
1 Introduction

Fuzzy-rough feature selection (FRFS) provides a means by which discrete or
real-valued noisy data (or a mixture of both) can be effectively reduced without
the need for user-supplied information. Additionally, this technique can be
applied to data with continuous or nominal decision attributes, and as such can
be applied to regression as well as classification datasets.

2 Fuzzy-Rough Sets

There have been two main lines of thought in the hybridization of fuzzy and
rough sets, the constructive approach and the axiomatic approach. A general
framework for the study of fuzzy-rough sets from both of these viewpoints is
presented in [43]. For the constructive approach, generalized lower and upper
approximations are defined based on fuzzy relations. Initially, these were fuzzy
similarity/equivalence relations [9] but have since been extended to arbitrary
fuzzy relations [43]. The axiomatic approach is primarily for the study of the
mathematical properties of fuzzy-rough sets [37]. Here, various classes of fuzzy-
rough approximation operators are characterized by different sets of axioms that
guarantee the existence of types of fuzzy relations producing the same operators.

An original definition for fuzzy P -lower and P -upper approximations was
given as follows [9]:

µPX(Fi) = inf
x

max{1− µFi(x), µX(x)} ∀i (1)

µPX(Fi) = sup
x

min{µFi
(x), µX(x)} ∀i (2)

where Fi is a fuzzy equivalence class and X is the (fuzzy) concept to be ap-
proximated. The tuple 〈PX,PX〉 is called a fuzzy-rough set. These definitions
diverge a little from the crisp upper and lower approximations, as the member-
ships of individual objects to the approximations are not explicitly available.
As a result of this, the fuzzy lower and upper approximations are redefined as
[12]:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1− µF (y), µX(y)}) (3)

µPX(x) = sup
F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)}) (4)

It can be seen that these definitions degenerate to traditional rough sets when
all equivalence classes are crisp [11].

Also defined in the literature are rough-fuzzy sets [9], which can be seen to be
a particular case of fuzzy-rough sets. A rough-fuzzy set is a generalization of a
rough set, derived from the approximation of a fuzzy set in a crisp approximation
space. In [39] it is argued that, to be consistent, the approximation of a crisp
set in a fuzzy approximation space should be called a fuzzy-rough set, and the
approximation of a fuzzy set in a crisp approximation space should be called a
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rough-fuzzy set, making the two models complementary. In this framework, the
approximation of a fuzzy set in a fuzzy approximation space is considered to
be a more general model, unifying the two theories. However, most researchers
consider the traditional definition of fuzzy-rough sets in [9] as standard.

The specific use of min and max operators in the definitions above is ex-
panded in [24], where a broad family of fuzzy-rough sets is constructed, each
member represented by a particular implicator and t-norm. The properties
of three well-known implicators (S-, R- and QL-implicators) are investigated.
Further investigations in this area can be found in [8, 30, 38, 43].

2.0.1 Fuzzy-Rough QuickReduct

FRQuickReduct(C,D).
C, the set of all conditional attributes;
D, the set of decision attributes.

(1) R← {}; γ′best = 0; γ′prev = 0
(2) do
(3) T ← R
(4) γ′prev = γ′best
(5) foreach x ∈ (C−R)
(6) if γ′R∪{x}(D) > γ′T (D)
(7) T ← R ∪ {x}
(8) γ′best = γ′T (D)
(9) R← T
(10) until γ′best == γ′prev
(11) return R

Figure 1: The fuzzy-rough QuickReduct algorithm

With these issues in mind, a fuzzy-rough hill-climbing search algorithm has
been developed as given in Fig. 1. It employs the fuzzy-rough dependency
function γ′ to choose which attributes to add to the current reduct candidate in a
manner similar to QuickReduct. The algorithm terminates when the addition
of any remaining attribute does not increase the dependency (such a criterion
could be used with the QuickReduct algorithm). As this fuzzy-rough degree
of dependency measure is non-monotonic, it is possible that the hill-climbing
search terminates having reached only a local optimum. The global optimum
may lie elsewhere in the search space. As with the original QuickReduct
algorithm, the algorithm may return a super-reduct (i.e. a reduct containing
superfluous features) due to the non-optimality of the search heuristic used [41].

Note that with the fuzzy-rough QuickReduct algorithm, for a dimension-
ality of n, (n2 +n)/2 evaluations of the dependency function may be performed
for the worst-case dataset. However, as FRFS is used for dimensionality reduc-
tion prior to any involvement of the system which will employ those attributes
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Object a b c q
1 -0.4 -0.3 -0.5 no
2 -0.4 0.2 -0.1 yes
3 -0.3 -0.4 -0.3 no
4 0.3 -0.3 0 yes
5 0.2 -0.3 0 yes
6 0.2 0 0 no

belonging to the resultant reduct, this operation has no negative impact upon
the run-time efficiency of the system.

2.0.2 Example

3 New Fuzzy Rough Feature Selection

This section presents three new techniques for fuzzy-rough feature selection,
based on fuzzy similarity relations.

3.1 Fuzzy Lower Approximation-based FS

The previous method for fuzzy-rough feature selection used a fuzzy partitioning
of the input space in order to determine fuzzy equivalence classes. Alternative
definitions for the fuzzy lower and upper approximations can be found in [24],
where a T -transitive fuzzy similarity relation is used to approximate a fuzzy
concept X:

µRPX(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (5)

µRPX
(x) = sup

y∈U
T (µRP

(x, y), µX(y)) (6)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy similarity relation
induced by the subset of features P :

µRP
(x, y) =

⋂
a∈P
{µRa(x, y)} (7)

µRa
(x, y) is the degree to which objects x and y are similar for feature a. Many

fuzzy similarity relations can be constructed for this purpose, for example:

µRa
(x, y) = 1− |a(x)− a(y)|

|amax − amin|
(8)

µRa
(x, y) = exp(− (a(x)− a(y))2

2σa2
) (9)

µRa(x, y) = max(min(
(a(y)− (a(x)− σa))
(a(x)− (a(x)− σa))

,

((a(x) + σa)− a(y))
((a(x) + σa)− a(x))

, 0) (10)
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where σa2 is the variance of feature a. As these relations do not necessarily
display T -transitivity, the fuzzy transitive closure must be computed for each
attribute [8]. The combination of feature relations in equation (7) has been
shown to preserve T -transitivity [32].

3.1.1 Reduction

In a similar way to the original FRFS approach, the fuzzy positive region can
be defined as:

µPOSRP
(Q)(x) = sup

X∈U/Q
µRPX(x) (11)

The resulting degree of dependency is:

γ′P (Q) =

∑
x∈U

µPOSRP
(Q)(x)

|U|
(12)

A fuzzy-rough reduct R can be defined as a subset of features that preserves
the dependency degree of the entire dataset, i.e. γ′R(D) = γ′C(D). Based on this,
a new fuzzy-rough QuickReduct algorithm can be constructed that operates
in the same way as Fig. 1, but uses equation (12) to gauge subset quality. A
proof of the monotonicity of the dependency function can be found in the paper
[14]. Core features may be determined by considering the change in dependency
of the full set of conditional features when individual attributes are removed:

Core(C) = {a ∈ C|γ′C−{a}(Q) < γ′C(Q)} (13)

3.1.2 Example

The fuzzy connectives chosen for this example (and all others in this section) are
the  Lukasiewicz t-norm (max(x+y−1, 0)) and the  Lukasiewicz fuzzy implicator
(min(1− x+ y, 1)). As recommended in [8], the  Lukasiewicz t-norm is used as
this produces fuzzy T -equivalence relations dual to that of a pseudo-metric.
The use of the  Lukasiewicz fuzzy implicator is also recommended as it is both
a residual and S-implicator.

Using the fuzzy similarity measure defined in (10), the resulting relations
are as follows for each feature in the dataset:

Ra(x, y) =


1.0 1.0 0.699 0.0 0.0 0.0
1.0 1.0 0.699 0.0 0.0 0.0

0.699 0.699 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.699 0.699
0.0 0.0 0.0 0.699 1.0 1.0
0.0 0.0 0.0 0.699 1.0 1.0
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Rb(x, y) =


1.0 0.0 0.568 1.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0 0.137

0.568 0.0 1.0 0.568 0.568 0.0
1.0 0.0 0.568 1.0 1.0 0.0
1.0 0.0 0.568 1.0 1.0 0.0
0.0 0.137 0.0 0.0 0.0 1.0



Rc(x, y) =


1.0 0.0 0.036 0.0 0.0 0.0
0.0 1.0 0.036 0.518 0.518 0.518

0.036 0.036 1.0 0.0 0.0 0.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0


Again, the first step is to compute the lower approximations of each concept

for each feature. Considering feature a and the decision concept {1,3,6} in the
example dataset:

µRa{1,3,6}(x) = inf
y∈U

I(µRa(x, y), µ{1,3,6}(y))

For object 3, this is

µRa{1,3,6}(3) = inf
y∈U

I(µRa
(3, y), µ{1,3,6}(y))

= inf{I(0.699, 1), I(0.699, 0), I(1, 1),
I(0, 0), I(0, 0), I(0, 1)}

= 0.301

For the remaining objects, this is:

µRa{1,3,6}(1) = 0.0

µRa{1,3,6}(2) = 0.0

µRa{1,3,6}(4) = 0.0

µRa{1,3,6}(5) = 0.0

µRa{1,3,6}(6) = 0.0

For concept {2, 4, 5}, the lower approximations are:

µRa{2,4,5}(1) = 0.0

µRa{2,4,5}(2) = 0.0

µRa{2,4,5}(3) = 0.0

µRa{2,4,5}(4) = 0.301

µRa{2,4,5}(5) = 0.0

µRa{2,4,5}(6) = 0.0
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Hence, the positive regions for each object are:

µPOSRa (Q)(1) = 0.0
µPOSRa (Q)(2) = 0.0
µPOSRa (Q)(3) = 0.301
µPOSRa (Q)(4) = 0.301
µPOSRa (Q)(5) = 0.0
µPOSRa (Q)(6) = 0.0

The resulting degree of dependency is therefore:

γ′{a}(Q) =

∑
x∈U

µPOSRa (Q)(x)

|U|

=
0.602

6
= 0.1003

Calculating the dependency degrees for the remaining features results in

γ′{b}(Q) = 0.3597 γ′{c}(Q) = 0.4078

As feature c results in the largest increase in dependency degree, this feature is
selected and added to the reduct candidate. The algorithm then evaluates the
addition of all remaining features to this candidate. Fuzzy similarity relations
are combined using (7). This produces the following evaluations:

γ′{a,c}(Q) = 0.5501 γ′{b,c}(Q) = 1.0

Feature subset {b, c} produces the maximum dependency value for this dataset,
and the algorithm terminates. The dataset can now be reduced to these features
only. The complexity of the algorithm is the same as that of FRFS in terms of
the number of dependency evaluations. However, the explosive growth of the
number of considered fuzzy equivalence classes is avoided through the use of
fuzzy similarity relations and (7). This ensures that for one subset, only one
fuzzy similarity relation is used to compute the fuzzy lower approximation.

3.2 Fuzzy Boundary Region-based FS

Most approaches to crisp rough set FS and all approaches to fuzzy-rough FS
use only the lower approximation for the evaluation of feature subsets. The
lower approximation contains information regarding the extent of certainty of
object membership to a given concept. However, the upper approximation con-
tains information regarding the degree of uncertainty of objects and hence this
information can be used to discriminate between subsets. For example, two
subsets may result in the same lower approximation but one subset may pro-
duce a smaller upper approximation. This subset will be more useful as there is
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less uncertainty concerning objects within the boundary region (the difference
between upper and lower approximations). The fuzzy-rough boundary region
for a fuzzy concept X may thus be defined:

µBNDRP
(X)(x) = µRPX

(x)− µRPX(x) (14)

The fuzzy-rough negative region for all decision concepts can be defined as
follows:

µNEGRP
(x) = N( sup

X∈U/Q
µRPX

(x)) (15)

In classical rough set theory, the negative region is always empty for parti-
tions [42]. It is interesting to note that the fuzzy-rough negative region is also
always empty when the decisions are crisp. However, this is not necessarily the
case when decisions are fuzzy. Further details can be found in the paper [14].

3.2.1 Reduction

As the search for an optimal subset progresses, the object memberships to the
boundary region for each concept diminishes until a minimum is achieved. For
crisp rough set FS, the boundary region will be zero for each concept when a
reduct is found. This may not necessarily be the case for fuzzy-rough FS due
to the additional uncertainty involved. The uncertainty for a concept X using
features in P can be calculated as follows:

UP (X) =

∑
x∈U

µBNDRP
(X)(x)

|U|
(16)

This is the average extent to which objects belong to the fuzzy boundary region
for the concept X. The total uncertainty degree for all concepts, given a feature
subset P is defined as:

λP (Q) =

∑
X∈U/Q

UP (X)

|U/Q|
(17)

This is related to the conditional entropy measure which considers a combination
of conditional probabilities H(Q|P ) in order to gauge the uncertainty present
using features in P . In the crisp case, the minimization of this measure can be
used to discover reducts: if the entropy for a feature subset P is zero, then the
subset is a reduct [12].

Again, a QuickReduct-style algorithm can be constructed for locating
fuzzy-rough reducts based on this measure. Instead of maximising the depen-
dency degree, the task of the algorithm is to minimize the total uncertainty
degree. When this reaches the minimum for the dataset, a fuzzy-rough reduct
has been found. A proof of the monotonicity of the total uncertainty degree can
be found in the paper [14].
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3.2.2 Example

To determine the fuzzy boundary region, the lower and upper approximations
of each concept for each feature must be calculated. Considering feature a and
concept {1,3,6}:

µBNDRa ({1,3,6})(x) = µRa{1,3,6}(x)− µRa{1,3,6}(x)

For object 4, this is

µBNDRa ({1,3,6})(4) = sup
y∈U

T (µRa(4, y), µ{1,3,6}(y))

− inf
y∈U

I(µRa(4, y), µ{1,3,6}(y))

= 0.699− 0.0
= 0.699

For the remaining objects, this is:

µBNDRa ({1,3,6})(1) = 1.0
µBNDRa ({1,3,6})(2) = 1.0
µBNDRa ({1,3,6})(3) = 0.699
µBNDRa ({1,3,6})(5) = 1.0
µBNDRa ({1,3,6})(6) = 1.0

Hence, the uncertainty for concept {1,3,6} is:

Ua({1, 3, 6}) =

∑
x∈U

µBNDRa ({1,3,6})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

For concept {2, 4, 5}, the uncertainty is:

Ua({2, 4, 5}) =

∑
x∈U

µBNDRa ({2,4,5})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

From this, the total uncertainty for feature a is calculated as follows:

λa(Q) =

∑
X∈U/Q

Ua(X)

|U/Q|

=
0.899 + 0.899

2
= 0.899 (18)
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The values of the total uncertainty for the remaining features are:

λ{b}(Q) = 0.640 λ{c}(Q) = 0.592

As feature c results in the smallest total uncertainty, it is chosen and added to the
reduct candidate. The algorithm then considers the addition of the remaining
features to the subset:

λ{a,c}(Q) = 0.500 λ{b,c}(Q) = 0.0

The subset {b, c} results in the minimal uncertainty for the dataset, and the
algorithm terminates. This is the same subset as that chosen by the fuzzy lower
approximation-based method above. Again, the complexity of the algorithm is
the same as that of FRFS, but avoids the Cartesian product of fuzzy equiv-
alence classes. However, for each evaluation, both the fuzzy lower and upper
approximations are considered and hence the calculation of the fuzzy boundary
region is more costly than that of the fuzzy lower approximation alone.

3.3 Fuzzy Discernibility Matrix-based FS

As mentioned previously, there are two main branches of research in crisp rough
set-based FS: those based on the dependency degree and those based on dis-
cernibility matrices. The developments given above are solely concerned with
the extension of the dependency degree to the fuzzy-rough case. Hence, meth-
ods constructed based on the crisp dependency degree can be employed for
fuzzy-rough FS.

By extending the discernibility matrix to the fuzzy case, it is possible to
employ approaches similar to those in crisp rough set FS to determine fuzzy-
rough reducts. A first step toward this is presented in [31, 34] where a crisp
discernibility matrix is constructed for fuzzy-rough selection. A threshold is
used, breaking the rough set ideology, which determines which features are to
appear in the matrix entries. However, information is lost in this process as
membership degrees are not considered. Search based on the crisp discernibility
may result in reducts that are not true fuzzy-rough reducts.

3.3.1 Fuzzy Discernibility

The approach presented here extends the crisp discernibility matrix by employ-
ing fuzzy clauses. Each entry in the fuzzy discernibility matrix is a fuzzy set,
to which every feature belongs to a certain degree. The extent to which a fea-
ture a belongs to the fuzzy clause Cij is determined by the fuzzy discernibility
measure:

µCij
(a) = N(µRa

(i, j)) (19)

where N denotes fuzzy negation and µRa
(i, j) is the fuzzy similarity of objects

i and j, and hence µCij
(a) is a measure of the fuzzy discernibility. For the crisp

case, if µCij
(a) = 1 then the two objects are distinct for this feature; if µCij

(a)
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= 0, the two objects are identical. For fuzzy cases where µCij (a) ∈ (0, 1), the
objects are partly discernible. (The choice of fuzzy similarity relation must
be identical to that of the fuzzy-rough dependency degree approach to find
corresponding reducts.) Each entry in the fuzzy indiscernibility matrix is then
a set of attributes and their corresponding memberships:

Cij = {ax|a ∈ C, x = N(µRa(i, j))} i, j = 1, ..., |U| (20)

For example, an entry Cij in the fuzzy discernibility matrix might be:

Cij : {a0.4, b0.8, c0.2, d0.0}

This denotes that µCij
(a) = 0.4, µCij

(b) = 0.8, etc. In crisp discernibility ma-
trices, these values are either 0 or 1 as the underlying relation is an equivalence
relation. The example clause can be viewed as indicating the value of each fea-
ture - the extent to which the feature discriminates between the two objects i
and j. The core of the dataset is defined as:

Core(C) = {a ∈ C|∃Cij , µCij (a) > 0,
∀f ∈ {C− a}µCij (f) = 0} (21)

3.3.2 Fuzzy Discernibility Function

As with the crisp approach, the entries in the matrix can be used to construct
the fuzzy discernibility function:

fD(a∗1, ..., a
∗
m) = ∧{∨ C∗ij |1 ≤ j < i ≤ |U|} (22)

where C∗ij = {a∗x|ax ∈ Cij}. The function returns values in [0, 1], which can
be seen to be a measure of the extent to which the function is satisfied for
a given assignment of truth values to variables. To discover reducts from the
fuzzy discernibility function, the task is to find the minimal assignment of the
value 1 to the variables such that the formula is maximally satisfied. By setting
all variables to 1, the maximal value for the function can be obtained as this
provides the most discernibility between objects.

Crisp discernibility matrices can be simplified by removing duplicate entries
and clauses that are supersets of others. A similar degree of simplification can
be achieved for fuzzy discernibility matrices. Duplicate clauses can be removed
as a subset that satisfies one clause to a certain degree will always satisfy the
other to the same degree.

3.3.3 Decision-relative Fuzzy Discernibility Matrix

As with the crisp discernibility matrix, for a decision system the decision feature
must be taken into account for achieving reductions; only those clauses with
different decision values are included in the crisp discernibility matrix. For the
fuzzy version, this is encoded as:
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fD(a∗1, ..., a
∗
m) = {∧{{∨ C∗ij} ← qN(µRq (i,j))}|

1 ≤ j < i ≤ |U|} (23)

for decision feature q, where ← denotes fuzzy implication. This construction
allows the extent to which decision values differ to affect the overall satisfiability
of the clause. If µCij

(q) = 1 then this clause provides maximum discernibility
(i.e. the two objects are maximally different according to the fuzzy similarity
measure). When the decision is crisp and crisp equivalence is used, µCij

(q)
becomes 0 or 1.

3.3.4 Reduction

For the purposes of finding reducts, use of the fuzzy intersection of all clauses
in the fuzzy discernibility function may not provide enough information for
evaluating subsets. Here, it may be more informative to consider the individual
satisfaction of each clause for a given set of features. The degree of satisfaction
of a clause Cij for a subset of features P is defined as:

SATP (Cij) =
⋃
a∈P
{µCij (a)} (24)

Returning to the example, if the subset P = {a, c} is chosen, the resulting
degree of satisfaction of the clause is

SATP (Cij) = {0.4 ∨ 0.2} = 0.6

using the  Lukasiewicz t-conorm, min(1, x+ y).
For the decision-relative fuzzy indiscernibility matrix, the decision feature q

must be taken into account also:

SATP,q(Cij) = SATP (Cij)← µCij
(q) (25)

For the example clause, if the corresponding decision values are crisp and are
different, the degree of satisfaction of the clause is

SATP,q(Cij) = SATP (Cij)← 1
= 0.6← 1
= 0.6

For a subset P , the total satisfiability of all clauses can be calculated as

SAT (P ) =

∑
i,j∈U,i6=j

SATP,q(Cij)∑
i,j∈U,i6=j

SATC,q(Cij)
(26)
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where C is the full set of conditional attributes, and hence the denominator is
a normalizing factor. If this value reaches 1 for a subset P , then the subset is
a fuzzy-rough reduct. A proof of the monotonicity of the function SAT (P ) can
be found in the paper [14].

Many methods available from the literature for the purpose of finding reducts
for crisp discernibility matrices are applicable here also. The Johnson Reducer
[19] is extended and used herein to illustrate the concepts involved. This is a
simple greedy heuristic algorithm that is often applied to discernibility func-
tions to find a single reduct. Subsets of features found by this process have no
guarantee of minimality, but are generally of a size close to the minimal.

The algorithm begins by setting the current reduct candidate, P , to the
empty set. Then, each conditional feature appearing in the discernibility func-
tion is evaluated according to the heuristic measure used. For the standard
Johnson algorithm, this is typically a count of the number of appearances a fea-
ture makes within clauses; features that appear more frequently are considered
to be more significant. The feature with the highest heuristic value is added to
the reduct candidate and all clauses in the discernibility function containing this
feature are removed. As soon as all clauses have been removed, the algorithm
terminates and returns the subset P . P is assured to be a fuzzy-rough reduct
as all clauses contained within the discernibility function have been addressed.
However, as with the other approaches, the subset may not necessarily have
minimal cardinality.

The complexity of the algorithm is the same as that of FRFS in that O((n2+
n)/2) calculations of the evaluation function (SAT (P )) are performed in the
worst case. Additionally, this approach requires the construction of the fuzzy
discernibility matrix, which has a complexity of O(a∗o2) for a dataset containing
a attributes and o objects.

3.3.5 Example

For the example dataset, the fuzzy discernibility matrix needs to be constructed
based on the fuzzy discernibility given in equation (19) using the standard nega-
tor, and fuzzy similarity in equation (10). For objects 2 and 3, the resulting
fuzzy clause is:

{a0.301 ∨ b1.0 ∨ c0.964} ← q1.0

where ← denotes fuzzy implication. The fuzzy discernibility of objects 2 and 3
for attribute a is 0.301, indicating that the objects are partly discernible for this
feature. The objects are fully discernible with respect to the decision feature,
indicated by q1.0. The full set of clauses is:
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C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C13 : {a0.301 ∨ b0.432 ∨ c0.964} ← q0.0
C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C15 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C16 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C24 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C25 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C35 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C36 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C45 : {a0.301 ∨ b0.0 ∨ c0.0} ← q0.0
C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The feature selection algorithm then proceeds in the following way. Each
individual feature is evaluated according to the measure defined in equation
(26). For feature a, this is:

SAT ({a}) =

∑
i,j∈U,i6=j

SAT{a},q(Cij)∑
i,j∈U,i6=j

SATC,q(Cij)

=
11.601

15
= 0.773

Similarly for the remaining features:

SAT ({b}) = 0.782 SAT ({c}) = 0.830

The feature that produces the largest increase in satisfiability is c. This
feature is added to the reduct candidate, and the search continues:

SAT ({a, c}) = 0.887 SAT ({b, c}) = 1.0

The subset {b, c} is found to satisfy all clauses maximally, and the algorithm
terminates. This subset is a fuzzy-rough reduct.

4 Vaguely Quantified Rough Sets
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