the relation Q = V0h1/2. The latter 
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approximation allowed us to use the boundary condition Pd(x = L) = 0 for determination of the 
unknown value of h1 in the curved film profile.   

For both profiles, linear and curved, the minimal film thickness, h2, is determined from 
the normal force balance, which could be written in the following form (at negligible 
contribution of the disjoining pressure [11]):  

 

( )
0

2
L

dP x dx R P=∫ F C      (15) 

 
Equation (15) implies that the dynamic pressure inside the film, Pd(x) = P(x) – P0, which acts 
on the fluid film surface from below (defined as an excess with respect to the pressure in the 
liquid outside the film, P0), is counterbalanced by the capillary pressure of the bubble, PC.  

The friction force on the solid surface is calculated by the equation: 
  

0
2

00

2V32
z

L
x

FR
A zB

V QF dA dx
h h=

∂   = µ = µ − +   ∂   ∫ ∫     (16) 

 
where AB is the projected area of unit length of the bubble on the wall surface. The friction 
force is defined in Eq. (16) to be positive (despite the fact that it is directed opposite to the x-
axis in the used coordinate system, Figure 1B).   

Direct check with the final formulas confirmed that the friction force exerted on the 
wall, Eq. (16), is equal in magnitude and opposite in direction to the friction force acting on 
the bubble. Following the reasoning in Section 2.3 of Ref. [11], minimization of FFR is used to 
determine the last unknown geometrical parameter, h1, for the linear profile, Eqs. (4a)-(4c), 
and the parameter m characterizing the parabola for the curved film profile, Eqs. (5a)-(5d). 
Thus a closed set of equations is obtained (see also [37]). 

It is more convenient to use dimensionless functions in the calculations, as well as for 
presenting and analyzing the results. For illustration, we present below the dimensionless 
equations for the linear profile of the film surface; the same scaling is used for the curved 
profile. 

First, we introduce the dimensionless variables ξ ≡ x/L and η ≡ h(x)/hC, where the 
scaling constant for the film thickness is defined as: 

 

( )
1 2

1 21 20 F
C

C

V Rh Ca
P

 µ
≡ = 
 

F PR R      (17) 

 

The dimensionless liquid flux along the film is defined as Q~ ≡ Q/(V0hC) and Eq. (14) 

can be expressed in the form: 
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( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

1 2

1 1

2 2 2
0 0 I II III
1 1

3 3 3
0 0 I II III

1 1
2 2

d d d d

Q
d d d d

ξ ξ

ξ ξ

ξ ξ

ξ ξ

2

3

  ξ ξ ξ+ + ξ
  

η ξ η ξ η ξ η ξ                = =  
ξ ξ ξ ξ   + +  η ξ  η ξ η ξ η ξ



               

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
   (18) 

 

where ,  and η  is the dimensionless thickness in the first meniscus region, 

in the film region, and in the second meniscus region, respectively (see Fig. 2 and Eqs. (4a)-
(4c)), whereas ξ

( )Iη ξ ( )IIη ξ ( )III ξ

1 = x1/L and ξ2 = x2/L are the dimensionless positions of the film entrance and 
film exit, respectively. The integration of the functions in Eq. (18), gives an analytical 

expression for the dependence of Q~  on the parameters η1 and η2, which are still unknown 

constants: 
 

( ) ( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

1 2
1 2 1 4 1 2

3 2 3 23 2 3 2
1 2 1 1 2 2 1 1 2 2

2 2
1 2 1 41 21 2

2 22 2 2 2
1 2 1 1 1 2 2 2

1 1arcsin arcsin
2 1 2 11 1 1 1 1

2 2 2 2 2 2

2 1 1 2 1 11 3
2 22 1 2 1

P

F

P

RG G
R

Q

RG G

  + +      + +  + + + +   + + + +        =

 + + + ++
+ + +  + + + + 

π π
δ δ

ηη η δ η δ η δ η δ

δ δη η
η η η δ δ η δ δ

( )

( )

( )

( )

1 2 1 2
1 2

5 2 5 25 2 5 2
1 1 2 2

1 1arcsin 1 arcsin 1
2 1 2 1

2 2FR

     
+ + + +     + +       +   + +       

π πδ δ
δ δ

η δ η δ

 
 (19) 

 
where the dimensionless quantities G = (RP/RF)Ca and δ1,2 = (h1,2/RP) = η1,2(CaRF/RP)1/2 are 
introduced.  

By using Eqs. (13) and (17) one derives the following equation for the dimensionless 
dynamic pressure in the layer between the bubble and the wall: 

 

( )
( ) 3

0

2
( ) ( ) / 6d d C

F

QLP P P
R

 −≡ =
    
∫
ξ η ξ

dξ ξ
η ξ

ξ      (20)  

 

where Q~  is determined from Eq (19). Introducing Eq. (19) into Eq. (15), one derives the 

following transcendental equation (representing the normal force balance) for determination 
of the minimal film thickness, h2, and its dimensionless counterpart, η2: 

 

( )
( )

12

2
0 0

2
3F QR d

L

 −=
    

∫ ∫
ξ η ξ

3 dξ ξ
η ξ

     (21) 
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To determine the remaining parameter h1 and the friction force, we proceed as 
follows: From Eq. (16) we express the friction force in the form 

 

( )
( )

( )
( )

( )
( )

( )
( )

1 2

1 2

1

2
0
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where the dimensionless friction force was introduced 
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  (23) 

RFP = (1/RF + 1/RP)-1 is the harmonic mean of RF and RP. Respectively,  in Eq. (22) is the 

dimensionless friction force in the first meniscus region (before the film entrance),  - in 

the film region, and  - in the second meniscus region (after the film exit). Analytical 

integration of the friction stress over the different regions results in the following expressions 
for the three components of the friction force: 

(1)
FRF

(2)
FRF

(3)
FRF
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The last step in solving the set of equations is to minimize the total friction force [11], FFR, in 
order to determine the value of η1.  

Thus the numerical procedure for the linear film profile can be summarized as follows: 

(1) the dimensionless flux, Q~  is expressed from Eq. (19) as a function of the unknown 

parameters η1 and η2; (2) The parameter η2 is determined as a function of η1 from Eq. (21); 
(3) From minimization of the friction force we determine the value of η1, which is substituted 

into Eqs. (18)-(24) to evaluate η2, Q~ , Pd(ξ), and  for given values of Ca and Φ. The 

relative contributions of the meniscus and film regions in the total friction force are 

determined from the ratios 

FRF

( )(1 (3)
P F FR F

)
R Rf F F F= +  and (2)

FILM FR FRf F F= .  

The corresponding expressions for the curved film profile are presented in the 
Appendix. The numerical procedure in this case is the following: (1) The dimensionless flux, 

Q~ , is assumed equal to η1/2; (2) The dimensionless thickness, η1, is expressed as a function 

of m and η2 from the counterpart of Eq. (18); (3) Equation (21) is used for determination of η2 
at a given value of m; (4) From minimization of the total friction force, the value of m is 

determined and, afterwards, substituted into Eqs. (18)-(22) to determine η1, η2, Pd(ξ),and  

for given values of Ca and Φ.  
FRF

 
 
3. Numerical results. 
 
First, we present and compare numerical results for the friction force, as calculated 

with the two model profiles of the film surface, the linear and the curved ones. These results 
show that: (1) the friction forces calculated with the two profiles are very similar at equivalent 
Ca and Φ, and (2) two qualitatively different cases could be distinguished, depending on the 
value of Φ (viz. on the ratio RF/RP) – at high air volume fraction the viscous friction inside the 
wetting film dominates, whereas at lower air volume fraction the contributions of the viscous 
stress inside the film and in the transition region film-meniscus are comparable. Appropriate 
scaling laws are suggested to describe the dependence of the friction force on Ca and on the 
ratio RF/RP.  Afterwards, we show typical numerical results for the shape of the bubble 
surface, dynamic pressure and distribution of the viscous stress along the solid wall, as 
calculated with the curved profile of the upper film surface. The calculations are limited to 
small capillary numbers, Ca ≤ 10-2, to remain in the range, in which the lubrication 
approximation is expected to be valid [18].   
 

3.1. Friction force. 
 

The dependence of the dimensionless friction force, , on the capillary number, Ca, 

is shown in Fig. 4A,B at several air volume fractions, varying between Φ = 0.93 and 0.999. 
FRF
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Fig. 4A shows the results calculated with the linear film profile and Fig. 4B – with the curved 
film profile, whereas Fig. 4C is a correlation plot for the results calculated with these two 
model profiles. From Fig. 4C one sees that the agreement between the numerical results 
calculated with the two model profiles is very good (typically within a few percent), except 
for the lowest air volume fraction, Φ = 0.93 (see the empty squares in Fig. 4C). From this 
correlation plot one can conclude that the assumed specific shape of the bubble surface does 
not affect strongly the calculated force, except for the lowest air volume fractions, 
corresponding to Φ3D ≈ 0.75, and hence, in the following consideration we discuss the general 
trends for both profiles together.  

One sees from Fig. 4A,B that  is almost constant at Φ = 0.999 (RFRF F/RP ≈ 9), which 

means that the dimensional friction force scales very well with Ca1/2, see Eq. (23). At such 
high air volume fractions, the friction in the film dominates – the numerical results practically 
coincide with those calculated in Ref. [11], where we neglected the friction in the meniscus 
region. However, at lower air volume fractions, Φ ≤ 0.99 (RF/RP ≤ 2), the dimensionless force 

 is lower and increases with the capillary number Ca. These trends reflect the fact that the 

total friction force includes a noticeable contribution from the transition regions film-
meniscus under these conditions. The relative contributions of the friction inside the film, 
f

FRF

FILM, and in the transition regions film-meniscus, fP, are compared in Fig. 5 - one sees that the 
ratio fP/fFILM depends strongly on both Ca and Φ. At high air volume fractions, Φ ≥ 0.99 
(RF/RP ≥ 2), the friction inside the film region is prevailing. In contrast, at lower air volume 
fractions, fP could be larger than fFILM. At fixed Φ, the relative contribution of the friction in 
the transition zones film-meniscus increases strongly with the capillary number.  

The relative contributions of the friction in the various regions is further analysed in 
the Appendix. After an expansion of Eqs. (24a)-(24c) in series, taking the leading terms with 
respect to Ca, and interpolating the numerical results by the least-squares method, we found 
that the total friction force could be described rather well by the following expression: 

 
1 2 1 4

1 2 3 42 50 7 0 8 5
/

/F
FR

P F

R PRF . Ca . Ca . Ca
R R

    
≈ σ +σ −        

  (curved profile) (25) 

 
The first term in Eq. (25) accounts for the friction inside the film and is equivalent to 

the force calculated in our previous study [11]. The remaining two terms account for the 
friction in the transition regions film-meniscus; the numerical constants in front of Ca3/4 and 
Ca (7.0 and 8.5, respectively) were found in the interpolation procedure. 

In Fig. 6A we show a comparison of the numerically calculated values of  (the 

symbols) and those calculated from Eq. (25) (the solid curves) - a relatively good agreement, 
typically within a few percent, is established for all values of Ca and Φ of interest (Ca ≤ 10

FRF

-2 
and Φ ≥ 0.93, see Table 1 for the corresponding volume fraction of 3D-bubbles, Φ3D). 
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Noticeable deviations are observed only when the air volume fraction is very low, Φ ≈ 0.93 
(corresponding to Φ3D ≈ 0.75) and the capillary numbers are relatively high, Ca > 10-4, but 
even these deviations do not exceed 15 %.  

Remarkably, we found by direct numerical comparison that the last two terms in Eq. 
(25), which account for the friction in the transition regions film-meniscus, could be 
approximated rather well in a certain range of capillary numbers and air volume fractions by 
an expression, which scales with Ca2/3, as suggested by Bretherton [18] (who neglected the 
friction inside the film). In this range, Eq. (25) can be presented as 

  
1 2

1 2 2 32 50 3.3
/

F
FR

P

RF . Ca Ca
R

 
≈ σ + σ 

 
  (PC = σ/RP) (25’) 

 
The latter equation described relatively well (accuracy better than 5 %) the calculated values 
for the friction force at 10-7 ≤ Ca < 10-3. However, a systematic deviation was observed at 
higher capillary numbers, Ca > 10-3, with Eq. (25’) predicting larger friction force than the 
numerical calculations – see the dashed curves in Fig. 6A. Equation 25’ is very convenient for 
estimating and comparing the contributions of the friction stresses in the film region and in 
the transition region film-meniscus. 

It is worthwhile noting that the numerical factor 3.3 in front of the second term in Eq. 
(25’), is about twice smaller than the numerical factor 7.46 given in the Bretherton’s paper for 
bubbles with tangentially immobile surface in the transition region film-meniscus (Bretherton 
always assumes that the flow inside the film is a plug-flow, which corresponds to mobile 
surface at the entrance of the planar film) [18, 38]. Note also that different definitions of the 
capillary pressure are used in the two models: since we consider infinitely long 2D-bubbles, 
we define PC = σ/RP, whereas Bretherton considered a bubble moving in a capillary tube, so 
that PC = 2σ/RP in his model [18]. This difference in the definitions of PC affects the normal 
force balance, Eq. (15). We checked numerically how the change of the capillary pressure 
definition into PC = 2σ/RP affects the predictions of our model, and found that the numerical 
pre-factor for the friction in the film region increases by 21/2 (such change is predicted also by 
our previous model [11]), whereas the numerical factor for the friction in the transition zone 
increases by less than 10 %: 

 
1 2

1 2 2 32 50 2 3 6
/

F
FR

P

RF . Ca . Ca
R

 
≈ σ + 

 
σ    (PC = 2σ/RP) (25’’) 

 
Thus the numerical factor for the friction in the transition zones film-meniscus still remains 
smaller than the respective factor in the Bretehrton’s model [18,38], due to the coupling 
between the friction in the film and in the transition regions for bubbles with tangentially 
immobile surfaces (see also the discussion in Section 6).  
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3.2. Shape of the bubble surface.  

 
The shape of the bubble surface for the curved profile is determined by Eqs. (5a)-(5d). 

To compare the bubble shapes at different capillary numbers, we present in Fig. 7 the 
dimensionless film thickness, η = h/hC, as a function of the scaled coordinate, ξ = x/L, as 
calculated at Ca = 10-3 and Ca = 10-5 for given, relatively high air volume fraction, Φ = 0.99 
(corresponding to Φ3D ≈ 0.96). One sees from Fig. 7 that the thickness of the liquid layer 
inside the film region scales very well with Ca1/2. However, the thickness of the liquid layer in 
the PB regions does not scale with Ca1/2, see Fig. 7. The latter result could be explained by 
analysing the equations describing the shape of the PB regions, Eqs. (5a) and (5d), which can 
be presented in the following dimensionless form: 

 

( )
2 2

0 0; 0P P P
C

C

R R RL
h L L L

     η ξ = η + − − ξ − ≤ ξ ≤ ξ        
   (5a’) 

 

( ) ( )
2

2
2 2 ;P P

C

R RL
h L L

   η ξ = η + − − ξ − ξ ξ ≤ ξ ≤    
2 1   (5d’) 

 
The numerical calculations show that the values of η0C and η2 vary within less than 1 %, 
while varying the capillary number at such high value of the air volume fraction, Φ = 0.99, 
whereas the second terms in the right-hand-sides of Eqs. (5a’) and (5d’) are multiplied by 
L/hC ~ Ca-1/2. Thus the dimensionless thickness in the PB region should decrease with the 
increase of Ca, just as observed in the numerical calculations.  

The effect of air volume fraction, Φ, on the bubble shape at fixed capillary number, 
Ca = 10-3, is illustrated in Fig. 7B. The higher air volume fraction leads to larger film radius, 
see Eq. (1), and to smaller dimensionless film thickness in both the film and the PB regions. 
For example, the value of η2 = h2/hC decreases by ≈ 40 % (from 0.82 down to 0.5) when Φ 
increases from 0.95 to 0.99. On the other hand, the value of hC increases only by 3 % (from 
0.43 to 0.45) while increasing Φ from 0.95 to 0.99. Thus, the dimensional film thickness is 
around 40 % smaller at higher value of Φ, for the same bubble radius. This reduction of the 
film thickness is due to the higher capillary pressure of the more deformed bubbles at higher 
air volume fraction. 

The dependence of the main geometrical parameters characterizing the film thickness, 
η1 and η2, on Φ and Ca is illustrated in Fig. 8. The values of η1 and η2 decrease with the 
increase of Φ (due to the increased capillary pressure of the deformed bubbles) and reach a 
constant value of 0.83 and 0.45, respectively, when Φ ≥ 0.99 and the friction in the film 
dominates the total friction force. The dependence of the dimensionless film thickness on Ca 
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is rather weak at such high air volume fractions. In contrast, at lower volume fractions, when 
the friction in the transition region film-meniscus is significant, the dimensionless film 
thickness increases rapidly with the increase of Ca.  

By fitting the numerical data for the film thickness, h1 and h2, we constructed the 
following semi-empirical expressions to describe their dependence on Ca, RF, and RP: 

 
1 2

1 2 0 71 0 83 0 42
/

.F P

P P

h R R
. Ca . Ca

R R R
 

≈ + 
  F

    (26) 

 
1 2
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/
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P P

h R R
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R R R
 

≈ + 
  F

    (27) 

 
Equations (26) and (27) describe all numerical results with accuracy better than 5 %. 

These equations show that the effects of Φ (expressed through the values of RF and RP) and 
Ca could be decomposed into two groups, one of them proportional to (CaRF/RP)1/2, which 
accounts for the viscous stress inside the film, whereas the other one is proportional to (RP/RF) 
Ca0.7. The first group dominates at high volume fractions, when the friction inside the film 
prevails in the total friction force. At lower volume fraction, the two terms are comparable. 
The attempt to describe the numerical results for the film thickness by using a linear 
combination of the predictions of the two models (Refs. [11] and [18]), viz. h ∝ (A1Ca1/2 + 
A2Ca2/3), where A1 and A2 are numerical constants, gave noticeably worse description.    
 

3.3. Stress distribution on the wall surface. 
 
The viscous stress on the solid wall can be calculated from the velocity profile V(x,z): 

 

( )
( )

0
2

0

4 6x

Cz

QV V
z h=

 η ξ −∂ µ τ = −µ =
∂ η ξ   




    (28) 

 
The sign of τ was chosen to be positive when the wall stress is directed in parallel with the 
friction force. The respective dimensionless viscous stress can be defined as 
 

( )
( )

1 2
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2

4 6P
C

C F

QV R/ / P Ca
h R

   η ξ −   µ  τ = τ = τ =       η ξ        

    (29) 

 
As explained in Section 2.2, for the curved profile of the upper film surface we used 

the relation 1 2Q = η , which leads to: 
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( )
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1
2

4 3 η ξ − ητ =
 η ξ   

       (29’) 

 
From Eq. (29’) one sees that the viscous stress is zero, when the dimensionless film 

thickness η(ξ) = 0.75η1. The calculated surface profiles show that the latter condition is 
satisfied in the film region, which is approximated by a cosine function (see Eq. (5c)) and in 
the second meniscus region (Eq. (5d)). For all values η(ξ) > 0.75η1 the stress is positive, 
whereas at η(ξ) < 0.75η1 the stress is negative. Analytical differentiation of Eq. (29’), shows 
also that the stress passes through a maximum at η(ξ) = 1.5η1, which occurs in the first film 
region (the parabola given by Eq. (5b)) and in the second meniscus region.  

These features of the dependence τ (ξ) are illustrated in Fig. 9A with calculations 
performed at Φ = 0.99 and two values of the capillary number, Ca = 10-4 and 10-2. For both 
capillary numbers the viscous stress passes through a relatively flat maximum inside the 
wetting film at ξ ≈ 0.4 (slightly before the film centre). In the first film region, the ratio η/η1 
varies between 2.0 and 1.0, so that the stress is positive and relatively high. When the 
thickness of the film becomes smaller than 0.75η1 the stress becomes negative and passes 
through a deep and sharp minimum, which appears at the constriction point, ξ2, where dη/dξ 
= 0. A second maximum of the stress is observed in the PB region, after the film exit. This 
complex profile of the viscous stress reflects the changes of the velocity profile in the film 
and in the adjacent meniscus regions. For example, the negative stress (directed opposite to 
the total friction force), which observed at ξ ≈ 0.85, is due to intensive Poiseuille flow in the 
narrow exit region (the constriction), created by the higher dynamic pressure in the film, P > 
P0. In the constriction zone this Poiseuille flow prevails over the linear flow (directly created 
by the moving wall), which results in a local change of the sign of the fluid velocity gradient 
at the wall surface, (∂Vx/∂z)z = 0, see Eq. (28).   

It is seen from Fig. 9A that the dimensionless stress, τ (ξ), is almost the same in the 
film region at the different capillary numbers, i.e., the stress scales with Ca1/2 inside the film, 
see Eq. (29). However the stress in the PB regions is noticeably higher at the higher Ca 
number, because it does not scale with Ca1/2. The numerical calculations show that at this air 
volume fraction, Φ2 = 0.99, the contribution of the viscous friction in the transition regions 
film-meniscus becomes noticeable at high capillary numbers, Ca > 10-4, see Fig. 5. In 
contrast, the relative contribution of the viscous friction in the transition regions is important 
at all capillary numbers of interest when the air volume fraction is lower, see Eq. (25) and Fig. 
5. As a result, the viscous stress does not scale with Ca1/2 even in the film region at low values 
of Φ - see for example Fig. 9B, which plots the distribution of the viscous stress on the wall at 
Φ = 0.95, and Ca = 10-4 and 10-2.  
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3.4. Dynamic pressure, Pd. 
 
The dynamic pressure, Pd, gradually increases at the film entrance, passes through a 

maximum at h = h1, and afterwards decreases rapidly in the narrow constriction region, 
passing through a shallow minimum and becomes zero at the end of the second PB region, see 
Fig. 10. The dependence of the dimensionless dynamic pressure on the scaled lateral 
coordinate is almost the same for different values of Ca, when the air volume fraction is 
relatively high and the friction in the film is dominant, see Fig. 10A. In contrast, the pressure 
distribution depends strongly on Ca at low air volume fractions - as seen from Fig. 10B, the 
dimensionless dynamic pressure in the PB regions increases, whereas it decreases inside the 
wetting film with the increase of Ca. This result is in agreement with the fact that the relative 
contribution of the viscous friction inside the meniscus regions increases with the capillary 
number, Ca, and is very significant at low values of Φ.  

In conclusion of Section 3, the numerical results show that we could decompose the 
total friction into components related to the friction inside the wetting film and friction in the 
transition regions film-meniscus. At high air volume fractions, the friction in the film 
dominates and most of the quantities scale as described in our previous study [11]. At low air 
volume fractions, the friction in the transition regions film-meniscus is not negligible and 
more complex scaling laws are applicable, e.g., Eqs. (25), (25’), (26) and (27).   
 
 

4. Viscous stress for foam-wall friction. 
 
 Following the approach from Section 2.5 in Ref. [11], here we use the expression for 
the friction force between a single bubble and a wall to calculate the average foam-wall 
viscous stress, τW, which is experimentally accessible quantity, e.g., by rheological 
measurements. For simplicity, in the derivation we use the shorter equation for the bubble-
wall friction force, Eq. (25’). The same approach can be used to obtain analogous expression 
for τW, which is based on the more accurate Eq. (25). 
 

4.1. Estimate of the average foam-wall viscous stress for 2D-films. 
  

The average wall stress, τW, and the friction force per one bubble, FFR, are related 
through the equation 

W FRF / ABτ =       (30) 

 
where AB is the average area, occupied by one bubble on the solid wall. For two-dimensional 
bubbles like those considered in the preceding section, AB is equal to L = 2(RP+RF). Thus 
combining Eq. (25’) and (30), we obtain the following expression for the average 
dimensionless friction stress on the wall: 
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(31) 
 
where R0 is the radius of the non-deformed bubble, Φ0 = 0.9069 is the volume fraction at 
close-packing of the cylindrical 2D-bubbles, and RF and RP are expressed through Eqs. (1) and 
(2).  

 
4.2. Estimate of the average foam-wall viscous stress for 3D-films. 
 
As explained in Ref. [11], to estimate the foam-wall viscous stress for a real foam, 

which forms circular 3D-wetting films upon contact with the solid wall, we can assume that 
the average stress inside the 3D-film is proportional to the average viscous stress in the 
respective 2D-film (at equivalent all other conditions – bubble and film radii, surface tension, 
liquid viscosity, velocity of the substrate, etc.). For the friction in the transition zone film-
meniscus, we assume that its contribution into the 3D-film is proportional to the respective 
friction contribution in the 2D-film, multiplied by the projected length of the 3D-film in 
direction perpendicular to the flow [6,11,39]. For the system under consideration, this 
projected length is equal to 2RF, where RF is the radius of the 3D film.  

Following this reasoning, we obtain the counterpart of Eq. (31) in the following form: 
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 τ = +   π     

  (3D-film)  (32) 

 
where the proportionality constants CIFilm and CILine are introduced to account for the fact that 
we use the expression derived for the friction force of 2D-film to estimate the wall stress for 
3D-films. The index “I” reminds that these expressions are for immobile bubble surface. 

Further, to express the dependences of RF and RP on Φ3D, one can use the function 
f3(Φ3D) = AF/AB, which describes the relative area of the solid wall, which is covered by the 
wetting films and which was experimentally determined by Princen [5] to be given by the 
following empirical relation  
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Assuming as reasonable approximations [11,40] 
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(3D-films, tangentially immobile bubble surface) (36) 

 
The values of CIFilm and CILine can be found by comparing the predictions of Eq. (36) 

with experimental results or with numerical calculations for 3D-films. The comparison with 
the experimental data for foam-wall friction, shown in Fig. 8C of Ref. [11], gave CIFilm ≈ 3.7 
(after neglecting the second term in Eq. (36), which is about an order of magnitude smaller 
than the first one). This value is about 20 % smaller than the value given in Ref. [11], CIFilm ≈ 
4.6, which is due to the different approximations used in the two papers, cf. Eq. (36) above 
with Eq. (2.42) in [11]. Further experimental and/or theoretical data are needed to determine 
the value of CIFilm with better precision and to find the value of CILine. 
  
 

5. Experimental check of the model predictions about the film thickness. 
 

In this section we present experimental results from optical microscope observations 
of the dynamic wetting films, formed between bubbles and moving solid wall. These 
observations reveal the typical regions in the film, and allow determination of its thickness 
and shape. The regions observed experimentally in the dynamic films have been implemented 
in the theoretical consideration to design the curved model film profile, Eqs. (5a)-(5d). At the 
end of the current section, we compare the experimentally determined thickness of the 
dynamic films with the theoretical predictions.  
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5.1. Materials and methods.  
 
Following our previous study [11], we performed the experiments with a solution of 

mixed potassium carboxylates having relatively long hydrocarbon tails (12 to 18 carbon 
atoms). The surfactant solution contained 0.5 wt % potassium laurate, 1 wt % potassium 
myristate, 0.5 wt % potassium palmitate, and 0.1 wt % potassium stearate (prepared by 
mixing KOH with the respective carboxylic acids, which were products of Uniqema, DE, and 
Research Organics, OH, USA). Glycerol (product of Teokom Co., Bulgaria) was used in 
some of the experiments to increase the viscosity of the aqueous phase. The water-glycerol-
surfactant mixtures were first heated for 1 h at 50 °C to dissolve the surfactants, then cooled 
down to room temperature, and the pH was adjusted to 10.2 ± 0.1 with hydrochloric acid. The 
formed precipitate of soap particles was removed by centrifugation and filtration through 0.45 
µm filter, just before the actual experiments with the foam bubbles. The solution prepared in 
this way exhibited very high surface modulus, ES > 200 mN/m, when measured by the 
oscillating drop method at a frequency of 0.125 Hz. As a result, the bubble surface behaved as 
tangentially immobile [11]. The surface tension of the solutions, σ, was measured by the drop 
shape analysis on DSA10 instrument (Kruss GmbH, Germany), whereas the viscosity of the 
filtered solution, µ, was measured to be equal to that of pure water (within several percent). 

The thickness of the dynamic wetting film, formed between a bubble and sliding solid 
wall, was measured in the equipment sketched in Fig. 11. Single bubble was formed on the tip 
of a stainless needle (external diameter 0.94 mm), which was placed inside a glass capillary 
tube (i.d. 1.17 mm) filled with surfactant solution. The diameter of the bubble was adjusted to 
be about 10 % smaller than the internal diameter of the glass capillary, so that a wetting film 
was formed between the bubble and the upper side of the capillary wall, under the action of 
the buoyancy force. Since the zone of contact in this experiment was formed between a 
spherical bubble and the cylindrical inner wall of the capillary, the wetting film had 
approximately elliptical shape with very large aspect ratio (> 7) between the long and short 
axes. Therefore, this configuration represented reasonably well the two-dimensional (2D) 
films between a bubble and wall, which were considered theoretically in the preceding 
sections – see for example the photograph in Fig. 3A.  

The bubble and the wetting film were observed with optical microscope (Axioplan, 
Zeiss, Germany) in reflected monochromatic light with wavelength, λ = 546 nm, see Fig. 11. 
The dynamic films had complex shape of the air-water interface, which was determined by 
using the interference pattern observed in reflected light, see Fig. 3A. To analyse this 
interference pattern we used the known relation [41] between the intensity of the reflected 
light and the thickness of the film: 
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where ns = 1.33 is the refractive index of the solution, q = 0, 1, 2, … is the order of 
interference, I(x) is the local intensity of the light reflected from the liquid layer, IMAX and 
IMIN are the maximum and the minimum intensities of the reflected light, respectively (for a 
rigorous consideration see Ref. [41]). Equation (37) shows that the difference in the thickness 
between two consecutive interference stripes (dark to bright or bright to dark) is equal to 
λ/4nS ≈ 102 nm. The details in the procedure for interpretation of the microscope images, as 
well as a large set of results obtained with 2D- and 3D-films and various surfactants will be 
presented in a separate paper [35].   

During the experiment, the glass capillary is translated with velocity, V0, by a 
computer-controlled motor (Fauhaber, Germany), while the bubble remains stationary with 
respect to the laboratory frame. This experiment differs from the previous experiments with 
bubbles moving in a capillary (e.g., [6,7,16-27]) in the following aspect. In our experiments, 
the bubble/wall relative motion is created by translation of the wall, at fixed position of the 
bubble. Therefore, no pressure difference is required to induce the relative motion of the 
bubble and the wall. By using bubbles with diameter smaller than the internal diameter of the 
capillary, we ensure equal pressures in the aqueous phase on both sides of the wetting film (on 
the left-hand-side and on the right-hand-side of the immobile bubble), just as assumed in the 
theoretical consideration, Eq. (9), and as it is with 3D-films formed in the foam-wall 
experiments with actual foams. In contrast, the bubbles in the studies quoted above [6,7,16-
27] were moving in capillaries under the action of a pressure difference applied on both sides 
of the bubble. 
 

5.2. Experimental results and comparison with the theoretical model. 
 

Typical microscope image of a dynamic 2D-wetting film formed between a bubble 
and the moving solid surface of a glass capillary, is shown in Fig. 3A. Four different regions 
in the profile of the bubble surface could be distinguished: (1) Region 1 at the entrance of the 
wetting film, in which the thickness of the liquid layer decreases down to the thickness of the 
subsequent flat (plateau) region 2. Due to the viscous friction, the radius of surface curvature 
in Region 1 is larger than the radius of curvature of the bubble surface at immobile solid wall; 
(2) Region 2, called also “the plateau region”, in which the film thickness remains almost 
constant. The thickness of the dynamic film in this region is significantly larger than the 
thickness of the equilibrium film at immobile wall. (3) Region 3, which is close to the exit of 
the film and where the liquid layer thickness sharply decreases. (4) Region 4, in which the 
layer thickness rapidly increases to merge with the meniscus region away from the film. The 
thinnest portion of the liquid layer (the constriction) is between regions 3 and 4. In a certain 
range of capillary numbers, one could discern a slight thickening of the film between regions 
2 and 3, just before the constriction. This formation, called “bulge” in the literature [9], was 
relatively small in our experiments and, therefore, was not included explicitly in the 
theoretical model. On the other hand, the observed bulge demonstrates that the dynamic 
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pressure is highest between Regions 2 and 3, and this circumstance was used in the 
formulation of the model for the curved film profile. The observed regions resemble those 
calculated theoretically by Bretherton [18] - a comparison of the experimental results with the 
predictions of the Bretherton’s model will be presented separately [35].     

The shape of the bubble surface, as reconstructed from microscope images taken at 
different velocities of the capillary, V0, are compared in Fig. 12A. Several trends can be 
noticed upon increase of V0: First, the layer thickness increases everywhere. Second, the 
fraction of the bubble surface occupied by the flat region gradually decreases and disappears 
eventually at high velocities. Third, the radius of curvature in the first region (at the film 
entrance) and the area occupied by the transition zone film-meniscus (Region 1) gradually 
increase with V0. In contrast, the radius of curvature and the width of the thin region at the 
film exit (Regions 3 and 4) do not change so significantly.  

From the reconstructed film profiles, like those shown in Fig. 12A, one can determine 
the minimum layer thickness, which corresponds to h2 in the curved film profile, as well the 
film thickness in the flat region (when it exists), which corresponds to h1 in the theoretical 
model. Furthermore, one can determine from the experimental profiles the “harmonic mean” 
film thickness, defined by the expression: 

 

( ) 1

0

1 L

harm
dxh

L h
− = ∫

      (38) 

 
which can be also compared to the theoretically predicted value of hharm. 

The experimental results for h1, h2, and hharm, for surfactant solutions with and without 
glycerol are plotted in Fig. 12B, as a function of the capillary number, Ca. The symbols in 
Fig. 12B are experimental data, whereas the lines are theoretical predictions without any 
adjustable parameter (to account for the fact that the actual bubbles in the performed 
experiments were spherical, the capillary pressure in these calculations was set to PC = 
2σ/RB). One sees that the agreement between the experimental points and the theoretical lines 
is very reasonable. Note that the power law index for the lines describing h1 and h2 were very 
similar (≈ 0.63), whereas the power law index for hharm was significantly lower (≈ 0.47). The 
reasons for the different slopes of the lines describing h1,2 and hharm, as well as the relation 
between the friction force and hharm will be further discussed in a separate study [35], after 
presenting a complete set of experimental data for mobile and immobile bubble surfaces. 

The good agreement between the experimental results for the film thickness and the 
theoretical predictions is an indication that the model presented in Sections 2-3 describes 
adequately the systems under investigation, despite the fact that the actual shape of the bubble 
surface is represented by approximate model functions (see also Figs. 13 and 14 discussed in 
the following Section 6).   
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6. Discussion and comparison with some literature results. 
 
 In this section we compare the theoretical predictions for the friction force, FFR, with 
experimental data from literature [7] and with theoretical calculations of other authors [9,18]. 
Then we discus briefly the scaling of FFR with the capillary number, Ca. 

To check how the predictions of the current model comply with experimental data for 
the friction of bubbles with solid wall (beside the comparison with our own data discussed in 
Section 3.3.1 of Ref. [11]), we analyzed the recent experimental results by Terriac et al. [7]. 
These authors [7] measured the velocity of train of bubbles moving along a capillary tube 
under an applied driving pressure. From the driving pressure, one can calculate the friction 
force, FFR. The authors of Ref. [7] provide also the length of the bubbles, L, and the radius of 
curvature of the Plateau borders, RP, from which one can calculate the length of the formed 
2D-wetting films between the bubbles and the tube wall, 2RF. Thus a direct comparison of the 
experimental data from [7] with the current theoretical model is possible. This comparison 
evidenced a very good agreement (within 10 %) for all experimental data without using any 
adjustable parameter. For illustration, we show in Fig. 13 the theoretical curves and the 
experimental data from Ref. [7] for two sets of experiments, corresponding to different ratios 
RF/RP (the other experimental data are described equally well by the model). The observed 
“effective” power-low index in these measurements, n ≈ 0.56 ± 0.02 [7], thus appears as a 
combination of the indexes characterizing the friction in the film and in the transition region 
film-meniscus, n = 1/2 and n ≈ 2/3, respectively (cf. Eq. (25’)). 

To check further our theoretical approach, we performed numerical calculations for 
tangentially mobile surface of the bubbles by changing the boundary condition, Eq. (8), to 
ensure stress-free bubble surface, viz. the condition (∂Vx/∂z) = 0 at z = h was used. A linear 
model profile (the simplest possible, Fig. 2) was used for the fluid surface of the wetting film. 
The capillary pressure was defined as PC = 2σ/RP in these calculations to adapt the theoretical 
model to the case of a single bubble moving in a capillary and to make a comparison of the 
model predictions with the Bretherton’s equation [18,38] and with the numerical simulations 
of Saugey et al. [9], see Fig. 14A. A very good agreement was found between the three 
models in the range of capillary numbers, 10-5 < Ca < 10-2. Note that Saugey et al. [9] did not 
use a model profile in their calculations, which evidences that the model profiles used in our 
approach do not affect strongly the final results for FFR, unless very high capillary numbers 
and low volume fractions are used (see also Fig. 4C).  

Probably, the most surprising prediction of the current model is that the friction in the 
transition region film-meniscus should not scale with Ca2/3 at low capillary numbers. Indeed, 
the numerical results shown in Fig. 14B and Eq. (25) both predict FFR ∝ Ca3/4 at low values, 
Ca < 10-6. One of the difficulties in testing this theoretical prediction is that the thickness of 
the dynamic films becomes comparable to the range of the repulsive surface forces 
(stabilizing the film [42,43]) at very low velocities, so that the film thickness, h ≈ constant, 
and FFR becomes proportional to Ca1 in this regime [9]. Still, some hints that a flow regime 
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with FFR ∝ Ca3/4 could be observed experimentally are found in the literature. Recently Dollet 
et al [8] observed that the viscous force imposed by a 2D-bubble raft on solid wall scales with 
the solution viscosity of power n = 0.77 ± 0.05. These experiments were made at relatively 
low velocity of the bubbles, small ratio (RF/RP), and with relatively large bubbles, which are 
the conditions, at which our model predicts a scaling with n ≈ 3/4. The data presented in Ref. 
[8] do not allow one to make a direct comparison of the experimental results with the model, 
but a more detailed analysis of these experimental data would be definitely of interest.    

We cannot rule out completely the possibility that the obtained scaling of the friction 
in the transition region film-meniscus (the second and third terms in Eq. (25)) is affected to 
some extend by the chosen model profiles. However, the good agreement of the model 
predictions with several sets of experimental data (Figs. 12B and 13, and Ref. [11]) and with 
the theoretical results by other authors (Fig. 14A) show that our model is able to describe 
quantitatively the bubble-wall friction force (despite its deviation from the Bretherton’s 
scaling law at small values of Ca). It is worthwhile noting that several assumptions are used in 
the derivation of the Bretherton’s law, Ca2/3, which are not applicable to the systems under 
consideration in the current study. For example, such assumptions are: (1) The bubble shape 
in the transition region does not depend on the film length, and (2) There is a plug liquid flow 
inside the central zone of the film [18]. Therefore, the Bretherton model, as defined, 
corresponds to different flow regime in the dynamic film, so that one should not expect this 
model to be strictly applicable to the systems considered here (though it could be a reasonable 
approximation in a certain range of capillary numbers and volume fractions). Therefore, the 
scaling with Ca3/4 predicted by the current model at low capillary numbers deserves further 
investigation, despite its contradiction to the scaling with Ca2/3 predicted by Bretherton’s 
model [18].   
 Furthermore, it is known for decades that the Bretherton’s model fails to predict the 
friction force and the film thickness in many experiments with bubbles/drops moving in 
capillaries [7,16-19,21]. The most probable reason for the observed discrepancy is the 
possible effect of surfactants (or even traces of them, which easily appear as contaminations) 
on the surface mobility of the bubbles [25,26,44,45]. In many cases, a scaling with Ca1/2 was 
observed experimentally [16-19,21,22], which corresponds to the predictions of the current 
model in the case of film-dominated viscous friction. Theoretical study is under a way to 
classify the various possible flow regimes in the bubble-wall friction zone (immobile vs. 
immobile surfaces, partial surface mobility, long and short bubbles, etc.) and to clarify the 
relation between the actual experimental conditions, the flow regime in the liquid layer, and 
the scaling laws for the friction force and film thickness. 
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7. Conclusions. 
 
The major aim of this study is to explore theoretically how the friction between a 

single bubble and a smooth solid wall depends on the relative size of the wetting film, RF/RP, 
for bubbles with tangentially immobile surfaces. By using the lubrication approximation we 
show that: 
1. Both the wetting film and the transition zones film-meniscus contribute into the total 

friction force. The latter is presented as a superposition of two components, which scale 
differently with the capillary number, Ca: the friction inside the film scales as Ca1/2, 
whereas the friction in the meniscus region scales approximately as Ca2/3, see Eq. (25’). As 
a result, the relative contribution of the meniscus region into the friction force increases 
with the value of Ca. 

2. At high air volume fraction, Φ > 0.99 and Φ3D > 0.95, the friction in the wetting film 
prevails at arbitrary values of Ca < 0.1. However, at moderate and low air volume 
fractions, the friction in the meniscus region could be comparable to that in the film, Fig. 5. 

3. Simple explicit expressions were found to describe very well the numerical results for the 
friction force, Eq. (25), and the thickness of the wetting film, Eqs. (26) and (27), in a wide 
range of capillary numbers and air volume fractions. The predicted deviations from the 
Bretherton scaling law, Ca2/3, at high and low capillary numbers, are discussed in Section 
6.   

4. Observations with optical microscope show that the dynamic wetting films between the 
bubbles and moving solid wall have complex shape with several distinct regions, Fig. 3. 
This shape is implemented in the curved model profile of the bubble surface, used in the 
numerical calculations. The measured film thickness agrees very well with the theoretical 
predictions without any adjustable parameter, Fig. 12B. 

5. The theoretical approach is verified by comparing its predictions with the results of other 
authors [7,9,18] for the bubble-wall friction force, Figs. 13 and 14. 
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Appendix 
 
Approximate expression for FFR (linear profile). 
 
Here we explain how the approximate expressions for the friction force, FFR, such as Eq. (25), 
were designed. At high air volume fractions, the ratio (RF/RP) > 3 and the friction in the film 
dominates (see Fig. 5A), so that the friction terms for the meniscus regions, FFR

(1) and FFR
(3) 

in Eq. (24), can be neglected. At low air volume fractions, (RF/RP) < 1 and the parameters δ1,2 
in Eq. (24) are small, δ1,2 << 1. In this case, one can expand Eqs. (24a) and (24c) in series to 
evaluate the main terms for the friction force in the meniscus regions. The result can be 
expressed in the form of an infinite series: 
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where the first term accounts for the friction in the film, whereas the remaining infinite series 
accounts for the friction in the two meniscus regions. The multipliers AFilm and Am in Eq. 
(A.1) are of the order of unity. The leading four terms for the friction in the meniscus region 
are: 
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Eq. (A.2) shows that the two leading terms for the friction inside the meniscus region are 
proportional to Ca3/4 and Ca, respectively (we recall that Ca <<1 in the entire consideration). 

Note, however, that the parameters entering Am, such as η1,2 and , also depend on Ca in a 

complex way (though this dependence is relatively weak, except at very low volume fractions 
- see Fig. 8). That is why, to find an explicit approximate expression for the friction force, we 
fitted the numerical data for the friction force in the meniscus region by a function containing 
only the leading powers of Ca, and by considering the multipliers A

Q

m as free parameters. The 
fit by the least-squares method showed that the following interpolating formula describes 
rather well the numerical results: 
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where the first term accounts for the friction in the film (cf. with the result for linear profile in 
Ref. [11]), whereas the remaining terms account for the friction in the meniscus region.  
 
Explicit expressions for FFR in the case of curved profile. 
 
The integration of Eq. (22) gives the following expressions for the various components of the 
friction force in the case of curved film profile (Fig. 4B): 
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where by definition s ≡ x0/RP and 
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The terms FFR

(1) and FFR
(4) account for the friction in the two meniscus regions, whereas 

(FFR
(2) + FFR

(3)) accounts for the friction inside the film. By lengthy but straightforward 
calculations one can show that the friction inside the film is proportional to (CaRF/RP)1/2, 
whereas the leading terms for the friction inside the meniscus regions are proportional to Ca3/4 
and Ca. By applying a least-squares fit to the numerical results, we found that Eq. (25) 
describes adequately the friction force for the curved film profile. 
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Table 1. Air volume fractions for 2D- and 3D-foam bubbles, Φ and Φ3D, corresponding to 
similar values of the dimensionless radius of the wetting film, RF/(RF+ RP), formed upon 
bubble contact with solid wall. The calculations are made using the Princen’s formulas [5], 
Eqs. (1)-(3), (33),(34). 
  

 Air volume fraction 
RF/(RF + RP) Φ Φ3D 

0.1 0.925 0.733 
0.2 0.940 0.773 
0.4 0.965 0.872 
0.5 0.977 0.913 
0.6 0.985 0.945 
0.8 0.996 0.986 
0.9 0.999 0.996 
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Fig. 1. Schematic presentation of the system under consideration: (A) Smooth solid substrate 
is moving with constant linear velocity, V0, with respect to a plug of foam bubbles; (B) The 
liquid entrainment into the wetting film, formed between the bubble and the moving substrate, 
leads to an asymmetric film configuration with larger film thickness at the entrance region.   
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Fig. 2. Schematic presentation of one of the assumed model profiles for the bubble surface, 
linear upper surface of the wetting film, Eqs. (4a)-(4c).   
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Fig. 3. (A) Photograph of the wetting film formed between a 2D-bubble and a solid wall, 
which moves with a linear velocity, V0 = 0.2 mm/s; (B) Restored profile of the bubble surface 
in the zone of bubble-wall contact; the regions described in Section 5.2 are indicated by the 
integers 1-4; (C) Schematic presentation of the assumed curved model profile of the bubble 
surface, Eqs. (5a)-(5d).   
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Fig. 4. Dimensionless friction force, calculated as a function of the capillary number, at 
different air volume fractions: (A) Linear film profile, (B) Curved film profile, (C) 
Correlation plot of the friction forces calculated with the two model profiles.   
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Fig. 5. Ratio of the friction force inside the meniscus region to the friction force inside the 
film region, as a function of the capillary number at different air volume fractions, as 
calculated with: (A) Linear profile, (B) Curved profile of the fluid film surface.   
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Fig. 6. Comparison of the numerically calculated dimensionless friction force, , as a 

function of the capillary number at different air volume fractions, Φ, with the explicit 
expressions: Eq. (25) – solid curves; Eq.(25’) – dashed curves; Eq. (25”) – dash-dotted 
curves. The numerical calculations (symbols) are made with the curved model profile: (A) 
Assuming P

FRF

C = σ/RP. (B) The open symbols are calculated with PC = σ/RP, whereas the full 
symbols with PC = 2σ/RP. 
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Fig. 7. (A) Dimensionless thickness of the liquid layer, η = h/hC, as
coordinate, ξ = x/L, calculated at Ca = 10-3 (dash-dot curve) and Ca
= 0.99. (B) Dimensionless thickness, η(ξ), calculated at Ca = 10
fractions, Φ = 0.95 (solid curve) and Φ = 0.99 (dashed curve). The 
curved profile of the bubble surface, Eqs. (5a)-(5d). 
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Fig. 8. Dimensionless layer thickness, calculated as a function of the capillary number with 
the curved profile of the bubble surface (the symbols), along with the interpolating empirical 
fits, Eqs. (26) and (27): (A) η1 = h1/hC, and (B) η2 = h2/hC. Φ is the air volume fraction.  
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Fig. 9. Dimensionless viscous stress on the wall, 1 2

F C CR P hτ = τ , as a function of the scaled 

lateral coordinate, ξ = x/L, calculated with the curved profile of the fluid film surface, at two 
capillary numbers: Ca = 10-2 (continuous curves) and Ca = 10-4 (dashed curves): (A) Φ = 
0.99, and (B) Φ = 0.95.  
 

 
 
 

 44



 
 
 
 

ξ = x/L
0.0 0.2 0.4 0.6 0.8 1.0

P d
/P

C

-0.5

0.0

0.5

1.0

1.5

2.0

Ca = 10-4

Ca = 10-2

Φ = 0.99

ξ = x/L

0.0 0.2 0.4 0.6 0.8 1.0

P d
/P

C

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ca = 10-4Ca = 10-2

Φ = 0.95

(B) 

(A) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Dimensionless dynamic pressure, ( )d dP P x / P= C , as a function of the scaled lateral 

coordinate, ξ = x/L, calculated with the curved profile of the fluid film surface at two capillary 
numbers, Ca = 10-2 (continuous curves) and Ca = 10-4 (dashed curves): (A) Φ = 0.99, and (B) 
Φ = 0.95.  
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Fig. 11. Schematic presentation of the experimental setup used to observe the wetting film 
between a single bubble and the inner glass wall of a cylindrical capillary: The bubble is 
formed on the tip of a needle, which is placed in the glass capillary. The capillary is translated 
by motor with given velocity, V0, and the wetting film between the bubble and the solid wall 
is observed by microscope, in reflected light. The film size, RF, the bubble radius, RB, and the 
film thickness, h, are determined as explained in the text. 
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Fig. 12. Shape of the bubble surface and thickness of the liquid layer in the bubble-wall 
contact zone, for 2D-films formed as explained in Section 5 and Fig. 11. (A) Film thickness, 
h, as a function of the lateral coordinate, x, at different wall velocities, V0. The bubble radius 
is ≈ 500 µm and the film radius is ≈ 75 µm. (B) Dimensionless film thickness in the flat film 
region, h1/(RFRP)1/2, at the constriction, h2/(RFRP)1/2, and the harmonic mean thickness, 
hharm/(RFRP)1/2 (see Eq. (38)) as functions of the capillary number.  
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Fig. 13. Comparison of the theoretical predictions of the current model with experimental data 
from Ref. [7] without adjustable parameters. For clarity, only two sets of experimental data 
are shown, corresponding to RP/L = 0.16 (the circles) and RP/L = 0.27 (the squares) in the 
notation of Ref. [7]. 
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Fig. 14. Comparison of theoretically calculated friction forces between bubble with 
tangentially mobile surface and solid wall, according to the models of Bretherton [18] –
dashed curve; Saugey et al. [9] – solid curve; and assuming linear profile of the film as in Fig. 
2 – solid circles: (A) Intermediate and high capillary numbers, (B) Low capillary numbers.  
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	In the current study we also use two model profiles for the fluid surface of the liquid layer, which are chosen as to allow us to account for the friction in both the film and the meniscus regions. In both model profiles, the meniscus region is represent
	
	Linear profile of the upper film surface.
	Curved profile of the upper film surface.
	The numerical calculations show that the values o



	5.1. Materials and methods.
	Following our previous study [11], we performed the experiments with a solution of mixed potassium carboxylates having relatively long hydrocarbon tails (12 to 18 carbon atoms). The surfactant solution contained 0.5 wt % potassium laurate, 1 wt % potas
	The thickness of the dynamic wetting film, formed between a bubble and sliding solid wall, was measured in the equipment sketched in Fig. 11. Single bubble was formed on the tip of a stainless needle (external diameter 0.94 mm), which was placed inside
	The bubble and the wetting film were observed with optical microscope (Axioplan, Zeiss, Germany) in reflected monochromatic light with wavelength, ( = 546 nm, see Fig. 11. The dynamic films had complex shape of the air-water interface, which was deter
	where ns = 1.33 is the refractive index of the so
	During the experiment, the glass capillary is translated with velocity, V0, by a computer-controlled motor (Fauhaber, Germany), while the bubble remains stationary with respect to the laboratory frame. This experiment differs from the previous experime
	
	
	
	
	
	
	Typical microscope image of a dynamic 2D-wetting film formed between a bubble and the moving solid surface of a glass capillary, is shown in Fig. 3A. Four different regions in the profile of the bubble surface could be distinguished: (1) Region 1 at th
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