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Abstract

We give a new criterion for asymptotic completeness in Kümmerer-
Maassen-scattering theory which is more directly in terms of the cou-
pling. To this end we define the semigroup of dual extended transition
operators. Asymptotic completeness holds if and only if this semigroup
is ergodic. This may also be interpreted in terms of entanglement.
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1 Coupling representations

In recent years some authors introduced ideas from scattering theory into
quantum probability, see the survey article of R. Rebolledo [Re]. More specif-
ically, B.Kümmerer and H. Maassen in [KM] described a scattering theory
for Markov chains which is built on the notion of a coupling representation
of a Markov process. This is the setting we also adopt here. Our main re-
sult (Theorem 4.2) is a new criterion for asymptotic completeness which is
more directly formulated in terms of the coupling than the ones in [KM] and
which has an interesting interpretation in terms of entanglement of compos-
ite systems. The decisive new tool in our approach is the introduction of the
semigroup of dual extended transition operators in section 3, which allows
us to control the time dependence of the entanglement. This notion may be
of independent interest. See also [Go1, Go2] for some further background
material to our approach.

Let us quickly recall the setting. For more details and motivations the
reader should consult [KM]. We give quotations for the main definitions and
introduce some small modifications. In particular we restrict to a one-sided
version with respect to time, which is all what is needed in this paper.

1



A (noncommutative) probability space is a pair (A, φ) consisting of a
von Neumann algebra A and a faithful normal state φ. By T : (A, φ) →
(B, ψ) we denote a normal unital completely positive map T : A → B
with ψ ◦ T = φ. A (noncommutative) stochastic process is a family of
normal ∗−homomorphisms (‘random variables’) jt : (A, φ) → (Â, φ̂), where
t ∈ T+ with T+ = N0 or T+ = {0 ≤ t ∈ R}. Writing i = j0 the process
is called stationary if there is a semigroup of normal ∗−homomorphisms
αt : (Â, φ̂) → (Â, φ̂) such that jt = αt ◦ i for all t. If T+ = {0 ≤ t ∈ R} the
semigroup is assumed to be pointwise weak∗−continuous.

A (noncommutative) white noise is a (noncommutative) probability space
(Ĉ, ψ̂) with a semigroup of normal ∗−homomorphisms σt : (Ĉ, ψ̂) → (Ĉ, ψ̂)
(where t ∈ T+, pointwise weak∗−continuous for real parameters) and a fil-
tration {C[s,t), 0 ≤ s < t ≤ ∞} of von Neumann subalgebras compatible
with {σt} in the sense that σt(C[u,v)) = C[u+t,v+t) and such that

• Ĉ = C[0,∞)

• C[s,t) is generated by C[s,u) and C[u,t) if 0 ≤ s < u < t

• C[s,t) and C[u,v) are independent subalgebras of (Ĉ, ψ̂) whenever the
intervals [s, t) and [u, v) are disjoint.

Independence is meant in the sense introduced by B.Kümmerer which al-
lows to treat many different notions of noncommutative independence si-
multaneously, including commutative schemes, CCR, CAR, free and q-white
noises: Two subalgebras B1,B2 in (B, ψ) are called independent if ψ(x1x2) =
ψ(x1)ψ(x2) for all x1 ∈ B1 and x2 ∈ B2 and if there are conditional expec-
tations Pi from B onto Bi (i = 1, 2) which preserve the state ψ. Using the
module property of conditional expectations one concludes that this relation
of independence is symmetric and that

ψ(xzy) = ψ(xy)ψ(z)

if x, y ∈ B1, z ∈ B2 and B1,B2 independent. But higher correlations are not
determined in general.

A stationary process (Â, φ̂, αt, i) has a coupling representation of tensor
type if Â = i(A) ⊗ Ĉ with φ̂ = φ ⊗ ψ̂ and 1I ⊗ Ĉ is invariant for the αt

and (Ĉ, ψ̂) with σt given by 1I ⊗ σt(c) := αt(1I ⊗ c) is a white noise and
αt i(A) ⊂ i(A) ⊗ C[0,t) for all t ∈ T+. Here we always identify i(A) and
i(A)⊗ 1I. Given such a coupling representation it is possible to think of the
random variables jt of the process as

jt : A → i(A) ⊗ C[0,t) ⊂ Â

and we have for a ∈ A, c ∈ Ĉ

αt(i(A) ⊗ c) = jt(a) (1I ⊗ σt(c))
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This decomposition of the time evolution αt into a coupling given by jt

and a white noise evolution σt is fundamental for the things to come. It
can be checked that a coupling representation implies a noncommutative
Markov property for the process. In particular, introducing the tensor type
conditional expectation P : (Â, φ̂) → (A, φ) defined by evaluating the state
ψ̂ on Ĉ, we get with Tt := P jt : (A, φ) → (A, φ) a semigroup of transition
operators for this Markov process.

A two-sided version with parameters in Z or R may be recovered by
enlarging the algebras using stationarity. In [KM] the authors proceed to
discuss scattering theory for the two-sided version, considering the evolution
of the Markov process as a perturbation of the white noise evolution. They
define asymptotic completeness in the usual way and get the following cri-
terion which can be formulated using only the one-sided version introduced
above. We shall use this criterion later while there is no need for us here to
discuss the scattering explicitly.

Criterion: ([KM], Theorem 3.3)
A coupling representation is asymptotically complete if and only if

lim
t→∞

‖Qαt i(a)‖
ψ̂

= ‖a‖φ

for all a ∈ A. Here Q : (Â, φ̂) → (Ĉ, ψ̂) denotes the tensor type conditional
expectation defined by evaluating the state φ on i(A). Further ‖ · ‖φ is
the norm induced by the inner product (x, y) 7→ φ(x∗y), similar for other
states. With respect to these norms the conditional expectations become
orthogonal projections.

Intuitively the criterion says that after a long time the contents of A are
gone into the noise algebra Ĉ. This is sometimes not so easy to check because
it involves the full dynamics αt. We do not consider the further development
in [KM] about this but construct a new criterion. In the following section
we prepare it by some considerations about entanglement.

2 Entanglement for noncommutative probability

spaces

The most elementary setting for discussing entanglement in quantum me-
chanics consists in considering a composite quantum system described by
a tensor product of Hilbert spaces H1 ⊗ H2 and a pure state described by
a unit vector χ ∈ H1 ⊗ H2. This state is called entangled if χ cannot be
written as an elementary tensor χ1 ⊗ χ2. See [NC] for a detailed account of
different aspects of entanglement.

Entanglement can be checked by computing reduced density operators.
We use Dirac notation |χ〉〈χ| for the one-dimensional projection onto Cχ

and write Tr2 for the partial trace evaluated in H2. Such a notation will
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also be used later in similar cases. Then the reduced density operator is
defined as

χH1 := Tr2(|χ〉〈χ|),

which is a positive trace class operator on H1 with trace equal to 1. Such
operators are called density operators. The state given by χ is entangled if
and only if the rank of the associated reduced density operator is strictly
larger than 1. A more precise quantitative measure of entanglement can
be given by using von Neumann entropy which for a density operator ρ is
defined by h(ρ) := −Tr(ρ log ρ) ≥ 0. Then the state given by χ is entangled

if and only if h(χH1) > 0, and decrease of entropy may be interpreted as
decrease of entanglement.

If {δi} is an ONB of H1 and χ =
∑

i δi ⊗ ξi, then with respect to this

basis the density operator becomes a density matrix with entries
(

χH1

)

jk
=

〈ξk, ξj〉. This is a Gram matrix, and if the {ξi} are random variables in some
sense, as will be the case later, we may think of it as a kind of covariance
matrix describing the entanglement in question.

We now define a version of this formalism whose physical interpretation
is not quite clear but whose mathematical usefulness will appear soon when
we apply it to the scattering problem. Let two noncommutative probability
spaces (B1, ψ1) and (B2, ψ2) be given. Applying the GNS-construction to
B1⊗B2 with the state ψ1⊗ψ2 we get a Hilbert space H1⊗H2, a representation
π of B1 ⊗ B2 on H1 ⊗ H2 and a unit vector Ω = Ω1 ⊗ Ω2 ∈ H1 ⊗ H2

such that ψ1 ⊗ ψ2(b1 ⊗ b2) = 〈Ω, π(b1 ⊗ b2)Ω〉. For b ∈ B1 ⊗ B2 with
‖π(b)Ω‖ = ‖b‖ψ1⊗ψ2

= 1 we can define

bH1 := (π(b)Ω)H1 = Tr2(|π(b)Ω〉〈π(b)Ω|),

and we call this the covariance operator of b (with respect to (B1, ψ1) ⊗
(B2, ψ2)). It describes a kind of entanglement for observables.

3 The dual extended transition operators

Let j : (A, φ) → (Â, φ̂) be a ∗−homomorphism (‘random variable’). Then
we have (H, Ω) and (Ĥ, Ω̂) as GNS-Hilbert spaces with cyclic vectors. We
suppress the notation for the representations and write A ⊂ B(H) and
Â ⊂ B(Ĥ) instead. Further we have a map

v : H → Ĥ, aΩ 7→ j(a)Ω̂ (a ∈ A).

We can check that v is an isometry:

〈va1Ω, va2Ω〉 = 〈j(a1)Ω̂, j(a2)Ω̂〉 = 〈Ω̂, j(a∗1a2)Ω̂〉

= φ̂(j(a∗1a2)) = φ(a∗1a2) = 〈a1Ω, a2Ω〉
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We now return to the setting of section 1, i.e. we consider a stationary
Markov process in a coupling representation of tensor type which we want
to examine for asymptotic completeness. The random variables

jt : A → i(A) ⊗ C[0,t) ⊂ Â

of the process give rise to isometries

vt : H → H⊗K[0,t) ⊂ Ĥ,

where the Hilbert spaces are the GNS-spaces corresponding to the algebras
above. For the cyclic vectors we write Ω ∈ H, Ω[0,t) ∈ K[0,t) and Ω̂ ∈ Ĥ.

Note also that we identify aΩ and i(a)Ω. We have Ω̂ = Ω ⊗ Ω[0,∞), and
embeddings are given in a natural way by

H ≃ H⊗ Ω[0,∞) ⊂ H⊗K[0,∞) ≃ Ĥ,

H⊗K[0,t) ≃ H⊗K[0,t) ⊗ Ω[t,∞] ⊂ Ĥ, etc.

Definition 3.1 The normal unital completely positive map

Z ′

t : B(H) → B(H), x 7→ v∗t x ⊗ 1I vt

is called the dual extended transition operator corresponding to jt.

Some remarks: The operator Z ′
t should not be confused with the operator

Zt appearing in the paper [KM] which acts on different spaces. The reason
for the notation ′ and for the terminology is given by the fact that Z ′

t is an
extension of the dual map T ′

t of the transition operator Tt of the Markov
process, see [Go1, Go2] for more details. We shall not need this fact here
but work directly with the definition above.

In a similar way we can also associate isometries to the full time evolution
αt of the Markov process:

v̂t : Ĥ → Ĥ, âΩ̂ 7→ αt(â)Ω̂ (â ∈ Â).

Let us write < · , · > for the duality between trace class operators T (·) and
bounded operators B(·). Further Tr[0,t) denotes the partial trace evaluated
on K[0,t).

Lemma 3.2 For all ρ̂ ∈ T (Ĥ) and x ∈ B(H) we get

< Tr[0,∞)(v̂t ρ̂ v̂∗t ), x > = < Tr[0,∞)(ρ̂), Z ′

t(x) > .

Proof: It suffices to consider

ρ̂ = ρ ⊗ ρ[0,∞) = |i(a)Ω〉〈i(b)Ω| ⊗ |c Ω[0,∞)〉〈d Ω[0,∞)|

= |i(a)⊗c Ω̂〉 〈i(b)⊗d Ω̂|
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with a, b ∈ A and c, d ∈ C[0,∞). We can write jt(a) =
∑

n an ⊗ a
(t)
n with

an ∈ A and a
(t)
n ∈ C[0,t) and vt aΩ =

∑

n δn ⊗ a
(t)
n Ω[0,t) with δn = anΩ ∈

H. Similarly vt b Ω =
∑

m δm ⊗ b
(t)
m Ω[0,t) with b

(t)
m ∈ C[0,t). If H is infinite

dimensional then the sums are suitable limits. We note that

Tr[0,t)(vt|aΩ〉〈bΩ|v∗t ) = Tr[0,t)

(

|
∑

n

δn ⊗ a(t)
n Ω[0,t)〉〈

∑

m

δm ⊗ b(t)
m Ω[0,t)|

)

=
∑

n,m

|δn〉〈δm| 〈b(t)
m Ω[0,t), a

(t)
n Ω[0,t)〉 =

∑

n,m

|δn〉〈δm| ψ̂
(

(b(t)
m )∗a(t)

n

)

.

Then we compute

Tr[0,∞)(v̂t ρ̂ v̂∗t ) = Tr[0,∞)

(

|jt(a) (1I ⊗ σt(c)) Ω̂〉〈jt(b) (1I ⊗ σt(d)) Ω̂|
)

= Tr[0,∞)

(

|
∑

n

an ⊗ a(t)
n σt(c) Ω̂〉〈

∑

m

am ⊗ b(t)
m σt(d) Ω̂|

)

=
∑

n,m

|δn〉〈δm| 〈b(t)
m σt(d)Ω[0,∞), a

(t)
n σt(c)Ω[0,∞)〉

=
∑

n,m

|δn〉〈δm| ψ̂
(

σt(d
∗)(b(t)

m )∗a(t)
n σt(c)

)

and using the independence property of white noise and our previous calcu-
lation we can continue with

=
∑

n,m

|δn〉〈δm| ψ̂
(

(b(t)
m )∗a(t)

n

)

ψ̂(σt(d
∗c)) = Tr[0,t)(vt|aΩ〉〈bΩ|v∗t ) Tr(ρ[0,∞)).

Let us write (Z ′
t)∗ for the preadjoint of Z ′

t with respect to the duality between
T (H) and B(H). Explicitly:

(Z ′

t)∗ : T (H) → T (H), ρ 7→ Tr[0,t)(vt ρ v∗t ).

Then we find for x ∈ B(H)

< Tr[0,∞)(v̂t ρ̂ v̂∗t ), x > = < Tr[0,t)(vt ρ v∗t ), x > Tr(ρ[0,∞))

= < (Z ′

t)∗(ρ), x > Tr(ρ[0,∞)) =< ρ, Z ′

t(x) > Tr(ρ[0,∞)) =< Tr[0,∞)(ρ̂), Z ′

t(x) > .

The lemma is proved.
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Theorem 3.3 (Z ′
t)∗(â

H) = αt(â)H for all â ∈ Â.

The notations âH and αt(â)H refer to the covariance operator introduced in
section 2, with respect to (i(A), φ) ⊗ (Ĉ, ψ̂). Further (Z ′

t)∗ is the preadjoint
of Z ′

t, as in the proof of Lemma 3.2 above. Thus the theorem tells us
that the dual extended transition operators describe the time evolution of
the covariance operators with respect to the decomposition into the system
i(A) and the white noise Ĉ if the Markovian time evolution is applied to the
observables.
Proof: It suffices to insert ρ̂ = |âΩ̂〉〈âΩ̂| into Lemma 3.2. We get

< αt(â)H, x > = < Tr[0,∞)(|αt(â)Ω̂〉〈αt(â)Ω̂|), x >

= < Tr[0,∞)(v̂t ρ̂ v̂∗t ), x > = < Tr[0,∞)(ρ̂), Z ′

t(x) > = < âH, Z ′

t(x) > .

Proposition 3.4 {Z ′
t}t∈T+

is a semigroup (with Z ′
0 = 1I and pointwise

weak∗-continuous for real parameters). The state 〈Ω, ·Ω〉 is invariant.

Proof: Z ′
0 = 1I is immediate, and the continuity follows from the corre-

sponding assumption about the Markovian time evolution. Because ele-
ments of the form âH span T (H) it suffices for the proof of the semigroup

property to consider < âH, Z ′
t(x) >. We compute

< âH, Z ′

t+s(x) > = < αt+s(â)H, x > = < αs(αt(â))H, x >

= < αt(â)H, Z ′

s(x) > = < âH, Z ′

t Z ′

s(x) > .

This implies Z ′
t+s = Z ′

t Z ′
s. The invariance of the state 〈Ω, ·Ω〉 follows from

vtΩ = Ω ⊗ Ω[0,t).

4 A criterion for asymptotic completeness

To apply the results of section 3 to scattering we need some results about
ergodic properties of positive maps. While these are certainly well known
we have not found a detailed reference and thus include the following

Lemma 4.1 Let {St}t∈T+
be a semigroup of normal positive unital maps

on B(H) (with S0 = 1I). Further let Ω ∈ H be a unit vector and p := |Ω〉〈Ω|.
Then the following assertions are equivalent:

(a) {St}t∈T+
is ergodic, i.e. for t > 0 the only fixed points of St are C1I,

and the state 〈Ω, ·Ω〉 is invariant.

(b) The state 〈Ω, ·Ω〉 is absorbing for {St}t∈T+
. i.e.

lim
t→∞

〈ρ, St(x)〉 = 〈Ω, xΩ〉

for all density operators ρ in T (H) and x ∈ B(H).
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(c) limt→∞ St(p) = 1I (strong operator limit or, equivalently, weak∗-limit)

(d) limt→∞ < (St)∗(|ξ〉〈ξ|), p >= 1 for a dense set of unit vectors ξ ∈ H.

(e) limt→∞ ‖(St)∗(ρ) − p‖1 = 0 for all density operators ρ.
Here ‖ · ‖1 denotes the trace class norm of T (H).

Proof: (b) ⇒ (a). Clearly an absorbing state is invariant. Let x ∈ B(H)
be a fixed point of Sr for some r > 0. If x 6∈ C1I then there exist density
operators ρ1, ρ2 such that < ρ1, x > 6= < ρ2, x >. But then we also have
limn→∞ < ρ1, Snr(x) > 6= limn→∞ < ρ2, Snr(x) > .

(a) ⇒ (c). From invariance we conclude that St(p) ≥ p and thus there exists
q := limt→∞ St(p) as a strong operator limit. Because q is a fixed point and
p ≤ q ≤ 1I, ergodicity implies q = 1I.
(c) ⇒ (b). Decompose x ∈ B(H) as x = pxp + (1I − p)xp + px(1I − p) + (1I −
p)x(1I− p). Because pxp =< p, x > p we get limt→∞ St(pxp) =< p, x > 1I =
〈Ω, xΩ〉1I. The other terms vanish for t → ∞, as can be seen by applying
the Cauchy-Schwarz inequality for the states y 7→ 〈Ω, St(y)Ω〉. Note that
weak∗-convergence in (c) is enough to get (b) in this way.
We have shown (a) ⇔ (b) ⇔ (c). Then (c) ⇔ (d) follows from duality and
from the fact that one-dimensional projections span T (H). (e) ⇒ (d) is
immediate and the converse direction (d) ⇒ (e) is shown in [Ta], III.5.11.

Theorem 4.2 Let {Z ′
t}t∈T+

be the semigroup of dual extended transition
operators. The following assertions are equivalent:

(1) The coupling representation is asymptotically complete.

(2) {Z ′
t}t∈T+

satsfies the conditions of Lemma 4.1 (with Ω the cyclic vector

corresponding to φ).

Proof: If a ∈ A with ‖a‖φ = 1, then using the same notation as in the
proof of Lemma 3.2 we can write

vtaΩ = αt i(a) Ω ⊗ Ω[0,t) =
∑

n

δn ⊗ a(t)
n Ω[0,t)

with {δn} an ONB of H. We can choose δ0 = Ω and get a
(t)
0 = Qαti(a) with

Q the conditional expectation from (Â, φ̂) onto (Ĉ, ψ̂). Using the criterion
for asymptotic completeness mentioned in section 1 we see that asymptotic
completeness is equivalent to

lim
t→∞

‖a
(t)
0 ‖

ψ̂
= ‖a‖φ = 1 for all a ∈ A with ‖a‖φ = 1.

On the other hand, we can use Theorem 3.3 to conclude that

(Z ′

t)∗(|aΩ〉〈aΩ|) = (Z ′

t)∗(i(a)H) = (αt i(a))H,
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which has matrix entries

〈δn, (Z ′

t)∗(|aΩ〉〈aΩ|) δm〉 = 〈a(t)
m Ω[0,t), a

(t)
n Ω[0,t)〉,

in particular

〈Ω, (Z ′

t)∗(|aΩ〉〈aΩ|)Ω〉 = ‖a
(t)
0 Ω[0,t)‖

2 = ‖a
(t)
0 ‖2

ψ̂
.

Now we see that limt→∞ ‖a
(t)
0 ‖

ψ̂
= ‖a‖φ = 1 for all a ∈ A with ‖a‖φ = 1

corresponds to condition (d) of Lemma 4.1 for the semigroup {Z ′
t}t∈T+

.
Theorem 4.2 is proved.
Because {Z ′

t}t∈T+
describes the time evolution of entanglement, see Theorem

3.3, we can also interpret Theorem 4.2 in such terms: Asymptotic complete-
ness corresponds to a decay of entanglement between the system i(A) and
the noise Ĉ. A numerical version of this can be given by using entropy.

Corollary 4.3 The coupling representation is asymptotically complete if
and only if the von Neumann entropies of all covariance operators w.r.t.
(i(A), φ) ⊗ (Ĉ, ψ̂) tend to 0 for t → ∞.

Proof: In terms of eigenvalue lists both the convergence in Theorem 4.2(2)
and the asymptotic vanishing of the entropies mean that for large t the
largest eigenvalue of a covariance operator has multiplicity 1 and tends to
1, while all other eigenvalues tend to 0.

The most elementary example is the following: Choose T+ = N0, A =

C = C
2 (commutative algebra with canonical basis δ1 =

(

1
0

)

and δ2 =
(

0
1

)

), φ = ψ : C
2 → C with

(

λ1

λ2

)

7→ 1
2(λ1 + λ2), Ĉ = weak closure

of
⊗

∞

n=0 C with respect to the state ψ̂ =
⊗

∞

n=0 ψ, and σ the right shift on

Ĉ. If further the coupling j1 : A → A⊗ C is chosen as

j1(λ1δ1 + λ2δ2) = λ1(1I ⊗ δ1) + λ2(1I ⊗ δ2),

then a short computation yields that for x ∈ B(C2)

Z ′

1(x) = 〈Ω, xΩ〉1I.

Then Z ′
n = (Z ′

1)
n = Z ′

1 and 〈Ω, ·Ω〉 is absorbing. Thus we have asymptotic
completeness in this case. On the other hand, if we choose

j1(λ1δ1 + λ2δ2) = λ1(δ1 ⊗ δ1 + δ2 ⊗ δ2) + λ2(δ1 ⊗ δ2 + δ2 ⊗ δ1),

then we get Z ′
1 : B(C2) → B(C2) with

x =

(

x11 x12

x21 x22

)

7→
1

2

(

x11 + x22 x12 + x21

x12 + x21 x11 + x22

)

.
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In this case every 2×2−matrix of the form

(

a b

b a

)

is a fixed point and we

conclude that the coupling representation is not asymptotically complete.
Note that in both cases the transition operator T : A → A of the Markov

process is given by the stochastic matrix 1
2

(

1 1
1 1

)

. This shows that the

transition operator does not determine whether the coupling representation
is asymptotically complete or not. As shown in Theorem 4.2, the dual
extended transition operators encode more information about the coupling
and suffice to perform this task.
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