Rolf Gohm

Prediction Errors and
Completely Positive Maps

Abstract. We introduce the concept of an adapted isometry which is an operator-
theoretic characterization of the time evolution of a stationary stochastic process
adapted to a filtration. Using a product decomposition of an adapted isometry it
is shown that prediction errors with respect to the filtration are related to a se-
quence of completely positive maps. Asymptotic properties of this correspondence
are studied. In a special case the computations can be simplified by stochastic ma-

trices.
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1. Introduction

In this paper we want to describe a surprising link between prediction errors
for a stationary stochastic process and completely positive maps on corre-
sponding spaces of operators. We consider discrete time steps. The process is
assumed to be adapted to a filtration, and prediction means to compute the
conditional expectation of a random variable of the process with respect to
a sub-o-algebra in the filtration corresponding to some earlier time. Details

are given below.
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From stationarity there is an isometric time shift. In Section 2 we propose
the concept of an “adapted isometry” which captures the essential features
of such a time shift with respect to the filtration in a purely operator-
theoretic way. Then a product decomposition of an adapted isometry is

constructed which makes possible the step-by-step analysis to follow.

In Section 3 we define a sequence of completely positive maps acting on
spaces of trace class operators in such a way that certain non-linear pre-
diction errors of the process with respect to the filtration can be expressed
by products of these maps. In other words, the evolution of the prediction
errors in time can be described by a sort of dynamics which is well-known in
quantum theory as an irreversible dynamics of mixed states. This correspon-
dence is our main observation. As a first application we relate asymptotic
behaviour of the process (determinism) with asymptotic properties of this

dynamics (absorbing vector states).

Our theory applies in the same way to usual (commutative) stochastic
processes and to non-commutative stochastic processes of operators. While
an application to non-commutative processes seems very promising it re-
quires some preparation and we therefore decided to postpone it to later
work. Instead we analyse in Section 4 what we get for a commutative process
with finitely many values. This restriction leads to a remarkable simplifica-
tion: With respect to a suitable basis in the (now finite-dimensional) spaces
of trace class operators the completely positive maps constructed in Sec-

tion 3 turn out to be stochastic matrices. This allows us to write down com-
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binatorial versions of our results. Using well-known facts about stochastic
matrices the asymptotic behaviour of such processes can be quickly deter-
mined.

The paper relies mainly on explicit computations and is essentially self-
contained. For concepts from operator theory we give [6] as a general refer-

ence.

2. Adapted Isometries

In this paper we consider Hilbert spaces which are all assumed to be com-
plex and separable. Let {K,}52, be a sequence of such Hilbert spaces and
let {2,}22, be a sequence of unit vectors so that (2, € K, for all n.
Then there is an infinite tensor product K = X2, Kn along the given
sequence of unit vectors (cf. [6], 11.5.29). There is a distinguished unit
vector 2 = R 2, € K. Further we consider the subspaces Kimm =
Qi Kj (m <n)of K where 5 € Kim,n) is identified with ®;.”:_01 ;
ne® ®;’°:n+1 2; € K. Then K is the closure of [J°°, Kio,n)- An opera-

tor @ € B(Kpp,n)) (B denotes bounded linear operators) is identified with

]I[O,m—l] Ra® ][[n+1,oo) € B(ié)

Definition 2.1. An isometry & € B(K) is called adapted (with respect to

Ky 2,3520) if 90,01 C Kjo.ng17 for all n € Ny and 502 = 0.
n=0 [7] [7+]

This terminology is motivated by probability theory. Let us indicate how

adapted isometries arise from stochastic processes:
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Let (£2, X, ) be a probability space and {¥,}52, a sequence of inde-
pendent sub-g-algebras. Denote by X, 5] the o-algebra generated by all
Xj for m < j < n. In particular we get a filtration { X n}52¢ of increasing

sub-o-algebras. We assume that they together generate X.

There is a (discrete time) stationary stochastic process on (£2, X, u)
determined by the sub-c-algebra X, (representing time 0) together with
a (not necessarily invertible) measurable and y-preserving transformation
F: 2 = 2. Namely, functions which are measurable with respect to ¥~ "X,
may be interpreted as random variables of the process at time n. The pro-
cess given by Xy and 7 is adapted with respect to the filtration {Xo »}oZ0
if 77" Xy C X n) for all n. This is the case if 771 Zg ) C Ljo,n1] for all n,

and it is no serious restriction of generality to consider only this setting.

Because 7 is u-preserving it induces an isometry ¢ on the square in-
tegrable random variables by #€(w) = £(Fw) for ¢ € L2(02,X,u). As-
sume that L2(£2, X, u) is separable as a Hilbert space and that 7"'_12[0,”] C
X0,n+1] for all n. Then it is easy to check that ¢ is an adapted isometry
with respect to {L2(£2, X, p), 1,}32,, where 1,, denotes the constant unit
function considered as an element of L2({2, X,,, u): First use the well-known
fact that independence of g-algebras implies a tensor product decomposi-
tion of the corresponding L2-spaces and then translate the properties of 7

into properties of 7.

Let us remark here that any adapted isometry may be constructed by

probabilistic means if we include non-commutative processes in the sense of
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[1]. Here the probability space and its sub-o-algebras are replaced by a uni-
tal *-algebra with a state and its unital *-subalgebras, the transformation 7
by a unital *~homomorphism preserving the state and the space L2(£2, X, u)
by the corresponding GNS-Hilbert space. If we then use a notion of indepen-
dence based on tensor products then we may repeat the arguments above in
this more general setting. In particular if we start with an adapted isometry
? as in Definition 2.1 we may use B(I~C) as an algebra, 2 as a vector state,
subalgebras B(K[n,s)) and the homomorphism defined by & +~ @ z #*. From
this we can reconstruct ¥ as the adapted isometry corresponding to a non-
commutative stationary stochastic process. Because we shall not explicitely
consider non-commutative stochastic processes in this paper we do not give
more details.
Let us now analyse the structure of an adapted isometry from an operator-

theoretic point of view.

Proposition 2.2. Let a sequence {ICy, 2,}52, be given as above.

If {un}32, C B(K) is a sequence of unitaries so that

foralln>1 wu, € B(Kpn), unl2 =12,

foralln>2 wu, |K[0’n_2] =1 |/C[0,n_21’

then we can define an adapted isometry by ¥ := stop — lim wjus...un,
n—oo

(here “stop” denotes the strong operator topology).

Conversely if dimK, < oo for all n then any adapted isometry can be

written in that way.



6 Rolf Gohm

Proof: If £ € K[o,m—1) then it is fixed by any u,, with n > m+1. Therefore
€ = nlgr;o U2 - - U = U U2 - . . um& € Kjp,;m)- By approximation the limit
exists for all £ € K.

To prove the converse let ¥ be an adapted isometry. For all n > 1 consider
the isometry ¥y, : Kjo,n—1] = Kjo,r) iven by the restriction of ¥ to Ko n—1]-
By assumption we deal here with finite dimensional spaces and therefore by
dimension arguments there is an extension of @, to a unitary @, € B(K[o,»])-
Now define uy, := i, iy, (with dip := 1). We have u,, € B(K(o,n)) and from
72 = 2 we also get up2 = 0. It n > 2 then because of @,_1 |/C[0,n_2]:

¥ |K[0’n_2]: iy, |/C[0,n_2] we find that u, |K[0’n_2]: 1 |/C[o,n_21‘ O

We add some remarks. First: If we drop the condition of finite dimen-
sionality for the converse direction then an inspection of the proof above
shows that it may be necessary to enlarge the spaces I, in order to pro-
ceed. This shows that any adapted isometry can at least be embedded
into an adapted isometry of the product type above. Second: The condi-
tion wy, | Koz ™ 1] Kiom—a is implied by the more convenient condition
un € B(Kjp_1,n])- It is an interesting question how representability with
this stronger condition restricts the class of associated stochastic processes.
We shall not pursue this question here. Instead for the rest of this paper we
shall agsume that the adapted isometry is given by a sequence of unitaries
{un}22, satisfying even the stronger condition and ask how we can use this

step-by-step information to analyse the associated stochastic process.
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3. Main results

Let # , K be Hilbert spaces. Denote by 7(...) the space of trace class op-
erators with T'r the trace functional and Trq, : T(H ® K) = T(K) the
partial trace obtained by evaluating the trace only on H. To any isometry
v:H = H ®K we can associate the operator D, : T(H) — T (K) given by
p = Trqy (vpv*). Then D, is a completely positive and T'r-preserving map.
In the physical literature such maps are important because they define time
evolutions for mixed quantum states or density matrices (cf. [2]). Mathemat-
ically this is the set of positive trace class operators with unit trace which
we denote by 77 (...). Because Dirac’s notation is useful for the computa-
tions to follow we decided to adopt it together with the physical convention
of scalar products linear in the second component.

Given a unit vector 2y- € K we can consider H as a subspace of H @ K
by H ~ H @2 C H QK. Let p be the corresponding orthogonal projection.
We may interpret v as an isometric dilation of the contraction pv € B(H)
(cf. [5], chapter VI). The following Lemma shows that D, encodes informa-

tion about the defect arising in this dilation procedure.
Lemma 3.1. Assume £,&' € H. Then

(a) Try (€ ><v€]) = Dy(|¢ ><&)),

(b) <pv€,pv€' > = <, Dy (| ><E]) 2> .

Proof: (a) is immediate from the definition of D,. To prove (b) we choose

an orthonormal basis {¢;} of K with €, = 2. Then v = } & ® ¢; and
i
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v¢' =3 & ®e; with {§:}, {§} C 7. We conclude that
<Ny, Dy (1€ ><E]) Ny > =<er, Tryy (|v€ ><v€|) e1 >

=<e, | Y <& &> |g><e| | e>=<&,8 >=<pvf,prd > .

¥
O

Lemma 3.2. Let H o, H 1,H 2 be Hilbert spaces, u : HoQH1 = Ho @ H1
unitary, w: H1 — H1QHo isometricandv: HoQH1 > HoQH1QH o

defined as v = (u® Iy )(Iyy ®w). Then Dy = Dy 0Ty .

Proof: For p € T(H o ® H1) we find that Dy o Tryy (p)

:Trﬂl(wTrHo(p)w*) :TT’H0®’H1(][H0®“’ p ][H0®w*)

=Try oM, (“®][’H,2 Iy ,@w p Iy @w'u" ®][’H,2)
=Try oH . (Wpv") = Dy(p).

O

We want to use these results for the analysis of adapted isometries. Let

# € B(K) be an adapted isometry (with respect to {Kyn, 2,}52,, see Def-
inition 2.1) and let {u,}32,; be an associated sequence of unitaries as in
Proposition 2.2. We assume that u, € B(K[,_1,y)) for all n. Now define
isometries v, : Kn_1 = Kpp_1,n) = Kno1 ® Ky, as restrictions of u, to
Krn—1. Using the procedure above we get a sequence of T'r-preserving com-
pletely positive maps D,, := D,,, : T(K,—1) = T(K,), n > 1. Note that
Dy,(| 2p1 >< 201 |) =| 2 >< 12, | (because upl? = f)) For the sub-
space K, n) of K let us denote by Dlm,n] T€SP. Ty o) the corresponding

orthogonal projection resp. partial trace.
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Theorem 3.3. Assume &,&' € Ko. Then for all n € INy:

(a) Trio ) (|91 €' ><"E]) = Dpy1Dp... Di(|€><E])

(b) <o, 0™ E, Pl TE > = <Qpg1, Dpy1 Dy .. Dy (|E ><E]) 21 >

Proof: (b) follows from (a) in the same way as shown in the proof of
Lemma, 3.1. To prove (a) we proceed by induction.
The case n = 0 is given by Lemma 3.1 (note that ¥ [ = v1). Now for
some n > 1 assume that T'rjg,,—1](| 5" ><"E|) = Dy... D1 (| € ><£]).
We have 9"11¢ = uy ... upn 19" = uy ... upva19"€ (and the same for
§'). Applying Lemma 3.2 with H o = Kjo 1), H1 =Kpn, He = Kpy1, u =

UL Un, W= Vg1, V=T |y o7y, We get
Trio(|571¢' ><5™¢]) = D,(|5"€' >< "))

= Dp1(Trion-1)(|19"¢' ><"¢)) = Dnya1Dn... D1(|€><E]).

O

Continuing our interpretation of Lemma 3.1 we may say that the prod-
uct Dy41D,, ... D encodes information about the defect arising from the
(n + 1)-th power of an adapted isometry. This can be made more concrete
by using probabilistic language. In Section 2 we gave an interpretation of
an adapted isometry as a time evolution of a stationary stochastic process.
Now we can interpret the term p[o,n]ﬁ"“f appearing in Theorem 3.3(b) as
the best predictor of #711¢, a random variable of time n+ 1, given the infor-
mation available up to time n. More precisely: the best non-linear one-step

predictor in the mean square sense. “Non-linear” refers to the fact that not
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only the linear span of random variables of the process is used for prediction
but the whole algebra. A survey on several topics in prediction theory is [4].
In our setting the (n + 1)-th prediction error f,41(€) (for £ € Ko) is given

by

Fr1(€) = 118"7€ = ppo,m @™ €Il = (IIEN* — llppo,m @™ €N%) % -

From Theorem 3.3 we get the following formula:

Corollary 3.4. For all £ € Ky and n € INg

Frp1(©)?+ <2411, Dpi1 Dy .. . Di(|E><E) g > = |I€]I%

It is interesting that in linear prediction theory there is a similar formula
for linear prediction errors which also involves products (of different quan-
tities, cf. [4], Th.5.1 or [5], IL5, I1.6). In that case direct sums of Hilbert
spaces are used where in our theory there are tensor products. On the other
hand expressions like Dy, 1Dy, ... D1(|€><€]) are well-known in quantum
theory as an irreversible time evolution converting a pure state of a quantum
system into a mixed one (cf. [2]).

As a first application of this correspondence between prediction and
quantum dynamical time evolutions we want to analyse asymptotics, i.e.
the behaviour for large time (n — o00). For this we need some technical
facts about density matrices. For the convenience of the reader we also

include an elementary proof for them.
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Lemma 3.5. Consider sequences {K,} of Hilbert spaces, {{2,} of unit vec-
tors, {pn} of density matrices such that 2, € K, pn € T1(K,,) for all n.

The following assertions are equivalent (for n — 00):

(1) <Qnypnl2n>—1
(2) || pn— 020, ><2,] |1 =0 (||-]|l1 denotes trace norm)
(8) For any sequence {x,} with z, € B(K,,), ||zn]| =1 for all n:

Tr(pnxn)— <2y, 2,02, > — 0.

Proof: (2) = (8) is clear and from < (2, pp 2, >=Tr(p, |2,><2,])
we quickly infer (8) = (1). It remains to prove that (1) = (2):
Write pp, = Yol €™ >< ™| with o{™ >0, 3= 0{™ =1 and {¢{} an

orthonormal basis of IC,,. From (1) we get

If i = 1 is an index with o™ = maxa!™ for all n then because of
]

ol =1=% <&, 2, > we infer o{™ = 1, ie. Y ol™ =0 and
5 i 1

|<e™, 2, > = 1, ie ||| ><e™| = |2, >< 2] |1 = 0.

Finally |lon— |2, >< 2] |1 =13 ol [6” >< e | = [20>< 2] Iy
< o™ e ><e™ | = [20>< 2l i+ 11> o™ | ><e™ ] Iy
i#£1

<laf™ =1+ 1| |” ><e™ | = |2>< ] [h+_af” 0.
i#1
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Proposition 3.6. Assume & € Ky, ||€]| = 1. The following assertions are
equivalent:
(1) lim f,(6) =0,
(2) im (Dy,...D1(|€><€|)— |2, ><2,])=0
n—oo

(weak or with respect to the trace norm).

Proof: Take the formula for f,,(£) in Corollary 3.4 and then apply Lemma,
3.5 with p, = Dy, ... D1(|€><E|). O

Note that the sequence {f,(£)} of prediction errors is in any case a
non-increasing sequence of non-negative numbers and thus there is always a
limit foo (§) == nh_)n;o fn(€). This is immediate because the time interval used
for prediction increases and there is more and more information available.
Proposition 3.6 gives a criterion for this limit to be zero, i.e. for prediction
becoming perfect for n — oo. To formulate this criterion verbally we state

some definitions.

Definition 3.7. (a) A stationary stochastic process given by Ko and an
adapted isometry U is called deterministic with respect to the filtration
{Kn, 2n}5lo if fool§) == nlggo fn(&) =0 for all £ € Ko.

(b) If the conditions of Lemma 3.5 are fulfilled then the sequence
{| 2, >< 2, |} is called absorbing for the sequence {p,} of density
matrices.

(c) Let {D,} be a sequence of maps with Dy : T (Ko) = TT(Kyn). If
{02, ><2,|} is absorbing for all sequences {Dy(p)} with p € TF (Ko)

then we call {| 2, >< 2, |} absorbing for {D,}.
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(d) An adapted isometry and the associated process are called homogeneous
if all Hilbert spaces K,, can be identified with a Hilbert space K, all unit
vectors 2, € K, with a unit vector 2 € K and all unitaries u, €

B(Kin—1,n)) with a unitary u € B(K ® K).

Corollary 3.8. A stationary stochastic process given by Ko and ¥ is deter-
ministic with respect to {Ky, 2,} if and only if {| 2, ><(2,|} is absorbing

for {D,...D1}.

In the homogeneous case we can further identify all operators D,,, with
an operator D : T(K) = T(K). The criterion for determinism now tells us
that | £2>< 2| should be absorbing for the semigroup {D"}52,. Absorbing
vector states for positive semigroups are a well-known subject in mathe-
matics and physics (cf. [3,2]) and we make contact to it at this point. The
problem can be approached via spectral theory for D and is closely related

to ergodic theory.

4. Processes with finitely many values

In this section we want to illustrate the theory developed above. The em-
phasis is on examples, we do not try to be exhaustive.

As shown in Section 2 the concept of an adapted isometry includes com-
mutative stationary stochastic processes. This raises the question how our
results can be interpreted in this case and whether it is possible to discuss

them with more traditional probabilistic means. This is indeed the case.
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Take {1,... ,d}]N0 (with some natural number d > 2) with the infinite
product u of the probability measure giving equal weight to all elements of
{1,...,d}. Then it is easy to check that a measure preserving transformation
7 of this probability space is adapted with respect to the natural filtration
(i.e. gives rise to an adapted isometry when the construction in Section 2 is
performed) if for all w = {w, }32, € {1,... ,d}]N0 and all n € INg the values
{(fw)i}o depend only on {w;};. Analogous to the argument given in
the proof of Proposition 2.2 it follows that an adapted transformation ¥ can
be decomposed as an infinite product ¥ = nlgr;o Tp ...T1, Where 7, is a per-
mutation of {1,...,d}{% " which acts identically on {1,...,d}{%n=2},
Note that the value of (fw), is already determined by 7,117, ... 1w, ie.
the limit is well defined. Our simplifying assumption that u, € B(K[n—1,n)
(see the second remark after Proposition 2.2) means here that 7, is simply

a permutation of {1,...,d}{n—1n},

Now the prediction problem considered in Section 3 can be formulated as
a game. If we are given only wy, . ..,wy, of some w = {w, }524 € {1,. .. ,d}]N0
then in general it is not possible to determine (F"*1lw)y. We may try to
guess. It depends on 7 how much uncertainty we have to endure. Indeed
the prediction errors show the amounts of errors (in the mean square sense)
which are inevitable even with the best strategy. More precisely, let £ be
any (complex-valued) function on {1,. .., d}. Given certain values wy, . .., wy,
there is a probability distribution g,,... ., on {1,...,d} for (F"*'w)e con-

ditioned by these values. Elementary probability theory shows that the best
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prediction of £((F"t1w)e) given wy,...,wy, is obtained as expectation of ¢

with respect to fi,,,....w, With the variance Var(€, py,,....w, ) 8 squared er-

n

ror. Then the total mean square error f,11(£) is obtained by averaging over
all possible wo,...,wn 1 fa+1(6)? = T > vorswn VT (€, ts,.... 0, )- This
justifies the interpretation given above.

In Corollary 3.4 we derived an alternative expression in terms of a prod-
uct of completely positive maps D,, : My — My. Here My denotes the

d x d-matrices (= T(€%)). We have

Fri1(6)*+ <2pi1, Dpy1 Dy ... D1(|E><E]) 2npr >= ||€]2

Here 2,41 = (1,1,...,1) € @%. We want to write down the operators D,,
more explicitely. For this consideration we drop the index. The operator D
is derived from a permutation 7 of {1,...,d}? giving rise to an isometry
v: €% = €% ® € so that for p € My we have D(p) = Trqa(vpv™) (with
trace evaluated on the left). We want to calculate coordinates with respect
to the normalized canonical basis {|i>}%, of €%, i.e. |i> has entry v/d at
position ¢ and zero elsewhere. Let us write 4 LN j if the first component of

7(i,k) is j. Then a straightforward computation yields

Lemma 4.1. vi|ji>= % zk: [i>Q® k>
i—j

1
Dpiij == <k,D(Ji><j|)l>= p g{r:r +yi and r L>j},
where § counts the number of elements.

Some observations about these coordinates of D are immediate: There

is a symmetry Dy i; = Dig j;. Further, fixing &k, and summing over i, j
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always yields one, which proves the surprising fact that D with respect to
the normalized canonical basis gives rise to a (row-)stochastic d? x d>-matrix.
Its entries are a kind of transition probabilities for pairs when applying T,
refining the transition probabilities for individuals which are included as
Dypis =f{r:r LN i}.

Putting all this together we have proved the following combinatorial for-

mula which summarizes the computation of prediction errors in this setting:

Proposition 4.2. For alln € Ny, i € {1,...,d}:

d

i 1
far1(|i>) + = (Dnt1Dn .. D)pss = 1.
d
k=1

The sum is a column sum of a (row-)stochastic d®> x d?-matriz which is
given as the product of the (row-)stochastic d* x d?-matrices associated to

the operators D, as in Lemma 4.1.

Of course the occurrence of stochastic matrices simplifies the asymptotic
theory. See [7] for some basic facts about stochastic matrices, in particular:
A set of indices is called essential for a stochastic matrix if by successive
transitions allowed by the matrix it is possible to go from any element of
the set to any other, but it is not possible to leave the set. An index not

contained in an essential set is called inessential.

Proposition 4.3. For the processes considered in this section the following

assertions are equivalent:
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(1) The process is deterministic.
(2) All entries of the stochastic matrices associated to the products D,, ... D
which do not belong to an ii-column (i € {1,...,d}) tend to zero for
n — oo.
And if the process is homogeneous (D,, ~ D for all m):
(8) Indices ij with i # j are inessential for the stochastic matriz associated

to D.

Proof: Determinism means that f,(|i>) — 0 for all i € {1,...,d} and
n — oo. By Proposition 4.2 this is the case if and only if the column sums
ZZJ:l(DnHDn .« D1)pe,ii tend to d. But the sum of all entries is d* and
none of the column sums can exceed d (obvious from Proposition 4.2). This
proves (1) < (2). It is a general fact that for powers of a single stochastic

matrix D we have the equivalence (2) & (8) (cf. [7], chapter 4). |

Especially condition (&) of Proposition 4.3 is very easy to check, at least
for matrices of moderate size. We give an example: Choose d = 3 and con-
sider the homogeneous process generated by the permutation 7 of {1,2,3}2
given by the cycle (11,12,13,23,22,21,31,32, 33). Using Lemma, 4.1 we can
compute the associated stochastic matrix. The result (with indices ordered
as follows: 11,22, 33,12,21,13, 31, 23, 32) is shown on the next page. For ex-
ample the non-zero entries in the fourth row (with index 12) are obtained
from1 —+ 1,1 2 1land3 — 3,3 5 3and 2 — 3,2 2 2. It is

easy to check that starting from any index ij we can in at most two steps
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reach the essential set {11,22,33}. With Proposition 4.3(3) it follows that

the process is deterministic.
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