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I. INCIPIT

Glasses belong to a well-known state of mat-
ter (Tabor, 1991): we easily design glasses with de-
sired mechanical or optical properties on an industrial
scale, they are widely present in our daily life. Yet, a
deep microscopic understanding of the glassy state of
matter remains a challenge for condensed matter physi-
cists (Angell, 1995; Debenedetti and Stillinger, 2001).

Glasses share similarities with crystalline solids since
they are both mechanically rigid, but also with liq-
uids because they both have similar disordered struc-
tures at the molecular level. It is mainly this mixed
character that makes them fascinating even to non-
scientists. Given that glasses are neither normal liq-
uids nor standard solids, they are quite often not de-
scribed in any detail by standard textbooks. For in-
stance, glasses are not described in textbooks on con-
densed matter (Chaikin and Lubensky, 2000), or solid
state physics (Ashcroft and Mermin, 1976), they only
made it in the latest edition of the reference textbook
on liquids (Hansen and McDonald, 2006), while statisti-
cal mechanics textbooks usually culminate with a presen-
tation of our current understanding of phase transitions
in pure materials using renormalization group concepts
(Chandler, 1987; Sethna, 2006), leaving out disordered
systems.

As we shall describe in detail in this review, mod-
ern statistical mechanics approaches to the glass
transition involve good knowledge of advanced liq-
uid state theory, field theory, renormalization group,
solution of lattice models, percolation, replica calcula-
tions, and concepts developed for far-from-equilibrium
driven systems (Young, 1998; Barrat et al., 2003;
Binder and Kob, 2005). These development are all
posterior to the mid-70’s important breakthroughs on
phase transitions: the canonical spin glass Hamiltonian
was introduced in 1975 (Edwards and Anderson, 1975),
to be solved in infinite dimension only several years
later (Parisi, 1980; Mézard et al., 1988), mode-coupling
theory was developed in the mid-80’s (Götze, 1999),
just before kinetic lattice glass models were intro-
duced (Fredrickson and Andersen, 1984a). The aging
and rheology of disordered systems such as spin glasses
or soft materials emerged as broad reserach fields during
the 90’s. In this paper, we shall review the fruits that
have grown out of these important seeds. Given none of
these advances has allowed the derivation of a complete,
well-accepted theory of amorphous media, we present a
large number of different approaches. We try to discuss
both successes and failures, we explain similarities and
differences between them, and we present the current
status of each approach. Thus, the article takes at times
a somewhat subjective tone.

A glass can be obtained by cooling the temperature of a
liquid below its glass temperature, Tg. The quench must
be fast enough that the more standard first order phase
transition towards the crystalline phase is avoided. The

FIG. 1 Glassy phases occur at low temperature or large den-
sity in many different systems spanning a broad range of
lengthscales, such as atomic (top left), colloidal (top right)
systems, but also in foams (bottom left) and granular mate-
rials (bottom right).

glass ‘transition’ is not a thermodynamic transition at all,
since Tg is only empirically defined as the temperature
below which the material has become too viscous to flow
on a ‘reasonable’ timescale (and it is hard to define the
word ‘reasonable’ in any reasonable manner). Therefore,
Tg does not play a fundamental role, as a phase tran-
sition temperature would. It is simply the temperature
below which the material looks solid. When quenched in
the glass phase below Tg, liquids slowly evolve towards
an equilibrium state they cannot reach on experimental
timescales. Physical properties are then found to evolve
slowly with time in far from equilibrium states, a process
known as ‘aging’ (Struik, 1978).

The subject of the glass transition has quite broad im-
plications. A material is said to be ‘glassy’ when its typ-
ical relaxation timescale becomes of the order of, and
often much larger than, the typical duration of an ex-
periment or a numerical simulation. With this generic
definition, a large number of systems can be considered
as glassy materials (Young, 1998). One can be inter-
ested in the physics of liquids (window glasses are then
the archetype), in ‘hard’ condensed matter (for instance
type II superconductors in the presence of disorder such
as high-Tc superconducting materials), charge density
waves or spin glasses, ‘soft’ condensed matter with nu-
merous complex fluids such as colloidal assemblies, emul-
sions, foams, but also granular materials, proteins, etc.
Glass physics thus covers a remarkably broad range of
timescales and lengthscales, as illustrated in Fig. 1. All
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1980; Mézard et al., 1988). Mode-coupling theory was
developed in the mid-1980s (Götze, 1999), just before kinetic
lattice glass models were introduced (Fredrickson and
Andersen, 1984). The aging and rheology of disordered
systems such as spin glasses or soft materials emerged as
broad research fields during the 1990s. In this paper we
review the fruits that have grown out of these important seeds.
Given that none of these advances has allowed the derivation
of a complete, well-accepted theory of amorphous media, we
present a large number of different approaches. We discuss
both successes and failures, explain similarities and differ-
ences between them, and present the current status of each
approach. Thus, the article takes at times a somewhat sub-
jective tone.

A glass can be obtained by cooling the temperature of a
liquid below its glass temperature Tg. The quench must be

fast enough that the more standard first-order phase transition
toward the crystalline phase is avoided. The glass ‘‘transi-
tion’’ is not a thermodynamic transition at all, since Tg is only

empirically defined as the temperature below which the
material has become too viscous to flow on a ‘‘reasonable’’
time scale (and it is hard to define the word reasonable in any
reasonable manner). Therefore, Tg does not play a fundamen-

tal role, as a phase transition temperature would. It is simply

the temperature below which the material looks solid. When
quenched in the glass phase below Tg, liquids slowly evolve

toward an equilibrium state they cannot reach on experimen-
tal time scales. Physical properties are then found to evolve
slowly with time in far-from-equilibrium states, a process
known as ‘‘aging’’ (Struik, 1978).

The subject of the glass transition has quite broad impli-
cations. A material is said to be ‘‘glassy’’ when its typical
relaxation time scale becomes of the order of, and often much
larger than, the typical duration of an experiment or a nu-
merical simulation. With this generic definition, a large num-
ber of systems can be considered as glassy materials (Young,
1998). One can be interested in the physics of liquids (win-
dow glasses are then the archetype), in ‘‘hard’’ condensed
matter (for instance, type-II superconductors in the presence
of disorder, such as high-Tc superconducting materials), in
charge density waves or spin glasses, in ‘‘soft’’ condensed
matter with numerous complex fluids such as colloidal as-
semblies, emulsions, foams, but also granular materials, pro-
teins, etc. Glass physics thus covers a remarkably broad range
of time scales and length scales, as illustrated in Fig. 1. All
these materials exhibit, in some part of their phase diagrams,
some sort of glassy dynamics characterized by a rich phe-
nomenology with effects such as aging, hysteresis, creep,
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These long enumerations explain why this research field
has received increasing attention from physicists in the last
two decades. Glassy topics now go much beyond the physics
of simple liquids (glass transition physics) and models and

FIG. 1 (color online). Glassy phases occur at low temperature or
large density in many different systems spanning a broad range of
length scales, such as atomic [top left, atomic force spectroscopy
image of an alloy of linear size 4.3 nm (Sugimoto et al., 2007)],
colloidal (top right) systems, foams (bottom left, a beer foam with
bubbles of submillimeter size), and granular materials (bottom right,
a fertilizer made of millimeter size grains).
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Figure 6. The pair correlation function g(r > 1) of a
three-dimensional system of monodisperse spheres of radius 1
illustrates the abundance of near contacts close to jamming
(!φ = 10−8 here). Reproduced from [42] with
permission—copyright by the American Physical Society.

3.4. Relating contact numbers and packing densities away
from J

Below jamming, there are no load bearing contacts and the
contact number is zero, while at point J the contact number
attains the value 2d . How does the contact number grow for
systems at finite pressure? Assuming that (i) compression of
packings near point J leads to essentially affine deformations
and that (ii) g(r) is regular for r > 1, z would be expected
to grow linearly with φ: compression by 1% would then bring
particles that are separated by less than 1% of their diameter
into contact, etc. But we have seen above that g(r) is not
regular, and we will show below that deformations are very
far from affine near jamming—so how does z grow with φ?

Many authors have found that the contact number grows
with the square root of the excess density !φ := φ −
φc [2, 15, 20, 25] (see figure 7). O’Hern et al have studied this
scaling in detail and find that the excess contact number !z :=
z − zc scales as !z ∼ (!φ)0.50±0.03, where zc, the critical
contact number, is within error bars equal to the isostatic value
2d [2]. Note that this result is independent of dimension,

interaction potential or polydispersity (see figure 7(a)). Hence,
the crucial scaling law is

!z = z0

√
!φ, (5)

where the precise value of the prefactor z0 depends
on dimension, and possibly weakly on the degree of
polydispersity, and is similar to 3.5 ± 0.3 in two dimensions
and 7.9 ± 0.5 in three dimensions [2].

The variation of the contact number near J can therefore
be perceived to be of mixed first-/second-order character:
below jamming z = 0, at J the contact number z jumps
discontinuously from zero to 2d , and for jammed systems the
contact number exhibits non-trivial power law scaling as a
function of increasing density (figures 3 and 7).

We will see below that many other scaling relations (for
elastic moduli, for the density of state and for characteristic
scales) are intimately related to the scaling of z and the contact
number scaling can be seen as the central non-trivial scaling in
this system. (In frictional and non-spherical packings, similar
scalings for z are found.)

A subtle point is that the clean scaling laws for !z
versus !φ are only obtained if one excludes the rattlers
when counting contacts, but includes them for the packing
fraction [2]. Moreover, for individual packings the scatter
in contact numbers at a given pressure is quite substantial—
see, for example, figure 9 from [52]—and smooth curves such
as shown in figure 7(a) can only be obtained by averaging
over many packings. Finally, the density φ is usually defined
by dividing the volume of the undeformed particles by the
box size, and packing fractions larger than 1 are perfectly
reasonable. Hence, in comparison to packing fractions defined
by dividing the volume of the deformed particles by the box
size, φ is larger because the overlap is essentially counted
double. Even though none of these subtleties should play a role
for the asymptotic scaling close to jamming in large enough
systems, they are crucial when compared to experiments and
also for numerical simulations.

3.4.1. Connections between contact number scaling, g(r) and
marginal stability. The scaling of !z can be related to the

2d

Figure 7. (a) Excess contact number z − zc as a function of excess density φ − φc. Upper curves represent monodisperse and bidisperse
packings of 512 soft spheres in three dimensions with various interaction potentials, while lower curves correspond to bidisperse packings of
1024 soft discs in two dimensions. The straight lines have slope 0.5. Reproduced from [2] with permission—copyright by the American
Physical Society. (b) Schematic contact number as a function of density, illustrating the mixed nature of the jamming transition for frictionless
soft spheres.
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Figure 9. Density of vibrational states D(ω) for 1024 spheres
interacting with repulsive harmonic potentials. Distance to jamming
"φ equals 0.1 (black), 10−2 (blue), 10−3 (green), 10−4 (red) and
10−8 (black). The inset shows that the characteristic frequency ω∗,
defined as where D(ω) is half of the plateau value, scales linearly
with "z. The line has slope 1. Adapted from [54, 56] with
permission—copyright by the Institute of Physics.

Normal modes. The nature of the vibrational modes
changes strongly with frequency and, to a lesser extent, with
distance to point J. Various order parameters can be used to
characterize these modes, such as the (inverse) participation
ratio, level repulsion and localization length [58, 59]. The
participation ratio for a given mode is defined as P =
(1/N) ($i |ui |2)2/$i |ui |4, where ui is the polarization vector
of particle i [58]. It characterizes how evenly the particles
participate in a certain vibrational mode—extended modes
have P of order one, while localized modes have smaller P ,
with hypothetical modes where only one particle participates
in reaching P = 1/N .

Studies of such order parameters have not found very
sharp changes in the nature of the modes either with distance
to jamming or with eigenfrequency [58–60]. It appears to
be more appropriate to think in terms of typical modes and
crossovers. Qualitatively, one can consider the DOS to consist
of roughly three bands: a low frequency band where D(ω) ∼
ωd−1, a middle frequency band where D(ω) is approximately
flat, and a high frequency band where D(ω) decreases with
ω [58].

Representative examples of modes in these three bands are
shown in figure 10. The modes in the low frequency band come
in two flavors: plane-wave-like with P ∼ 1 and quasi-localized
with small P [59, 60]. The modes in the large frequency
band are essentially localized with small P . The vast majority
of the modes are in the mid-frequency band (especially close
to jamming) and are extended but not simple plane waves—
typically the eigenvectors have a swirly appearance.

The localization length ξ of these modes has been
estimated to be large, so that many modes have ξ comparable to
or larger than the system size. Consistent with this, the modes
in the low and mid-frequency range are mostly extended, ξ >

L, and exhibit level repulsion (i.e. the level spacing statistics
P("ω) follows the so-called Wigner surmise of random matrix
theory), while the high frequency modes are localized (ξ < L)

and exhibit Poissonian level statistics [59].
When point J is approached, the main change is that

the low frequency, ‘Debye’ range shrinks, and that both the
number of plane waves and of quasi-localized resonances
diminishes [58–60].

3.5.2. Characteristic length and timescales. The vanishing of
the characteristic frequency ω∗ at point J suggests searching for
a diverging length scale. Below we give an analytical estimate
for this length scale and discuss indirect and direct observations
of this length scale in simulations.
Estimate of l∗. As pointed out by Wyart et al [54], if we cut a
circular blob of radius & from a rigid material, it should remain
rigid. The rigidity (given by the shear modulus) of jammed
materials is proportional to "z. The circular blob has of the
order of &d"z excess contacts. By cutting it out, one breaks
the contacts at the perimeter, of which there are of the order of
z&d−1. If the number of broken contacts at the edge is larger
than the number of excess contacts in the bulk, the resulting
blob is not rigid but floppy: it can be deformed without energy
cost (in lowest order). The smallest blob one can cut out
without it being floppy is obtained when these numbers are
equal, which implies that it has radius &∗ ∼ z/"z. Close to the
jamming transition, z is essentially constant and so one obtains
as a scaling relation that [54]

&∗ ∼ 1
"z

. (11)

Figure 10. Representative eigenmodes for a two-dimensional system of 104 particles interacting with three-dimensional Hertzian interactions
(α = 5/2, see equation (2)) at a pressure far away from jamming (z ≈ 5.09). For all modes, the length of the vectors ∝ui is normalized such
that σi |ui |2 is a constant. (a) Continuum-like low frequency mode at ω ≈ 0.030,P ≈ 0.79 and iω = 3, where iω counts the non-trivial modes,
ordered by frequency. (b) Quasi-localized low frequency mode at ω ≈ 0.040,P ≈ 0.06 and iω = 7. (c) Disordered, ‘swirly’ mid-frequency
mode at ω ≈ 0.39,P ≈ 0.31 and iω = 1000. (d) Localized high frequency mode at ω ≈ 4.00,P ≈ 0.0013 and iω = 9970.
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Figure 12. Bulk (K ) and shear (G) modulus as a function of distance to jamming for two-dimensional bidisperse systems, with interaction
potential V ∼ δα (see equation (2)). The closed symbols denote moduli calculated by forcing the particles to move affinely and the open
symbols correspond to the moduli calculated after the system has relaxed. Slopes are as indicated (adapted from [2] with
permission—copyright by the American Physical Society).

It is worth noting that many soft matter systems (pastes,
emulsions) have shear moduli which are much smaller than
compressional moduli—from an application point of view, this
is a crucial property.

Putting all this together, we conclude that the affine
assumption gives the correct prediction for the bulk modulus
(since k ∼ δα−2 ∼ #φα−2), but fails for the shear modulus.
This failure is due to the strongly non-affine nature of shear
deformations: deviations from affine deformations set the
elastic constants [2, 20, 30, 43, 62]. As we will see below,
the correspondence between the bulk modulus and the affine
prediction is fortuitous, since the response becomes singularly
non-affine close to point J for both compressive and shear
deformations (section 3.5.5).

3.5.4. Non-affine character of deformations. Approaching
the jamming transition, the spatial structure of the mechanical
response becomes less and less similar to continuum
elasticity, but instead increasingly reflects the details of the
underlying disordered packing and becomes increasingly non-
affine [30]—see figure 4(a). Here we will discuss this in the
light of equation (8), which expresses the changes in energy
as a function of the local deformations u‖ and u⊥: #E =
1
2

∑
i, j ki j(u2

‖,i j − δi j

α−1 u2
⊥,i j).

To capture the degree of non-affinity of the response,
Ellenbroek and co-workers have introduced the displacement
angle αi j .4 Here αi j denotes the angle between ui j and ri j , or

tan αi j = u⊥,i j

u‖,i j
. (14)

The probability distribution P(α) can probe the degree of
non-affinity by comparison with the expected P(α) for affine
deformations. Affine compression corresponds to a uniform
shrinking of the bond vectors, i.e. u⊥,i j = 0 while u‖,i j =
−εri j < 0: the corresponding P(α) exhibits a delta peak at
α = π . The effect of an affine shear on a bond vector depends

4 Not to be confused by the power law index of the interaction potential.

on its orientation, and for isotropic random packings P(α) is
flat.

Numerical determination of P(α) shows that systems far
away from the jamming point exhibit a P(α) similar to the
affine prediction but that, as point J is approached, P(α)
becomes increasingly peaked around α = π/2 (figures 13(b)
and (c)). This is reminiscent of the P(α) of floppy
deformations, where the bond length does not change and P(α)
exhibits a δ peak at π/2. Hence deformations near jamming
become strongly non-affine, and, at least locally, resemble
those of floppy modes.
Non-affinity of floppy modes and elastic response. Wyart
and co-workers have given variational arguments for deriving
bounds on the energies and local deformations of soft (low
energy) modes starting from purely floppy (zero energy)
modes [54, 63]. They construct trial soft modes that are
basically floppy modes, obtained by cutting bonds around a
patch of size '∗ and then modulating these trial modes with
a sine function of wavelength '∗ to make the displacements
vanish at the locations of the cut bonds [30, 54]. In particular,
for the local deformations, they find [63]

u‖
u⊥

∼ 1
'∗ → u‖

u⊥
∼ #z, (15)

where symbols without indices i j refer to typical or average
values of the respective quantities.

The question is whether the linear response follows this
prediction for the soft modes. The width w of the peak in P(α)
is, close to the jamming transition, roughly u‖/u⊥ because
|αi j − π/2| ≈ u‖,i j/u⊥,i j if u‖,i j ( u⊥,i j . It turns out
that the scaling behavior (15) is consistent with the width
w of the peak of P(α) for shear deformations, but not for
compression. There the peak of P(α) does not grow as much
and a substantial shoulder for large α remains even close to
jamming: the tendency for particles to move towards each
other remains much more prominent under compression.
Scaling of u‖ and u⊥. The scaling of the distributions of u‖
and u⊥ has also been probed. The key observation is that in
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Figure 12. Bulk (K ) and shear (G) modulus as a function of distance to jamming for two-dimensional bidisperse systems, with interaction
potential V ∼ δα (see equation (2)). The closed symbols denote moduli calculated by forcing the particles to move affinely and the open
symbols correspond to the moduli calculated after the system has relaxed. Slopes are as indicated (adapted from [2] with
permission—copyright by the American Physical Society).

It is worth noting that many soft matter systems (pastes,
emulsions) have shear moduli which are much smaller than
compressional moduli—from an application point of view, this
is a crucial property.
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(since k ∼ δα−2 ∼ #φα−2), but fails for the shear modulus.
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as a function of the local deformations u‖ and u⊥: #E =
1
2

∑
i, j ki j(u2

‖,i j − δi j

α−1 u2
⊥,i j).

To capture the degree of non-affinity of the response,
Ellenbroek and co-workers have introduced the displacement
angle αi j .4 Here αi j denotes the angle between ui j and ri j , or

tan αi j = u⊥,i j

u‖,i j
. (14)

The probability distribution P(α) can probe the degree of
non-affinity by comparison with the expected P(α) for affine
deformations. Affine compression corresponds to a uniform
shrinking of the bond vectors, i.e. u⊥,i j = 0 while u‖,i j =
−εri j < 0: the corresponding P(α) exhibits a delta peak at
α = π . The effect of an affine shear on a bond vector depends

4 Not to be confused by the power law index of the interaction potential.

on its orientation, and for isotropic random packings P(α) is
flat.

Numerical determination of P(α) shows that systems far
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patch of size '∗ and then modulating these trial modes with
a sine function of wavelength '∗ to make the displacements
vanish at the locations of the cut bonds [30, 54]. In particular,
for the local deformations, they find [63]

u‖
u⊥

∼ 1
'∗ → u‖

u⊥
∼ #z, (15)

where symbols without indices i j refer to typical or average
values of the respective quantities.
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|αi j − π/2| ≈ u‖,i j/u⊥,i j if u‖,i j ( u⊥,i j . It turns out
that the scaling behavior (15) is consistent with the width
w of the peak of P(α) for shear deformations, but not for
compression. There the peak of P(α) does not grow as much
and a substantial shoulder for large α remains even close to
jamming: the tendency for particles to move towards each
other remains much more prominent under compression.
Scaling of u‖ and u⊥. The scaling of the distributions of u‖
and u⊥ has also been probed. The key observation is that in
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Figure 17. (a) Example of the variation of the zero-pressure contact number zc in two-dimensional rigid discs as a function of µ, smoothly
interpolating between the isostatic limits 2d (red) for zero friction and d + 1 (blue) for frictional contacts. The arched area indicate
combinations of contact numbers and µ that, while they are not reached in these numerics, are perfectly possible—see text (adapted
from [68]—copyright by the American Physical Society). (b) State diagram for frictional spheres. While the random close packed, isostatic
packings obtained for zero friction are compatible with all values of µ, a range of packings with lower densities and contact numbers open up
when µ > 0. For a given preparation protocol, there might be a well-defined density (dashed curve). Whether there is a well-defined lowest
packing fraction for given µ, which would define random loose packing, is an open question, and the question what the contact number of
such states would be is open as well (adapted from [75]).

in the organization of the particles. Hence, at jamming, the
range of packing densities does not go to zero for frictional
particles.

The relation between density and friction coefficient can
be summarized in a simple state diagram (figure 17(b)), which
stresses that random close packing (RCP) is independent
of µ, while the random loose packing (RLP) density
depends strongly on µ, thus connecting random close
packing, random loose packing and the value of the friction
coefficient [69, 70, 73, 77–80]. This diagram further suggests
that the packing density at point J may also be seen as random
loose packing of frictionless spheres (since for µ = 0 one
expects RCP and RLP to coincide)—it is the loosest possible
packings, rather than the densest possible ones, that arise
near jamming. It should be noted that the definition of RLP
is even more contentious than RCP, and the debate is wide
open [73, 78, 79].

4.2.3. Scaling with µ. One may now also wonder how the
contact number and packing density at jamming scale with
µ. Qualitative evidence for scaling was found by Silbert et al
in numerical studies of frictional packings (figures 2 and 3
from [46]). By focusing explicitly on a single preparation
protocol, such as slow equilibration, this becomes a well-posed
question—leading to the concept of generalized isostaticity,
defined below. Data for generalized isostatic packings suggests
that both contact number and density exhibit power law scaling
with µ for small friction, while for large friction, excess contact
number and density (defined with respect to the infinite friction
limit) are also related by scaling, although clearly more work
is needed to establish these scalings firmly [70, 73].

4.2.4. Generalized isostaticity. Here we will discuss the role
of the frictional forces in some more detail, and in particular

focus on frictional packings for which a large number of
contacts are fully mobilized, meaning that the frictional forces
are maximal: |Ft|/Fn = µ. These packings arise in numerical
studies when packings are equilibrated slowly for a wide range
of values of µ.

The mobilization, m, of a contact is defined as the ratio
|Ft|/(µFn) and ranges from 0 to 1 (fully mobilized). Earlier
numerical data suggested that m generally stays away from
1, and that in the limit of large µ, the distribution of the
mobilization P(m) becomes independent of µ [37, 46]. Later it
became clear that P(m) can depend strongly on the preparation
history [69]. Furthermore, frictional two-dimensional packings
which are very slowly equilibrated yield packings for which a
substantial amount of the contact forces are fully mobilized,
meaning that |Ft|/Fn = µ [46, 70, 81]. One imagines that,
during equilibration, many contacts slowly slide, and when
the packing jams many contacts are still close to failure—such
packings are marginal with respect to lowering µ.

For packings with fully mobilized contacts, the counting
arguments need to be augmented, since at fully mobilized
contacts, the frictional and normal forces are no longer
independent [70]. Defining the number of fully mobilized
contacts per particle as nm, the constraints for the zd N/2 force
degrees of freedom then are: d N force balance equations,
d(d−1)N/2 torque balance equations and nm N constraints for
the fully mobilized contacts. This yields the following relation
between z, zµ

iso = d + 1 and nm:6

z − zµ
iso ! 2nm/d. (16)

Surprisingly, for sufficiently slowly equilibrated packings and
for all values of µ, the values for nm and z tend to satisfy this
bound when P is lowered to zero (figure 18). Such packings

6 The corresponding equation in [70] is only correct for d = 2.
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Figure 17. (a) Example of the variation of the zero-pressure contact number zc in two-dimensional rigid discs as a function of µ, smoothly
interpolating between the isostatic limits 2d (red) for zero friction and d + 1 (blue) for frictional contacts. The arched area indicate
combinations of contact numbers and µ that, while they are not reached in these numerics, are perfectly possible—see text (adapted
from [68]—copyright by the American Physical Society). (b) State diagram for frictional spheres. While the random close packed, isostatic
packings obtained for zero friction are compatible with all values of µ, a range of packings with lower densities and contact numbers open up
when µ > 0. For a given preparation protocol, there might be a well-defined density (dashed curve). Whether there is a well-defined lowest
packing fraction for given µ, which would define random loose packing, is an open question, and the question what the contact number of
such states would be is open as well (adapted from [75]).

in the organization of the particles. Hence, at jamming, the
range of packing densities does not go to zero for frictional
particles.

The relation between density and friction coefficient can
be summarized in a simple state diagram (figure 17(b)), which
stresses that random close packing (RCP) is independent
of µ, while the random loose packing (RLP) density
depends strongly on µ, thus connecting random close
packing, random loose packing and the value of the friction
coefficient [69, 70, 73, 77–80]. This diagram further suggests
that the packing density at point J may also be seen as random
loose packing of frictionless spheres (since for µ = 0 one
expects RCP and RLP to coincide)—it is the loosest possible
packings, rather than the densest possible ones, that arise
near jamming. It should be noted that the definition of RLP
is even more contentious than RCP, and the debate is wide
open [73, 78, 79].

4.2.3. Scaling with µ. One may now also wonder how the
contact number and packing density at jamming scale with
µ. Qualitative evidence for scaling was found by Silbert et al
in numerical studies of frictional packings (figures 2 and 3
from [46]). By focusing explicitly on a single preparation
protocol, such as slow equilibration, this becomes a well-posed
question—leading to the concept of generalized isostaticity,
defined below. Data for generalized isostatic packings suggests
that both contact number and density exhibit power law scaling
with µ for small friction, while for large friction, excess contact
number and density (defined with respect to the infinite friction
limit) are also related by scaling, although clearly more work
is needed to establish these scalings firmly [70, 73].

4.2.4. Generalized isostaticity. Here we will discuss the role
of the frictional forces in some more detail, and in particular

focus on frictional packings for which a large number of
contacts are fully mobilized, meaning that the frictional forces
are maximal: |Ft|/Fn = µ. These packings arise in numerical
studies when packings are equilibrated slowly for a wide range
of values of µ.

The mobilization, m, of a contact is defined as the ratio
|Ft|/(µFn) and ranges from 0 to 1 (fully mobilized). Earlier
numerical data suggested that m generally stays away from
1, and that in the limit of large µ, the distribution of the
mobilization P(m) becomes independent of µ [37, 46]. Later it
became clear that P(m) can depend strongly on the preparation
history [69]. Furthermore, frictional two-dimensional packings
which are very slowly equilibrated yield packings for which a
substantial amount of the contact forces are fully mobilized,
meaning that |Ft|/Fn = µ [46, 70, 81]. One imagines that,
during equilibration, many contacts slowly slide, and when
the packing jams many contacts are still close to failure—such
packings are marginal with respect to lowering µ.

For packings with fully mobilized contacts, the counting
arguments need to be augmented, since at fully mobilized
contacts, the frictional and normal forces are no longer
independent [70]. Defining the number of fully mobilized
contacts per particle as nm, the constraints for the zd N/2 force
degrees of freedom then are: d N force balance equations,
d(d−1)N/2 torque balance equations and nm N constraints for
the fully mobilized contacts. This yields the following relation
between z, zµ

iso = d + 1 and nm:6

z − zµ
iso ! 2nm/d. (16)

Surprisingly, for sufficiently slowly equilibrated packings and
for all values of µ, the values for nm and z tend to satisfy this
bound when P is lowered to zero (figure 18). Such packings

6 The corresponding equation in [70] is only correct for d = 2.
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Figure 19. Scaling of contact number, w∗ and elastic moduli for frictional discs, interacting through three-dimensional Hertzian–Mindlin
forces. (a) The zero-pressure contact number, z J , does not reach the isostatic limit (z = 3) unless µ is very large. (b) The excess coordination
number z − z J scales linearly with P1/3 ∼ √

!φ. ((c) and (d)) The characteristic frequency of the DOS, ω∗, scales similarly to z − 3.7

(e) The bulk modulus K (red curves) approaches a plateau for small P, while G appears to scale as z − 3.8 (f) As in frictionless spheres, the
ratio G/K scales with distance to the isostatic point, now given by z − zµ

iso = z − 3 (adapted from [71] with permission—copyright by the
American Physical Society).

4.4. Conclusion

Jamming of frictional grains can be seen as a two-step process.
The first step is the selection of a contact number, z, given
the friction coefficient, pressure and procedure. In the second
step, in which the mechanical properties of the packing are
determined, everything scales with z − zµ

iso. The crucial
difference with frictionless spheres is that the contact number
zc at the P = 0 jamming point in general does not coincide
with zµ

iso. Most quantities are governed by the contact number
and scale with distance to isostaticity, while the contact number
itself scales with distance to jamming.

5. Jamming of non-spherical particles

New phenomena occur in packings of non-spherical particles,
and here we briefly discuss the jamming scenario for
frictionless ellipsoids.
7 A trivial scaling of ω ∼ P1/6, characteristic for Hertzian contacts, has been
scaled out.
8 A trivial scaling of K , G ∼ P1/3, characteristic for Hertzian contacts, has
been scaled out.

First, configurations for hard (or zero-pressure) friction-
less ellipsoids pack more densely and have larger contact num-
bers than frictionless spheres [48–50, 83]. As we discuss in
section 5.1, both the increase in density and in contact number
away from the sphere limit are continuous but not smooth—
plots of φ and z as a function of the ellipticity show a cusp at
the sphere limit (figure 20).

Second, the counting arguments for general ellipsoids
suggest that, at jamming, ellipsoids attain z = ziso = d(d +
1). However, weakly aspherical ellipsoids actually attain a
contact number arbitrarily close to the sphere limit z = 2d .
As a consequence, (weakly) ellipsoidal packings are strongly
hypostatic (underconstrained) near jamming. This leads to
questions about the relation between contact number, rigidity
and floppy modes (section 5.2).

Third, the question arises whether quantities such as z
and ω∗ exhibit scaling, either as a function of the pressure,
as a function of the asphericity or as a function of distance
to either the spherical or the ellipsoidal isostatic point—the
partial answers to these questions, based on recent studies of
the density of states [49, 50], will be addressed in section 5.3.
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ratio G/K scales with distance to the isostatic point, now given by z − zµ

iso = z − 3 (adapted from [71] with permission—copyright by the
American Physical Society).

4.4. Conclusion

Jamming of frictional grains can be seen as a two-step process.
The first step is the selection of a contact number, z, given
the friction coefficient, pressure and procedure. In the second
step, in which the mechanical properties of the packing are
determined, everything scales with z − zµ

iso. The crucial
difference with frictionless spheres is that the contact number
zc at the P = 0 jamming point in general does not coincide
with zµ

iso. Most quantities are governed by the contact number
and scale with distance to isostaticity, while the contact number
itself scales with distance to jamming.
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New phenomena occur in packings of non-spherical particles,
and here we briefly discuss the jamming scenario for
frictionless ellipsoids.
7 A trivial scaling of ω ∼ P1/6, characteristic for Hertzian contacts, has been
scaled out.
8 A trivial scaling of K , G ∼ P1/3, characteristic for Hertzian contacts, has
been scaled out.

First, configurations for hard (or zero-pressure) friction-
less ellipsoids pack more densely and have larger contact num-
bers than frictionless spheres [48–50, 83]. As we discuss in
section 5.1, both the increase in density and in contact number
away from the sphere limit are continuous but not smooth—
plots of φ and z as a function of the ellipticity show a cusp at
the sphere limit (figure 20).

Second, the counting arguments for general ellipsoids
suggest that, at jamming, ellipsoids attain z = ziso = d(d +
1). However, weakly aspherical ellipsoids actually attain a
contact number arbitrarily close to the sphere limit z = 2d .
As a consequence, (weakly) ellipsoidal packings are strongly
hypostatic (underconstrained) near jamming. This leads to
questions about the relation between contact number, rigidity
and floppy modes (section 5.2).

Third, the question arises whether quantities such as z
and ω∗ exhibit scaling, either as a function of the pressure,
as a function of the asphericity or as a function of distance
to either the spherical or the ellipsoidal isostatic point—the
partial answers to these questions, based on recent studies of
the density of states [49, 50], will be addressed in section 5.3.
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nerically find a set of balancing forces !16". Taken together,
this yields z→2d¬ziso

0 as p→0: at the jamming transition,
packings of frictionless spheres are isostatic. For frictional
packings, there are zdN /2 contact force components con-
strained by dN force and d#d−1$N /2 torque balance
equations—thus z!d+1, with ziso

" =d+1 the isostatic value.
Hence, at the jamming transition, frictional spheres do not
have to become isostatic but can attain contact numbers be-
tween ziso

" =d+1 and 2d. While it is not well understood what
selects the contact number of a frictional packing at J, simu-
lations for disks in two dimensions show that in practice
zJ#"$ is a decreasing function of ", ranging from 4 at small
" to 3 for large " !12–14"; see also Fig. 1#a$.

Procedure. Our numerical systems are two-dimensional
#2D$ packings of 1000 polydisperse spheres that interact
through 3D Hertz-Mindlin forces !17", contained in square
boxes with periodic boundary conditions. We set the Young
modulus of the spheres E*=1, which becomes the pressure
unit, and set the Poisson ratio to zero. Our unit of length is
the average grain diameter, the unit of mass is set by assert-
ing that the grain material has unit density, and the unit of
time follows from the speed of sound of pressure waves in-
side the grains !10". The packings are constructed by cooling
while slowly inflating the particle radii in the presence of a
linear damping force, until the required pressure is obtained.
For each value of " and p, 20 realizations are constructed
#occasional runs with 100 realizations did not improve accu-
racy$.

Once a packing is made, the additional damping force is
switched off and the dynamical matrix is obtained by linear-
izing the equations for small-amplitude motions, which in-
clude both rotations and translations. It is important to real-
ize the special role of the friction: if the density of contacts
that precisely satisfy Ft="Fn is negligible, the Coulomb
condition Ft#"Fn only plays a crucial role during the prepa-
ration of a packing. We will assume that this is the case, and
come back to this subtle point later. Under these assump-
tions, and for arbitrarily small-amplitude vibrations, the Cou-
lomb condition is automatically obeyed and the value of "
no longer plays a role in analyzing the vibrational modes.
Moreover, the changes in Ft are then nondissipative and the
eigenmodes of the dynamical matrix are undamped. In this
picture, the main role of the value of the friction coefficient
is in tuning the contact number.

We analyze the density of vibrational states of the pack-

ings thus obtained. Since for Hertzian forces the effective
spring constants scale with the overlap $ as dFn /d$%$1/2

% p1/3 !17", all frequencies will have a trivial p1/6 depen-
dence. To facilitate comparison with data on frictionless
spheres with one-sided harmonic springs !2,8", we report our
results in terms of scaled frequencies in which this p1/6 de-
pendence has been taken out.

Variation of z. Anticipating the crucial role of the contact
number, we start by presenting z#" , p$ for our packings. Fig-
ure 1#a$ confirms the earlier observations !12–14" that the
effective value of zJ#"$&z#" , p→0$ varies from about 4 to
about 3 when " is increased. Moreover, the excess number
of contacts z#" , p$−zJ#"$ varies with pressure as p1/3 for all
values of ".

DOS. Figures 1#b$–1#e$ show our results for the DOS for
various values of ". For the frictionless case shown in Fig.
1#b$, we recover the gradual development of a plateau in the
density of states as the pressure is decreased !2,8". For this
case z→ziso

0 , and the crossover frequency %* scales as &z
=z−ziso

0 !7–9" #see below$. However, as Figs. 1#c$ and 1#d$
illustrate, as soon as the tangential frictional forces are turned
on, this enhancement of the DOS at low frequencies largely
disappears, because the frictionless floppy modes are de-
stroyed. This point is demonstrated most dramatically in Fig.
1#c$, where the underlying packing has been generated for
zero friction, and the friction is only switched on when cal-
culating the DOS—this represents the limit of vanishingly
small but nonzero friction, for which the DOS is seen to be
very far from critical. By increasing the friction coefficient,
the development of a plateau and the scaling of the crossover
progressively reappear !Fig. 1#e$". The intuitive picture that
emerges is that, with increasing friction, granulates at the
jamming point approach criticality.

In order to back this up quantitatively, we perform a scal-
ing analysis of the low-frequency behavior of these DOS
#DS$. To avoid binning problems, we work with the inte-
grated density of states I#%$='%d%!DS#%!$. The critical fre-
quencies are then obtained by requiring that the rescaled in-
tegrated DOS, #%*$−1I#% /%*$ collapse. Such collapse is
never perfect, in particular since not all DOS have precisely
the same “shape” #Fig. 1$. We vary the value of %overlapª% /%* where we require the rescaled integrated DOS to
overlap—as Fig. 2#a$ illustrates, this yields precise values for
%* as function of %overlap. Restricting ourselves to the cross-
over regime #1'%overlap'3$, we obtain by this procedure

FIG. 1. #a$ Average contact number z as a function of p1/3 for various " as indicated. #b$–#e$ Vibrational DOS for granular packings for
friction coefficients as indicated, and for pressures approximately 5(10−6, 5(10−5, 5(10−4, 4(10−3, and 3(10−2. For decreasing p the
DOS becomes steeper for small %, and the crossover frequency %*, indicated in #e$, decreases with p. The packing with "=0+ is obtained
by first making a frictionless packing and then turning on the tangential frictional forces in the DOS calculation. As noted in the text, all
frequencies are scaled by a factor p1/6.
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Figure 19. Scaling of contact number, w∗ and elastic moduli for frictional discs, interacting through three-dimensional Hertzian–Mindlin
forces. (a) The zero-pressure contact number, z J , does not reach the isostatic limit (z = 3) unless µ is very large. (b) The excess coordination
number z − z J scales linearly with P1/3 ∼ √

!φ. ((c) and (d)) The characteristic frequency of the DOS, ω∗, scales similarly to z − 3.7

(e) The bulk modulus K (red curves) approaches a plateau for small P, while G appears to scale as z − 3.8 (f) As in frictionless spheres, the
ratio G/K scales with distance to the isostatic point, now given by z − zµ

iso = z − 3 (adapted from [71] with permission—copyright by the
American Physical Society).

4.4. Conclusion

Jamming of frictional grains can be seen as a two-step process.
The first step is the selection of a contact number, z, given
the friction coefficient, pressure and procedure. In the second
step, in which the mechanical properties of the packing are
determined, everything scales with z − zµ

iso. The crucial
difference with frictionless spheres is that the contact number
zc at the P = 0 jamming point in general does not coincide
with zµ

iso. Most quantities are governed by the contact number
and scale with distance to isostaticity, while the contact number
itself scales with distance to jamming.

5. Jamming of non-spherical particles

New phenomena occur in packings of non-spherical particles,
and here we briefly discuss the jamming scenario for
frictionless ellipsoids.
7 A trivial scaling of ω ∼ P1/6, characteristic for Hertzian contacts, has been
scaled out.
8 A trivial scaling of K , G ∼ P1/3, characteristic for Hertzian contacts, has
been scaled out.

First, configurations for hard (or zero-pressure) friction-
less ellipsoids pack more densely and have larger contact num-
bers than frictionless spheres [48–50, 83]. As we discuss in
section 5.1, both the increase in density and in contact number
away from the sphere limit are continuous but not smooth—
plots of φ and z as a function of the ellipticity show a cusp at
the sphere limit (figure 20).

Second, the counting arguments for general ellipsoids
suggest that, at jamming, ellipsoids attain z = ziso = d(d +
1). However, weakly aspherical ellipsoids actually attain a
contact number arbitrarily close to the sphere limit z = 2d .
As a consequence, (weakly) ellipsoidal packings are strongly
hypostatic (underconstrained) near jamming. This leads to
questions about the relation between contact number, rigidity
and floppy modes (section 5.2).

Third, the question arises whether quantities such as z
and ω∗ exhibit scaling, either as a function of the pressure,
as a function of the asphericity or as a function of distance
to either the spherical or the ellipsoidal isostatic point—the
partial answers to these questions, based on recent studies of
the density of states [49, 50], will be addressed in section 5.3.
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Figure 19. Scaling of contact number, w∗ and elastic moduli for frictional discs, interacting through three-dimensional Hertzian–Mindlin
forces. (a) The zero-pressure contact number, z J , does not reach the isostatic limit (z = 3) unless µ is very large. (b) The excess coordination
number z − z J scales linearly with P1/3 ∼ √

!φ. ((c) and (d)) The characteristic frequency of the DOS, ω∗, scales similarly to z − 3.7

(e) The bulk modulus K (red curves) approaches a plateau for small P, while G appears to scale as z − 3.8 (f) As in frictionless spheres, the
ratio G/K scales with distance to the isostatic point, now given by z − zµ

iso = z − 3 (adapted from [71] with permission—copyright by the
American Physical Society).
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2

FIG. 2: . (a) Shear modulus G(�) under gravity confinement. Straight line y = G0x, with G0 = 2, 28.106 Pa. (b) Response to

a stress ramp : shear stress � as a function time for
.

� = 0.00104 rd/s and a packing fraction � = 0.6. First rupture stress �

r

and maximal stress �
M

are displayed as horizontal dotted lines. (b) For the same rotation rate, �
r

, �
M

and the ratio �M
�r

as a
function of packing fraction.

by successive tapping on the container side, the pack-
ing fraction can be increased up to the desired packing
fraction (maximal value � = 0.625). Before each mechan-
ical measurement, the packing fraction value is evaluated
from a linear fit between pressure drop �P and flow rate
Q : �P = Q, stemming from Darcy’s law. The relation
between permeability K and packing fraction was cali-
brated by preliminar series of experiments and a Carman-

Kozeny relation [18] was obtained : K(�) = A (1��)3

�2 d2,

with A = 1/165. Consequently, packing fraction is de-
termined through the relation : K(�) � = ⌘ 4 M

⇡D2⇢ . To
shear the granular packing, we use a four blades vane of
height H0 = 2.54cm and diameter 2R0 = 2.54cm (see
fig.1(a)),introduced at a depth h = 5cm below the sur-
face prior to the initial fluidization process. This proce-
dure creates initially reproducible conditions for shear at
fixed packing fraction. Shear stress is applied through
the vane (see fig.1) connected axially to a torque probe
(T) itself coupled to a brushless motor (M) via a tor-
sion spring (S). The vane rotation angle ↵ is monitored
via a transversal arm (A) which rotation is followed by
a displacement induction probe (D). The motor rotation
angle � can be imposed at a 2⇡/10000 precision. Torque
and displacement signals as well the motor command,
are connected to a Labview controler board programed
to impose a motor rotation rate or a fixed stresse us-
ing a feedback loop on the torque signal. In the follow-
ing, we ignore the stress and strain spatial distribution,
due to the Couette cell geometry and define only average
values obtained from mesurements of angular rotation ↵
and torque T . The mean packing deformation � is de-
fined as � = ↵R0

R�R0
and the mean shear deformation is :

� = T
2⇡R2H0

. On fig.1(b), we display three examples of
creep curves ��(t) = �(t)� �(0) obtained at fixed com-
pacity and shear stress values �.
Elastic response - To obtain the elastic response of the
packing initially prepared at a given packing fraction,
stress cycles were performed corresponding to sinusoidal
deformations at small amplitudes around 10�5. The

cycles are done under constant mean confining pres-
sure (hydrostatic loading) P0 = ⇢�gh. In the short
time limit, the response is essentially reversible (see in-
set of fig.(2(a)). The e↵ective elastic shear modulus in-
creases with packing fraction. Mean-field Hertz elas-
ticity theory (see[17] and refs inside), under a confin-
ing pressure P0 would yield a shear modulus scaling as

Geff / E0 (�Z)2/3
⇣

P0
E0

⌘1/3
, where Z is the mean contact

number and E0 the material Young’s modulus. Thus, one
should obtain a linear relation : Geff = G0�, which cor-
respond to our experimental finding (see line on figure
2(a)) with a value of G0 = 2, 28.106Pa.
Response to a stress ramp - To identify the the maxi-
mal stress supported by the packing before yield, shear
stress ramps were applied at a constant motor rota-

tion rate (
.

�), using the softest spring constant available
(k = 2, 45.10�3Nm/rd). On figure 2(a), the stress re-
sponse at � = 0.60 is displayed as a function of time. At
first, a linear increase of the stress is observed with a slope
corresponding to the spring constant. Then, at a given
stress level �r, we observe the emergence of well marked
and sudden granular material reorganizations (see top
view on fig.2(b)) in the form of rather equidistant events
corresponding to stress drops and large plastic deforma-
tions (�� = 10�3 � 10�2). We define this stress value as
the ”first rupture stress” : �r. However, stress can still
be increased up to a maximal value �M where a large
stress jump is evidenced and a subsequent stick-slip dy-
namics is observed. This final stress value corresponds
to a Coulomb yield criterion as we verified that its value
increases linearly with the confining pressure. Such ex-
periments were performed varying packing fraction and
ramp velocities and we only display here, stresses ob-
tained at the slowest driving velocity where the values
are quite insensitive to the rotation rate. On fig 2(b),
the rupture, maximal and dynamical stresses are dis-
played as a function of packing fraction for a rotation

rate (
.

� = 0.00104rd/s). The values increase strongly
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Frictional jamming scenario
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weak plane, one of the relaxation rates, G1, vanishes for
u ≠ py2, while the other always remains of order vc.
Therefore values of u near py2 dominate the integral in
Eq. (6) at long times, and we may neglect the second term
in the integrand. Physically, the regions with weak planes
nearly parallel to the direction q̂ ≠ $qyq of the shear
gradient exhibit the most solidlike response and therefore
have the slowest stress relaxation rates G1. We find
that G1 depends on the projection q̂c ≠ q̂ ? ĉ ; cosu ¯
py2 2 u. By symmetry, G1 cannot depend on the sign
of q̂c. Thus we find that at long times the integral is of
the form S̃sk ≠ 0, td ,

R
dx e2x2t, where x ≠ py2 2 u.

This Gaussian integral yields S̃sk ≠ 0, td , t21y2, and
hence our main result Gpsvd , sivyvcd1y2.
To test this prediction, we must measure the dynamic

shear modulus over a wide frequency range, extending
to frequencies higher than those accessible to traditional
mechanical rheometers. We use a recently developed
light scattering technique [8] that relies on the fluctuation-
dissipation theorem, much in the spirit of our calculation.
We measure the motion of a particle due to thermal fluctu-
ations, as parametrized by the mean square displacement,
kDr2stdl. In a viscoelastic material, this motion reflects
both viscous loss and energy storage in the medium. The
modulus is obtained by generalizing the Stokes-Einstein
relation to finite frequencies,

Gssd ≠ shssd ≠
kBT

paskDr2ssdl
. (7)

Here, it is most convenient to work with the Laplace
frequency, s, with bars representing Laplace-transformed
quantities. The modulus Gssd is related to Gpsvd through
the analytic continuation s ≠ iv [8]. This relation pro-
vides physical intuition about the meaning of Gssd:
Nearly frequency-independent behavior reflects a large
elastic contribution since G0svd dominates; linear behav-
ior in s reflects a large viscous contribution since G00svd
dominates. An intermediate frequency dependence re-
flects contributions to both components.
We use monodisperse emulsions [14] so that the droplets

themselves can be used as the probes [8]. Our emulsion is
comprised of 1 mm diameter silicone oil droplets in water,
stabilized by sodium dodecylsulphate at a concentration
of 10mM. The emulsion is concentrated by centrifuga-
tion, and the volume fraction is determined by weighing,
before and after evaporating, the continuous water phase.
We measure kDr2stdl with diffusing-wave spectroscopy
(DWS) in the transmission geometry [15,16]. The in-
terpretation assumes that the scattered intensity can be
determined from the product of a form factor and struc-
ture factor. Independent scattering measurements [17]
of monodisperse emulsions, whose continuous phase has
been adjusted by adding glycerol to index-match the oil
phase, show that this factorization is valid even at the high
volume fractions studied here.
To determine the modulus of the emulsion, we numeri-

cally calculate the Laplace transform of kDr2stdl from our

DWS measurements, and use Eq. (7). Typical results are
shown by the open symbols in Fig. 1(a) for an emulsion
with f ≠ 0.67. The data extend over seven decades to
very high frequencies, illustrating the utility of this tech-
nique. They also exhibit the expected behavior; at low
frequencies, they are nearly independent of s, reflecting
the dominant elastic behavior of a compressed emulsion;
at high frequencies, they approach a linear dependence on
s, reflecting the dominant viscous behavior of a system
comprised solely of fluids. To determine the frequency
dependence in the intermediate regime, we subtract from
the data a constant, reflecting the low frequency elastic-
ity, and a term proportional to s, reflecting the high fre-
quency viscous loss. The sum of these terms, adjusted to
match the asymptotic limits of the data, is shown by the
dashed line in Fig. 1(a) . The resulting difference, DGssd,
is shown as the solid symbols in Fig. 1(a). Its frequency
dependence is s1y2, as shown by the solid line through
the data. This reflects a contribution to the modulus be-
yond the purely elastic and purely viscous components.
Similar s1y2 contributions are observed for higher volume
fractions [see Fig. 1(b)]. The s1y2 contribution results in
an sivd1y2 contribution to Gpsvd, providing direct experi-
mental support for our proposed model.
To quantify the dependence of the s1y2 contribution on

volume fraction, we fit the data by

Gssd ≠ Gp 1 Asfds1y2 1 h`s , (8)

FIG. 1. (a) The upper set of symbols shows the light scat-
tering measurements of the dynamic shear modulus Gssd as
a function of the Laplace frequency s for an emulsion with
a ≠ 0.5 mm and f ¯ 0.67. The dashed line represents the
asymptotic contributions of an elastic component at low fre-
quencies and a viscous component at high frequencies. The
difference, DGssd, shown by the lower set of solid points, rep-
resents the additional contribution to the modulus, and exhibits
an s1y2 frequency dependence, as shown by the solid line. (b)
The s1y2 contribution, DGssd, for the same emulsion at several
volume fractions.

3019

Liu et al., PRL 1996

emulsion

VOLUME 76, NUMBER 16 P HY S I CA L REV I EW LE T T ER S 15 APRIL 1996

weak plane, one of the relaxation rates, G1, vanishes for
u ≠ py2, while the other always remains of order vc.
Therefore values of u near py2 dominate the integral in
Eq. (6) at long times, and we may neglect the second term
in the integrand. Physically, the regions with weak planes
nearly parallel to the direction q̂ ≠ $qyq of the shear
gradient exhibit the most solidlike response and therefore
have the slowest stress relaxation rates G1. We find
that G1 depends on the projection q̂c ≠ q̂ ? ĉ ; cosu ¯
py2 2 u. By symmetry, G1 cannot depend on the sign
of q̂c. Thus we find that at long times the integral is of
the form S̃sk ≠ 0, td ,

R
dx e2x2t, where x ≠ py2 2 u.

This Gaussian integral yields S̃sk ≠ 0, td , t21y2, and
hence our main result Gpsvd , sivyvcd1y2.
To test this prediction, we must measure the dynamic

shear modulus over a wide frequency range, extending
to frequencies higher than those accessible to traditional
mechanical rheometers. We use a recently developed
light scattering technique [8] that relies on the fluctuation-
dissipation theorem, much in the spirit of our calculation.
We measure the motion of a particle due to thermal fluctu-
ations, as parametrized by the mean square displacement,
kDr2stdl. In a viscoelastic material, this motion reflects
both viscous loss and energy storage in the medium. The
modulus is obtained by generalizing the Stokes-Einstein
relation to finite frequencies,

Gssd ≠ shssd ≠
kBT

paskDr2ssdl
. (7)

Here, it is most convenient to work with the Laplace
frequency, s, with bars representing Laplace-transformed
quantities. The modulus Gssd is related to Gpsvd through
the analytic continuation s ≠ iv [8]. This relation pro-
vides physical intuition about the meaning of Gssd:
Nearly frequency-independent behavior reflects a large
elastic contribution since G0svd dominates; linear behav-
ior in s reflects a large viscous contribution since G00svd
dominates. An intermediate frequency dependence re-
flects contributions to both components.
We use monodisperse emulsions [14] so that the droplets

themselves can be used as the probes [8]. Our emulsion is
comprised of 1 mm diameter silicone oil droplets in water,
stabilized by sodium dodecylsulphate at a concentration
of 10mM. The emulsion is concentrated by centrifuga-
tion, and the volume fraction is determined by weighing,
before and after evaporating, the continuous water phase.
We measure kDr2stdl with diffusing-wave spectroscopy
(DWS) in the transmission geometry [15,16]. The in-
terpretation assumes that the scattered intensity can be
determined from the product of a form factor and struc-
ture factor. Independent scattering measurements [17]
of monodisperse emulsions, whose continuous phase has
been adjusted by adding glycerol to index-match the oil
phase, show that this factorization is valid even at the high
volume fractions studied here.
To determine the modulus of the emulsion, we numeri-

cally calculate the Laplace transform of kDr2stdl from our

DWS measurements, and use Eq. (7). Typical results are
shown by the open symbols in Fig. 1(a) for an emulsion
with f ≠ 0.67. The data extend over seven decades to
very high frequencies, illustrating the utility of this tech-
nique. They also exhibit the expected behavior; at low
frequencies, they are nearly independent of s, reflecting
the dominant elastic behavior of a compressed emulsion;
at high frequencies, they approach a linear dependence on
s, reflecting the dominant viscous behavior of a system
comprised solely of fluids. To determine the frequency
dependence in the intermediate regime, we subtract from
the data a constant, reflecting the low frequency elastic-
ity, and a term proportional to s, reflecting the high fre-
quency viscous loss. The sum of these terms, adjusted to
match the asymptotic limits of the data, is shown by the
dashed line in Fig. 1(a) . The resulting difference, DGssd,
is shown as the solid symbols in Fig. 1(a). Its frequency
dependence is s1y2, as shown by the solid line through
the data. This reflects a contribution to the modulus be-
yond the purely elastic and purely viscous components.
Similar s1y2 contributions are observed for higher volume
fractions [see Fig. 1(b)]. The s1y2 contribution results in
an sivd1y2 contribution to Gpsvd, providing direct experi-
mental support for our proposed model.
To quantify the dependence of the s1y2 contribution on

volume fraction, we fit the data by

Gssd ≠ Gp 1 Asfds1y2 1 h`s , (8)

FIG. 1. (a) The upper set of symbols shows the light scat-
tering measurements of the dynamic shear modulus Gssd as
a function of the Laplace frequency s for an emulsion with
a ≠ 0.5 mm and f ¯ 0.67. The dashed line represents the
asymptotic contributions of an elastic component at low fre-
quencies and a viscous component at high frequencies. The
difference, DGssd, shown by the lower set of solid points, rep-
resents the additional contribution to the modulus, and exhibits
an s1y2 frequency dependence, as shown by the solid line. (b)
The s1y2 contribution, DGssd, for the same emulsion at several
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weak plane, one of the relaxation rates, G1, vanishes for
u ≠ py2, while the other always remains of order vc.
Therefore values of u near py2 dominate the integral in
Eq. (6) at long times, and we may neglect the second term
in the integrand. Physically, the regions with weak planes
nearly parallel to the direction q̂ ≠ $qyq of the shear
gradient exhibit the most solidlike response and therefore
have the slowest stress relaxation rates G1. We find
that G1 depends on the projection q̂c ≠ q̂ ? ĉ ; cosu ¯
py2 2 u. By symmetry, G1 cannot depend on the sign
of q̂c. Thus we find that at long times the integral is of
the form S̃sk ≠ 0, td ,
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dx e2x2t, where x ≠ py2 2 u.

This Gaussian integral yields S̃sk ≠ 0, td , t21y2, and
hence our main result Gpsvd , sivyvcd1y2.
To test this prediction, we must measure the dynamic
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to frequencies higher than those accessible to traditional
mechanical rheometers. We use a recently developed
light scattering technique [8] that relies on the fluctuation-
dissipation theorem, much in the spirit of our calculation.
We measure the motion of a particle due to thermal fluctu-
ations, as parametrized by the mean square displacement,
kDr2stdl. In a viscoelastic material, this motion reflects
both viscous loss and energy storage in the medium. The
modulus is obtained by generalizing the Stokes-Einstein
relation to finite frequencies,

Gssd ≠ shssd ≠
kBT

paskDr2ssdl
. (7)

Here, it is most convenient to work with the Laplace
frequency, s, with bars representing Laplace-transformed
quantities. The modulus Gssd is related to Gpsvd through
the analytic continuation s ≠ iv [8]. This relation pro-
vides physical intuition about the meaning of Gssd:
Nearly frequency-independent behavior reflects a large
elastic contribution since G0svd dominates; linear behav-
ior in s reflects a large viscous contribution since G00svd
dominates. An intermediate frequency dependence re-
flects contributions to both components.
We use monodisperse emulsions [14] so that the droplets

themselves can be used as the probes [8]. Our emulsion is
comprised of 1 mm diameter silicone oil droplets in water,
stabilized by sodium dodecylsulphate at a concentration
of 10mM. The emulsion is concentrated by centrifuga-
tion, and the volume fraction is determined by weighing,
before and after evaporating, the continuous water phase.
We measure kDr2stdl with diffusing-wave spectroscopy
(DWS) in the transmission geometry [15,16]. The in-
terpretation assumes that the scattered intensity can be
determined from the product of a form factor and struc-
ture factor. Independent scattering measurements [17]
of monodisperse emulsions, whose continuous phase has
been adjusted by adding glycerol to index-match the oil
phase, show that this factorization is valid even at the high
volume fractions studied here.
To determine the modulus of the emulsion, we numeri-

cally calculate the Laplace transform of kDr2stdl from our

DWS measurements, and use Eq. (7). Typical results are
shown by the open symbols in Fig. 1(a) for an emulsion
with f ≠ 0.67. The data extend over seven decades to
very high frequencies, illustrating the utility of this tech-
nique. They also exhibit the expected behavior; at low
frequencies, they are nearly independent of s, reflecting
the dominant elastic behavior of a compressed emulsion;
at high frequencies, they approach a linear dependence on
s, reflecting the dominant viscous behavior of a system
comprised solely of fluids. To determine the frequency
dependence in the intermediate regime, we subtract from
the data a constant, reflecting the low frequency elastic-
ity, and a term proportional to s, reflecting the high fre-
quency viscous loss. The sum of these terms, adjusted to
match the asymptotic limits of the data, is shown by the
dashed line in Fig. 1(a) . The resulting difference, DGssd,
is shown as the solid symbols in Fig. 1(a). Its frequency
dependence is s1y2, as shown by the solid line through
the data. This reflects a contribution to the modulus be-
yond the purely elastic and purely viscous components.
Similar s1y2 contributions are observed for higher volume
fractions [see Fig. 1(b)]. The s1y2 contribution results in
an sivd1y2 contribution to Gpsvd, providing direct experi-
mental support for our proposed model.
To quantify the dependence of the s1y2 contribution on

volume fraction, we fit the data by

Gssd ≠ Gp 1 Asfds1y2 1 h`s , (8)

FIG. 1. (a) The upper set of symbols shows the light scat-
tering measurements of the dynamic shear modulus Gssd as
a function of the Laplace frequency s for an emulsion with
a ≠ 0.5 mm and f ¯ 0.67. The dashed line represents the
asymptotic contributions of an elastic component at low fre-
quencies and a viscous component at high frequencies. The
difference, DGssd, shown by the lower set of solid points, rep-
resents the additional contribution to the modulus, and exhibits
an s1y2 frequency dependence, as shown by the solid line. (b)
The s1y2 contribution, DGssd, for the same emulsion at several
volume fractions.
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Effect of coarsening on mechanical response.—To
quantify linear response, we measure both the complex
shear modulus, G!"!# $ G0"!# % iG00"!#, and the stress
relaxation modulus, G"t# [12]. Our data are displayed in
Fig. 1. Note that G0"!# > G00"!#, meaning that the re-
sponse is primarily elastic rather than dissipative. The
frequency range for our G!"!# data spans almost six
decades, from 2! divided by sample age (an absolute
minimum below which measurement is not possible) up
to a maximum set by limitations of the rheometer. Note
that different amplitude strains give the same result,
demonstrating absence of wall slip and other geometry-
dependent artifacts and hinting at linearity of response. A
more stringent test of linearity is comparison with G"t#,
which should be related to G!"!# by Fourier transform
[12]. The time range for our G"t# data spans over five
decades, from the time needed to achieve the step strain
up to the time beyond which stress is zero to within
instrumental limits. An empirical fit to the G"t# data is
shown in Fig. 1(b) by a solid curve; this fit is transformed
and plotted in Fig. 1(a) over a frequency range corre-
sponding to the time range of the fit. The agreement is
very good, demonstrating conclusively that the sample is
linear. This is further supported by an empirical fit to

G!"!# data at high ! and the comparison of its transform
with G"t# data at short t.

Let us now consider the frequency and time depen-
dence of the moduli in Fig. 1. The fit for ! > 5 rad=s is to
the form G!"!# $ G&"1%

!!!!!!!!!!!!!!!

i!=!n

p

# with free parameters
G& $ 2300 dyn=cm2 and !n $ 156 rad=s. The former
represents the static shear modulus, roughly surface ten-
sion divided by bubble size [2,3]. The latter represents the
effect of nonaffine deformation of the bubbles under shear
due to local packing configurations that are strong or
weak with respect to the shear direction [13]. This
fit, including the parameters, is consistent with the
G!"!# data in Ref. [14], where the frequency range
(0:3–20 rad=s) was too small to fully demonstrate
the functional form. According to the theory of [13],
the characteristic frequency is !n / G&="1, where the
very-high frequency response is G!"!# $ i"1!. The
numerical prefactor was not predicted; experimentally,
it was found to depend on " and was not of order 1. To
compare, the value is !n ' 600 rad=s for a " $ 0:38
emulsion of 0:5 #m oil droplets in water [13,15] [NB:
by our definition, !n may be easily read off a plot by
locating where G0"2!n# $ 2G& and G00"2!n# $ G&].

The fit to G&"1%
!!!!!!!!!!!!!!!

i!=!n

p

# fails for !< 5 rad=s; the
corresponding transform fails for t > 20 s. At longer
times, the G"t# data decay slowly below G&, almost log-
arithmically, over a few decades before relaxing more
rapidly at around 1000 s. The transform of this final decay
corresponds to the peak in G00"!# at 10(3 rad=s. At lower
frequencies, G!"!# is unmeasurable; but since the inte-
gral of G"t# over all time is finite, the very-low frequency
behavior is formally G00"!# / ! as required by causality
[16]. Thus the full frequency dependence of G!"!# for our
foam is truly known and well behaved. This resolves a
long-standing puzzle [16] raised by earlier measurements
[14,15,17] where G!"!# was roughly constant down to the
lowest measured frequencies.

All that remains is to understand the origin of the
low-!/long-t behavior. We contend that evolution of the
foam structure by coarsening is responsible. One clue is
that the onset of deviation from the high-! fits corre-
sponds to the time $oq $ 20 s given by DWS for the time
between coarsening-induced rearrangements at each site.
Another clue is that the final decay of G"t# and, equiv-
alently, the peak in G00"!# correspond to the sample age.
Since coarsening gives power-law growth, it takes of
order the sample age for the structure to completely
change. It is interesting that coarsening-induced rear-
rangements relax microscopic coarsening-induced stress
inhomogeneities far more quickly than the relaxation of
macroscopically imposed stress. Rather, the cumulative
effect of many rearrangements and a change in bubble
size is needed to relax global stress. The net result is a
rheology that obeys linear response. This is remarkable
given that the microscopic relaxation mechanism is
not thermal motion, but rather evolution. In effect,
coarsening unjams the foam, so that at low frequencies
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FIG. 1. Dynamic shear moduli of a coarsening foam, in both
the (a) frequency and (b) time domains; symbols in (a) denote
the imposed strain amplitude. The dashed curves in (a) and (b)
are a fit to G!"!# $ Go"1%

!!!!!!!!!!!!!!!

i!=!n

p

# and G"t# $ G&"1%
1=

!!!!!!!!!!!!

!!nt
p #, predicted for nonaffine bubble motion in the ab-

sence of any time evolution. The solid curve in (b) is an
empirical fit to G"t#; appropriately transformed, it gives the
solid curves matching the storage and loss moduli in (a).
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weak plane, one of the relaxation rates, G1, vanishes for
u ≠ py2, while the other always remains of order vc.
Therefore values of u near py2 dominate the integral in
Eq. (6) at long times, and we may neglect the second term
in the integrand. Physically, the regions with weak planes
nearly parallel to the direction q̂ ≠ $qyq of the shear
gradient exhibit the most solidlike response and therefore
have the slowest stress relaxation rates G1. We find
that G1 depends on the projection q̂c ≠ q̂ ? ĉ ; cosu ¯
py2 2 u. By symmetry, G1 cannot depend on the sign
of q̂c. Thus we find that at long times the integral is of
the form S̃sk ≠ 0, td ,

R
dx e2x2t, where x ≠ py2 2 u.

This Gaussian integral yields S̃sk ≠ 0, td , t21y2, and
hence our main result Gpsvd , sivyvcd1y2.
To test this prediction, we must measure the dynamic

shear modulus over a wide frequency range, extending
to frequencies higher than those accessible to traditional
mechanical rheometers. We use a recently developed
light scattering technique [8] that relies on the fluctuation-
dissipation theorem, much in the spirit of our calculation.
We measure the motion of a particle due to thermal fluctu-
ations, as parametrized by the mean square displacement,
kDr2stdl. In a viscoelastic material, this motion reflects
both viscous loss and energy storage in the medium. The
modulus is obtained by generalizing the Stokes-Einstein
relation to finite frequencies,

Gssd ≠ shssd ≠
kBT

paskDr2ssdl
. (7)

Here, it is most convenient to work with the Laplace
frequency, s, with bars representing Laplace-transformed
quantities. The modulus Gssd is related to Gpsvd through
the analytic continuation s ≠ iv [8]. This relation pro-
vides physical intuition about the meaning of Gssd:
Nearly frequency-independent behavior reflects a large
elastic contribution since G0svd dominates; linear behav-
ior in s reflects a large viscous contribution since G00svd
dominates. An intermediate frequency dependence re-
flects contributions to both components.
We use monodisperse emulsions [14] so that the droplets

themselves can be used as the probes [8]. Our emulsion is
comprised of 1 mm diameter silicone oil droplets in water,
stabilized by sodium dodecylsulphate at a concentration
of 10mM. The emulsion is concentrated by centrifuga-
tion, and the volume fraction is determined by weighing,
before and after evaporating, the continuous water phase.
We measure kDr2stdl with diffusing-wave spectroscopy
(DWS) in the transmission geometry [15,16]. The in-
terpretation assumes that the scattered intensity can be
determined from the product of a form factor and struc-
ture factor. Independent scattering measurements [17]
of monodisperse emulsions, whose continuous phase has
been adjusted by adding glycerol to index-match the oil
phase, show that this factorization is valid even at the high
volume fractions studied here.
To determine the modulus of the emulsion, we numeri-

cally calculate the Laplace transform of kDr2stdl from our

DWS measurements, and use Eq. (7). Typical results are
shown by the open symbols in Fig. 1(a) for an emulsion
with f ≠ 0.67. The data extend over seven decades to
very high frequencies, illustrating the utility of this tech-
nique. They also exhibit the expected behavior; at low
frequencies, they are nearly independent of s, reflecting
the dominant elastic behavior of a compressed emulsion;
at high frequencies, they approach a linear dependence on
s, reflecting the dominant viscous behavior of a system
comprised solely of fluids. To determine the frequency
dependence in the intermediate regime, we subtract from
the data a constant, reflecting the low frequency elastic-
ity, and a term proportional to s, reflecting the high fre-
quency viscous loss. The sum of these terms, adjusted to
match the asymptotic limits of the data, is shown by the
dashed line in Fig. 1(a) . The resulting difference, DGssd,
is shown as the solid symbols in Fig. 1(a). Its frequency
dependence is s1y2, as shown by the solid line through
the data. This reflects a contribution to the modulus be-
yond the purely elastic and purely viscous components.
Similar s1y2 contributions are observed for higher volume
fractions [see Fig. 1(b)]. The s1y2 contribution results in
an sivd1y2 contribution to Gpsvd, providing direct experi-
mental support for our proposed model.
To quantify the dependence of the s1y2 contribution on

volume fraction, we fit the data by

Gssd ≠ Gp 1 Asfds1y2 1 h`s , (8)

FIG. 1. (a) The upper set of symbols shows the light scat-
tering measurements of the dynamic shear modulus Gssd as
a function of the Laplace frequency s for an emulsion with
a ≠ 0.5 mm and f ¯ 0.67. The dashed line represents the
asymptotic contributions of an elastic component at low fre-
quencies and a viscous component at high frequencies. The
difference, DGssd, shown by the lower set of solid points, rep-
resents the additional contribution to the modulus, and exhibits
an s1y2 frequency dependence, as shown by the solid line. (b)
The s1y2 contribution, DGssd, for the same emulsion at several
volume fractions.
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We study the internal dynamical processes taking place in a granular packing below yield stress. At all

packing fractions and down to vanishingly low applied shear, a logarithmic creep is observed. The

experiments are analyzed using a viscoelastic model which introduces an internal, time-dependent,

fluidity variable. For all experiments, the creep dynamics can be rescaled onto a unique curve which

displays jamming at the random-close-packing limit. At each packing fraction, we measure a stress

corresponding to the onset of internal granular reorganization and a slowing down of the creep dynamics

before the final yield.
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For granular matter, it is currently accepted that a quasi-
static limit exists as for grains of macroscopic size, ther-
mally activated processes can be ignored. At low shear
rate, mechanical properties of granular packing are usually
described by rate independent constitutive relations [1].
However, there are compelling experimental evidences
that this limit is just a short-time approximation and
time-dependent processes are significant on the long run
[2]. Many numerical simulations based on soft interpartic-
ular interactions [3] have brought to the front the idea of an
‘‘universal’’ jamming transition scenario based on a me-
chanical rigidity threshold separating solid and fluid be-
havior (see a recent review and references in [4]).
However, for real grains, interparticle solid friction was
shown to affect the rigidity onset and stabilize packing at
compacity below the random-close-packing limit [5]. In
this case, experiments have pointed out the central impor-
tance of nanometric scales where humidity [6], contact
plasticity, tiny thermal variations [7] or weak mechanical
external noise [8], do impact significantly the macroscopic
dynamics and the rheology. Since the original theoretical
propositions of ‘‘soft glassy rheology’’ or ‘‘shear trans-
formation zones’’ [9] various models have tried to capture
the complex energy reorganization dynamics taking place
in amorphous solids or yield-stress fluids, in relation with
their constitutive rheological laws. Microscopically, the
emergence of plasticity is often explained via a simple
picture where localized elastic instabilities release irrevers-
ibly long range elastic constraints [10] which may be
organized spatially as shear driven avalanches [11].
Macroscopically, to account for the complex phenomenol-
ogy, an internal time-dependent variable called fluidity is
often introduced [12] to describe the rate of stress
relaxation.

In this Letter, we study the creeping dynamics of granu-
lar packing under constant shear stress, below the Coulomb
limit. In order to reveal the internal relaxation processes
and make connection with the behavior of a large class of

yield-stress fluids [13], we propose a quantitative analysis
using a phenomenological model based on the fluidity
concept.
All the mechanical tests are performed at well defined

packing fractions ! (see Fig. 1). To achieve this goal, the
setup is designed as an air fluidized bed. The container is a
plastic cylinder of inner diameter D ¼ 10 cm closed at its
bottom by a metal grid supported by a honeycomb grid.
Pressurized air is introduced in an admission chamber
below the grid at a controlled overpressure !P. We use
glass beads of density " ¼ 2500 kg=m3 and mean diame-
ter d ¼ 200 #m (rms polydispersity !d ¼ 30 #m).
A mass M of grains is poured into the container such that
the typical packing height is L ¼ 10 cm. Using a flow
rate just above the fluidization value, we obtain after
stoppage, an initially loose granular packing at a compacity
! " 0:56. Then, by successive tapping on the container
side, the packing fraction can be increased up to the desired
packing fraction (maximal value ! ¼ 0:625). Note that in
the present report, the relative humidity is kept at 35# 5%

FIG. 1 (color online). (a) Schematics of the shear cell. (M):
motor, (S): torsion spring, (T): torque probe, (D): induction
distance probe, (A): transversal arm, (Q): flowmeter, P1: differ-
ential pressure probes. (b) Creep deformation: !$ðtÞ under
constant shear stress at packing fraction ! ¼ 0:60.
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