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Talk plan 

  Reminder of quantum error correction (QEC). 

  Continuous QEC.   

  Description of a scheme for coherent-feedback QEC for 
a simple 3 qubit bit flip code. 

  Concluding remarks. 



Quantum error correction (QEC) 

  Quantum error correction is essential for quantum 
information processing since qubits are susceptible to 
decoherence.  

  When decoherence alters the state of a qubit, a QEC 
algorithm acts to restore it to the state prior to 
decoherence.    



QEC principles 

  Main ingredient is to introduce reduncancy by encoding 
a logical qubit into a number of physical qubits. 

  Simple 3 qubit code: A logical qubit is encoded by 3 
physical qubits. Logical qubit |0 >L encoded by 3 
physical qubits |000 > and |1 >L encoded by |111 >. 

  A logical state a|0 >L + b|1 >L is encoded as a|000 > + b|
111 >. The 3 qubit codespace is C = span{|000 >,|111>}.   



The 3 qubit bit flip code 

  This simple code belongs to a class of QEC codes called 
stabilizer codes (Gottesman, PRA 54, 1862) 

  C = span{| 000 >,|111 >} 

  Correctable errors are single qubit bit flips X1, X2 or X3 

  Error is determined by measuring the parity Z1Z2 
between qubits 1 and 2, and Z2Z3 between qubits 2 and 
3. Measurement results called the error syndrome.  

  Error syndromes are: {1,1} (no error), {-1, 1} (qubit 1 
has flipped), {1,-1} (qubit 3 has flipped) and {-1,-1} 
(qubit 2 has flipped) 



Continuous QEC 

  Most proposed QEC schemes are discrete. Error 
detection and recovery operations are done periodically 
with a sufficiently small period. 

  In continuous QEC, the idea is to detect and correct 
errors continuously as they occur. Suitable for low level 
continuous time differential equation based models.  

  Continuous QEC using continuous monitoring and 
measurement-feedback: Ahn, Doherty & Landahl et al, 
PRA 65, 042301; Ahn, Wiseman & Milburn, PRA 65, 
042301; Chase, Landahl & Geremia, PRA 77, 032304. 



Why coherent-feedback? 

  Not necessary to go up to the “macroscopic” level and 
have interfaces to electronic circuits for measurements. 
Not limited by bandwidth of electronic devices. 

  No classical processing required and avoids challenges 
imposed by the requirement of such processing; e.g., 
numerical integration of nonlinear quantum filtering 
equations in real-time. 

  Entirely “on-chip” implementation; a controller can be 
on the same hardware platform as the controlled 
quantum system. In particular, in solid state monolithic 
circuit QED. 



Quantum network notation and 
operations 

  Open Markov quantum system G = (S,L,H).  

  Concatenation product 

  Series product 

Gough & James, IEEE-TAC (to appear), 2009, arXiv:0708.4483 

G2 ! G1 = (S2, L2, H2) ! (S1, L1, H1) =
([

S2 0
0 S1

]
,

[
L2

L1

]
, H1 + H2

)

G2 ! G1 = (S2, L2, H2) ! (S1, L1, H1)

= (S2S1, S2L1 + L2, H1 + H2 + !{L†
2S2L1})



Continuous parity measurement 

Kerckhoff, Bouten, Silberfarb & 
Mabuchi, PRA 79, 024305 

But cannot include bit flip errors! 

dŪ(t) = ((Π12 − I)dΛ(t) + αΠ12dA∗(t)− ᾱdA(t)

−|α|2

2
dt

)
Ū(t)

Physical model of continuous two-qubit parity measurement in a cavity-QED network
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We propose and analyze a physical implementation of two-qubit parity measurements as required for con-
tinuous error correction, assuming a setup in which the individual qubits are strongly coupled to separate
optical cavities. A single optical probe beam scatters sequentially from the two cavities, and the continuous
parity measurement is realized via fixed quadrature homodyne photodetection. We present models based on
quantum stochastic differential equations !QSDEs" for both an ideal continuous parity measurement and our
proposed cavity quantum electrodynamics !cavity QED" implementation; a recent adiabatic elimination theo-
rem for QSDEs is used to assert strong convergence of the latter to the former in an appropriate limit of
physical parameters. Performance of the cavity QED scheme is studied via numerical simulation with experi-
mentally realistic parameters.
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It is now well established #1$ that error correction and
avoidance protocols and fault-tolerant architectures are es-
sential for any practical implementation of quantum informa-
tion processing. While most theoretical research in these ar-
eas utilizes discrete-time map-based models for quantum
dynamics and decoherence, which are perhaps more familiar
to computer scientists and information theorists, there has
been growing interest in transferring key ideas #2$ to the
domain of continuous-time differential-equation-based mod-
els, which are more common in the context of ab initio
physical modeling. In this paper we contribute to a line of
research, initiated by Ahn and co-workers #3–6$ and broad-
ened by other research groups #7–9$, which focuses on con-
tinuous quantum error correction via stabilizer coding and
continuous syndrome measurement. This approach is attrac-
tive for design and analysis because it fundamentally con-
nects the goal of quantum decoherence suppression with for-
mal optimization methods of classical control theory #7$. It
also has a significant potential implementation advantage
over standard discrete-time formulations in that continuous
tracking of errors may be realized without the need for ex-
ecuting cumbersome readout circuits, but this of course relies
on the assumption that continuous nondemolition syndrome
measurement can be realized in an experimentally favorable
way. In what follows we describe a straightforward imple-
mentation of continuous two-qubit parity measurement !suf-
ficient for syndrome measurement of the quantum bit-flip
code" in the context of cavity quantum electrodynamics !cav-
ity QED" and analyze the performance of our scheme both
for fixed realistic parameters !via numerical simulation" and
in an ideal limit of parameter values !via adiabatic elimina-
tion". Our scheme utilizes a simple coherent-state optical
probe in place of the usual ancillary qubits and exploits
Hamiltonian qubit-cavity couplings in place of clocked quan-
tum logic gates for the syndrome readout. The strength of the
syndrome measurement can nevertheless be modulated eas-
ily !or even turned off entirely" by adjustment of the power
of the optical probe beam.

The basic setup of our proposed implementation is shown
in Fig. 1: two optical cavities, each containing a single three-
level “atom” !potentially a gas-phase alkali-metal atom, ni-

trogen vacancy center in diamond, etc.", are interrogated se-
quentially by a coherent optical probe with amplitude !
!similar arrangements have previously been considered in the
context of quantum information science #10$". A qubit is en-
coded in the ground states %"& and %#& of the intracavity
atom; an optical transition between %#& and the excited state
%e& is coupled strongly to a quantized cavity mode with
vacuum Rabi frequency g. For simplicity we assume atomic
selection rules such that %e& decays only to %#&, with excited-

FIG. 1. !Color online" Schematic depiction of two cavities
driven sequentially by a resonant laser beam. A three-level atom is
trapped inside each cavity, and identical atom-cavity dynamics ap-
ply in each. After probing both cavities, the laser light is directed to
a homodyne receiver.
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dU(t) =
(
(
√

κb1 +
√

κb2 + α)dA∗(t)− h.c.

− (
√

κb1 +
√

κb2 + α)∗(
√

κb1 +
√

κb2 + α)
2

dt

+
2∑

k=1

(√
γσ(i)dB∗(t)− h.c.− γ

2
σ∗σdt

)

+
κ

2
(b∗1b2 − h.c.)dt + g

2∑

i=1

(σ(i)∗bi − h.c.)dt

+
(

ᾱ
√

κ

2
(b1 + b2)− h.c.

)
dt

)
U(t)

lim
α, κ→∞
α√
κ

= const

lim
g→∞

‖(U(t)− Ū(t))ψ‖ = 0 for all ψ

in the reduced Hilbert space.



Modified parity measurement 
model 
  Full single atom-cavity-field model with bit flip errors: 

  Reduced atom-field model with bit flip errors: 

dŪ(t) =
(
(Z − I)dΛ11(t) + αZdA∗

1(t)− ᾱdA1(t)

+
√

ΓXdA∗
2(t)− h.c.− 1

2
(|α|2 + γ)dt

)
Ū(t)

lim
g, κ→∞
g
κ = const

‖(U(t)− Ū(t))ψ‖ for all ψ in the reduced Hilbert space.

dU(t) =
(
(
√

κb + α)dA∗
1(t)− h.c.− 1

2
(
√

κb + α)∗(
√

κb + α)dt

+
√

ΓσXdA∗
2(t)− h.c.− Γ

2
σ∗

XσXdt

+
√

γσdA∗
3(t)− h.c.− γ

2
σ∗σdt + g(σ∗b− h.c.)dt

)
U(t)



Modified parity measurement 
model  

  The reduced model can be written as: 

  Reduced model for two coherently driven cavities:    

([
Z 0
0 1

]
,

[
0√
ΓX

]
, 0

)
!

(
I,

[
α
0

]
, 0

)








Z2 0 0
0 1 0
0 0 1



 ,




0
0√
ΓX2



 , 0



 !








Z1 0 0
0 1 0
0 0 1



 ,




0√
ΓX1

0



 , 0



 !



I,




α
0
0



 , 0





=








Z2Z1 0 0

0 1 0
0 0 1



 ,




αZ2Z1√

ΓX1√
ΓX2



 , 0







The “bare bones” of it 
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•  Coherent lasers drive atomic Raman transitions between the 
two ground states of the atom to correct bit flips. 
•  To make it work, need more than this … 



The actual scheme 

  Quantum switches R1, R2 inserted to facilitate switching to higher 
amplitude  bit flip correcting Raman lasers. 
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Coherent-feedback formulation of a continuous quantum error correction protocol

Joseph Kerckhoff,1 Hendra I. Nurdin,1, 2 Dmitri S. Pavlichin,1 and Hideo Mabuchi1

1Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
2Department of Information Engineering, The Australian National University, Canberra, ACT 0200, Australia

(Dated: August 28, 2009)

We propose an approach to quantum error correction based on coding and continuous syndrome
readout via scattering of coherent probe fields, in which the usual steps of measurement and dis-
crete restoration are replaced by unitary processing of the probe beams and coherent feedback to
the register qubits. We exploit a limit theorem for quantum stochastic differential equations to an-
alyze coherent feedback networks based on the bit-flip/phase-flip code, obtaining simple closed-loop
master equations with only four Hilbert-space dimensions required for the controller. Our approach
is well matched to physical implementations that feature solid-state qubits embedded in planar
electromagnetic circuits.

PACS numbers: 03.67.Pp,02.30.Yy,42.50.-p,03.65.Yz

Fundamental concepts of quantum error correction
(QEC) based on coding and measurement of syn-
dromes [1] have become central to the modern field of
quantum information science. Although substantial work
is still being devoted to extensions and refinements of ab-
stract QEC theory, some efforts [2, 3, 4] have begun to fo-
cus on the complementary task of developing implemen-
tation approaches that apply the fundamental principles
of QEC in ways that naturally accommodate the struc-
ture of elementary physical models. Such new approaches
could enable the design of quantum memories that make
more efficient use of critical physical resources and intro-
duce new physically-motivated abstractions for quantum
circuit engineering to complement those we have inher-
ited from classical computer science.

Working in this spirit, we recently proposed [5] a cavity
quantum electrodynamics (cavity QED) implementation
of the homodyne-type parity measurement required for
a continuous-QEC [6, 7, 8, 9, 10, 11, 12] version of the
familiar three-qubit bit-flip or phase-flip codes, which be-
comes very simple to model in a strong coupling limit.
In this article we take the further step of describing co-
herent feedback networks that realize quantum memories
in which decoherence of the encoded qubit is suppressed
without the need for any measurement-based filtering or
feedback. Our results establish an important new link be-
tween quantum information science and the nascent the-
ory of coherent-feedback quantum control [13, 14, 15, 16],
and highlight the possibility of incorporating ‘embedded
controllers’ in quantum information processing platforms
based on optical or microwave resonator/waveguide cir-
cuits [17, 18, 19]. The modeling framework that we uti-
lize, based on quantum stochastic differential equations
(QSDE’s), is sufficiently general to allow the incorpora-
tion of signal fields that carry information simultaneously
in non-commuting quadratures. While this is not strictly
necessary for the type of scheme we consider here, which
simply allocates one probe field per stabilizer generator,
it is possible that future work in this setting could ex-
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FIG. 1: Schematic diagram of a coherent-feedback quantum
memory showing qubits-in-cavities (Q1, Q2 and Q3), circula-
tors, beam-splitters, steering mirrors and relays (R1 and R2).
The calculation we present is based on a modified arrange-
ment that leads to the same closed-loop master equation but
factorizes into four simple sub-networks.

plore more general quantum memory architectures with
reduced resource overhead.

We begin the presentation of our approach with the
schematic diagram shown in Fig. 1. For a memory based
on the bit-flip or phase-flip code, three register qubits
(Q1, Q2 and Q3) are required and we assume that each
is strongly coupled to its own electromagnetic resonator
(cavity). Two probe beams and two reference beams
are generated from a coherent input |2α〉 (where |α|2
has units photons time−1); the probe beams scatter (re-
flect) from the cavities as shown in the diagram. As de-
scribed in [5] the beam that scatters from qubit-cavities
Q2 and Q1 carries a coherent amplitude αZ1Z2, where
Zi is the Pauli σz operator on qubit i, and when it is



Qubit atomic level scheme  
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Raman transitions with ac Stark 
shift compensation 

  Given by the terms:  

  Together with coupling to probe laser becomes:  

(
1,
√

γ (σgr + σgG) ,∆
(

1
2
Πr −ΠG

))

!
(

1,
√

γ (σhr + σhH) ,∆
(

1
2
Πr −ΠH

))Raman transitions 

ac Stark shift compensation 

([
Z 0
0 1

]
, 0, 0

)
!

(
1,
√

γ (σgr + σgG) ,∆
(

1
2
Πr −ΠG

))

!
(

1,
√

γ (σhr + σhH) ,∆
(

1
2
Πr −ΠH

))



QSDE model for switch/relay 
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Detailed physical model: H. Mabuchi, arXiv:0907.2720 

•  Simple QSDE model: 
([

Πg −Πh

−Πh Πg

]
,

[
βΠg

−βΠh

]
, 0

)
!

([
Πh −σhg

−σgh Πg

]
, 0, 0

)



QEC network description 

  (Modified) half network diagram !"!"
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Half network Gp ! Gf (p=probe path, f=feedback path):
Gp = R12 " B3 " ((Q13 " Q21) ! (1, 0, 0)) " B1,

Gf = (Q11 ! Q32 ! Q22) " (B5 !2 (1, 0, 0))
" (R11 ! (1, 0, 0))
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FIG. 3: Details of the ‘set-reset flip-flop cross-over relay’ com-
ponent model [22]: (a) input and output ports, (b) coupling
of input/output fields to resonant modes of two cavities, and
(c) relay internal level diagram.

but in a practical implementation it would be possible to
utilize double-pole double-throw relays that switch not
only the Raman beam itself but also an auxiliary beam
whose frequency, polarization and amplitude is chosen so
that it provides equivalent compensation.

Some details of our relay model are displayed in Fig. 3
[22]. In electrical engineering parlance, the devices we
utilize correspond to open quantum systems versions of a
cross-over relay driven by a set-reset flip-flop. Each relay
Rk has an internal state in the span of {|g(Rk)〉, |h(Rk)〉}.
When Rk is in state |h(Rk)〉 its power input is connected
to the OUT output port; when Rk is in state |g(Rk)〉 its

power input is connected to the OUT port. A probe
signal driving the SET input port (in the absence of sig-
nal at the RESET input) causes the relay state to decay
to |h〉, while driving only the RESET input induces de-
cay to |g〉. Starting from a pre-limit cavity QED model
in which transitions among relay states are coupled via
the usual Jaynes-Cummings interaction to cavity modes,
which are in turn driven by the relay input fields as shown
in Fig. 3(b,c), we perform an adiabatic elimination of the
excited states {|e〉, |s〉} using the limit theorem of [20] to
arrive at the following simplified component models for
relays R1 and R2:

S(Rk1) =

[

Π(Rk)
g −Π(Rk)

h

−Π(Rk)
h ΠRk

g

]

, L(Rk1) =

[

βΠ(Rk)
g

−βΠ(Rk)
h

]

,

S(Rk2) =

[

Π(Rk)
h −σ(Rk)

hg

−σ(Rk)
gh ΠRk

g

]

, L(Rk2) = 0,

and H(Rk1) = H(Rk2) = 0. For the strong coupling limit
we have again taken gP,s,r, κP,s,r → ∞ with gP /κP fixed
for the POWER cavity mode and g2

s,r/κs,r fixed for the
SET and RESET cavity modes.

In addition to the above qubit and relay models, we
will utilize the following component models for beam-
splitters:

Bk :

([

1√
2

− 1√
2

1√
2

1√
2

]

,

[

αk

αk

]

, 0

)

,

with αk = α for k ∈ {1, 2} and zero otherwise. Hav-
ing now defined all the necessary component models,
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FIG. 4: Signal-flow diagram of the half-network Gp ! Gf .

we proceed to assemble the full network model N =
Gp ! Gf ! G′

p ! G′
f ! GΓ. Here GΓ = (

√
ΓX1, 0, 0) !

(
√

ΓX2, 0, 0) ! (
√

ΓX3, 0, 0) describes bit-flip decoher-
ence of the register qubits, and the component connec-
tions for Gp ! Gf are shown in Fig. 4 (note that as the
signal routing shown in Fig. 1 yields rather unwieldy
network calculations, we are here adopting a modified
routing that leads to the same closed-loop master equa-
tion with less work). Components {B1, B3, B5} repre-
sent beam-splitters, {R11, R12} jointly represent a set-
reset flip-flop relay, {Q13, Q21} are probe interactions,
and {Q11, Q22, Q32} are Raman interactions. Using the
series " and concatenation ! products for QSDE’s [21]
(where !m represents concatenation followed by a per-
mutation of the field mode indices such that the modes
of the system to the right of !m are inserted between the
(m − 1)th and mth modes of the left system), we define

Gp = R12 " B3 " ((Q13 " Q21) ! (1, 0, 0)) " B1,

Gf = (Q11 ! Q32 ! Q22) " (B5 !2 (1, 0, 0))

" (R11 ! (1, 0, 0)). (1)

Here Gp represents the ‘probe’ signal path while Gf rep-
resents the ‘feedback’ signal path; despite the fact that
the QSDE coefficients of these two paths can be com-
puted separately, a true feedback loop is created by the
signal connection from Q13 to B3 because R11 and R12

act on a common Hilbert space (the state of the relay).
The models for G′

p and G′
f are finally obtained from

Gp and Gf by the substitutions B1 '→ B2, B3 '→ B4,
R12 '→ R22, R11 '→ R21, B5 '→ B6, Q11 '→ Q23,
Q22 '→ Q33, Q32 '→ Q12, Q21 '→ Q24, Q13 '→ Q31.

After inserting the bit-flip component models de-
scribed above and applying an adiabatic elimination of
the qubit excited states |r〉, |G〉 and |H〉 (using the limit
theorem of [20] with β, ∆ → ∞ with β2/∆ fixed), we
obtain the closed-loop master equation

ρ̇t = −i[H, ρt] +
7

∑

i=1

(

LiρtL
∗
i −

1

2
{L∗

i Li, ρt}
)

, (2)



QEC network master equation 
  The QEC network master equation in the limit that Δ, β   ∞ 

with β2/ Δ constant is:  

ρ̇t = −i[H, ρt] +
7∑

i=1

(
LiρtL

∗
i −

1
2
{L∗

i Li, ρt}
)

,

where (Ω ≡ β2/γ∆),

H =
√

2ΩΠ(R1)
g Π(R2)

h X1 +
√

2ΩΠ(R1)
h Π(R2)

g X3

−ΩΠ(R1)
g Π(R2)

g X2,

L1 =
α√
2

{
σ(R1)

hg (1 + Z1Z2) + Π(R1)
h (1− Z1Z2)

}
,

L2 =
α√
2

{
σ(R1)

gh (1− Z1Z2) + Π(R1)
g (1 + Z1Z2)

}
,

L3 =
α√
2

{
σ(R2)

hg (1 + Z3Z2) + Π(R2)
h (1− Z3Z2)

}
,

L4 =
α√
2

{
σ(R2)

gh (1− Z3Z2) + Π(R2)
g (1 + Z3Z2)

}
,

L5 =
√

ΓX1, L6 =
√

ΓX2, L7 =
√

ΓX3.



Ideal QEC network performance 
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Fidelity = < ψ0 |ρ(t) |ψ0 >;  Simulation parameters: Γ = 0.01, α = 10, |ψ0 > 
= (| ggg > - |hhh >)/√2; ρ(0) = |ψ0 > < ψ0 |. 



Ideal QEC network performance 

Fidelity = < ψ0 |ρ(T) |ψ0 >;  Simulation parameters: Γ = 0.01, α = 10,β = 30, 
|ψ0 > = a |ggg > + √(1-a2)eiθ|hhh >, a in [-1,1], θ in [-π,π]; ρ(0) = |ψ0 > < ψ0 |. 
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Concluding remarks 

  We have proposed a coherent-feedback QEC scheme for 
a simple 3 qubit QEC code that protects against single 
bit flip errors; can be easily adapted to a 3 qubit phase 
flip code.  

  Simulations of the QEC network master equation 
indicates the scheme can slow down decoherence due 
to single bit flips.  

  Ideas for the future: Adaptation to more complex 
stabilizer codes, but necessarily also with more complex 
quantum circuits. Perhaps also to non-stabilizer codes 
(more challenging?). 


