QUANTUM STOCHASTIC LIE-TROTTER PRODUCT FORMULA (two anniversaries)

Martin Lindsay

Lancaster University, U.K.

(joint work with Kalyan Sinha,

Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore)

STOCHASTIC PROCESSES AT THE QUANTUM LEVEL

Aberystwyth, 21-22 October 2009

Supported by UKIERI Research Collaboration Network QP-NCG-QI

э.

SQ (V

Classical Product Formulae

< ロ > < 団 > < 三 > < 三 > < 三 > < ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$e^{C} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^{n}$$

▲□▶ ▲□▶ ▲ = ▶ ▲ = ● ○ Q ○

$$e^{C} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^{n}$$

Theorem. (*Trotter, 1959*). Let $P^{(1)}$ and $P^{(2)}$ be C_0 -contraction semigroups on a Banach space E with generators Z_1 and Z_2 ,

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$e^{C} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^{n}$$

Theorem. (*Trotter, 1959*). Let $P^{(1)}$ and $P^{(2)}$ be C_0 -contraction semigroups on a Banach space E with generators Z_1 and Z_2 , and suppose that $Z_1 + Z_2$ is a pre-generator of a C_0 -semigroup P on E.

$$e^{C} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^{n}$$

Theorem. (*Trotter, 1959*). Let $P^{(1)}$ and $P^{(2)}$ be C_0 -contraction semigroups on a Banach space E with generators Z_1 and Z_2 , and suppose that $Z_1 + Z_2$ is a pre-generator of a C_0 -semigroup P on E. Then

$$P_{t}\xi = \lim_{n \to \infty} \left(P_{t/n}^{(1)} P_{t/n}^{(2)} \right)^{n} \xi$$

for all $\xi \in E$.

$$e^{C} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^{n}$$

Theorem. (*Trotter, 1959*). Let $P^{(1)}$ and $P^{(2)}$ be C_0 -contraction semigroups on a Banach space E with generators Z_1 and Z_2 , and suppose that $Z_1 + Z_2$ is a pre-generator of a C_0 -semigroup P on E. Then

$$P_{t}\xi = \lim_{n \to \infty} \left(P_{t/n}^{(1)} P_{t/n}^{(2)} \right)^{n} \xi$$

for all $\xi \in E$.

Remark.

The convergence is uniform on compact intervals.

 $\Gamma(H) := \mathbb{C} \oplus H \oplus H^{\otimes_{\mathrm{sym}} 2} \oplus \cdots$

$$\Gamma(\mathsf{H}) := \mathbb{C} \oplus \mathsf{H} \oplus \mathsf{H}^{\otimes_{\mathrm{sym}^2}} \oplus \cdots$$

the *exponential vectors*

$$\varepsilon(\mathbf{v}) := (1, \mathbf{v}, (2!)^{-1/2} \mathbf{v}^{\otimes 2}, \cdots) \quad (\mathbf{v} \in \mathsf{H})$$

$$\Gamma(\mathsf{H}) := \mathbb{C} \oplus \mathsf{H} \oplus \mathsf{H}^{\otimes_{\mathrm{sym}^2}} \oplus \cdots$$

the *exponential vectors*

$$\varepsilon(\mathbf{v}) := (1, \mathbf{v}, (2!)^{-1/2} \mathbf{v}^{\otimes 2}, \cdots) \quad (\mathbf{v} \in \mathsf{H})$$

witness the *exponential property*

 $\Gamma(H_1 \oplus H_2) = \Gamma(H_1) \otimes \Gamma(H_2).$

$$\Gamma(\mathsf{H}) := \mathbb{C} \oplus \mathsf{H} \oplus \mathsf{H}^{\otimes_{\mathrm{sym}} 2} \oplus \cdots$$

the *exponential vectors*

$$arepsilon(\mathbf{v}) := ig(1,\mathbf{v},(2!)^{-1/2}\mathbf{v}^{\otimes 2},\cdotsig) \quad (\mathbf{v}\in\mathsf{H})$$

witness the *exponential property*

$$\Gamma(\mathsf{H}_1 \oplus \mathsf{H}_2) = \Gamma(\mathsf{H}_1) \otimes \Gamma(\mathsf{H}_2).$$

The *linear independence* and *totality* of the exponential vectors also facilitates the definition of operators on Fock spaces.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへ⊙

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$.

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへ⊙

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽へ⊙

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

$$L^2(\mathbb{R}_+;\mathsf{k}) = L^2([0,r[;\mathsf{k})\oplus L^2([r,t[;\mathsf{k})\oplus L^2([t,\infty[;\mathsf{k})]$$
 and

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽へ⊙

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

$$\mathfrak{h}\otimes\mathcal{F}=\mathfrak{h}\otimes\mathcal{F}_{[0,r[}\otimes\mathcal{F}_{[r,t[}\otimes\mathcal{F}_{[t,\infty[} \text{ and }$$

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

$$\mathfrak{h}\otimes\mathcal{F}=\mathfrak{h}\otimes\mathcal{F}_{[0,r[}\otimes\mathcal{F}_{[r,t[}\otimes\mathcal{F}_{[t,\infty[} \ \text{ and } \ \mathfrak{h}\otimes\mathcal{F}_{k_1}\otimes\mathcal{F}_{k_2}=\mathfrak{h}\otimes\mathcal{F};$$

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}) \oplus L^{2}([r,t[;\mathsf{k}) \oplus L^{2}([t,\infty[;\mathsf{k}) \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

 $\mathfrak{h}\otimes\mathcal{F}=\mathfrak{h}\otimes\mathcal{F}_{[0,r[}\otimes\mathcal{F}_{[r,t[}\otimes\mathcal{F}_{[t,\infty[} \ \text{ and } \ \mathfrak{h}\otimes\mathcal{F}_{k_1}\otimes\mathcal{F}_{k_2}=\mathfrak{h}\otimes\mathcal{F};$

 $B(\mathfrak{h}\otimes\mathcal{F})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{[0,r[})\overline{\otimes}B(\mathcal{F}_{[r,t[})\overline{\otimes}B(\mathcal{F}_{[t,\infty[})$

Fix two Hilbert spaces \mathfrak{h} and k and set $\mathcal{F} = \mathcal{F}_k := \Gamma(L^2(\mathbb{R}_+; k))$. Also set $\mathbb{D}_+ := \{2^{-n}k : n \in \mathbb{N}, k \in \mathbb{Z}_+\}$.

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

 $\mathfrak{h}\otimes\mathcal{F}=\mathfrak{h}\otimes\mathcal{F}_{[0,r[}\otimes\mathcal{F}_{[r,t[}\otimes\mathcal{F}_{[t,\infty[} \ \text{ and } \ \mathfrak{h}\otimes\mathcal{F}_{k_1}\otimes\mathcal{F}_{k_2}=\mathfrak{h}\otimes\mathcal{F};$

$$B(\mathfrak{h}\otimes\mathcal{F})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{[0,r[})\overline{\otimes}B(\mathcal{F}_{[r,t[})\overline{\otimes}B(\mathcal{F}_{[t,\infty[})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{k_1})\overline{\otimes}B(\mathcal{F}_{k_2}).$$

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

$$\mathfrak{h}\otimes\mathcal{F}=\mathfrak{h}\otimes\mathcal{F}_{[0,r[}\otimes\mathcal{F}_{[r,t[}\otimes\mathcal{F}_{[t,\infty[} \ \text{ and } \ \mathfrak{h}\otimes\mathcal{F}_{\mathsf{k}_1}\otimes\mathcal{F}_{\mathsf{k}_2}=\mathfrak{h}\otimes\mathcal{F};$$

$$B(\mathfrak{h}\otimes\mathcal{F})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{[0,r[})\overline{\otimes}B(\mathcal{F}_{[r,t[})\overline{\otimes}B(\mathcal{F}_{[t,\infty[})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_1})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_2}).$$

For $T \subset k$, let \mathbb{S}_T' denote the set

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

$$\mathfrak{h}\otimes\mathcal{F}=\mathfrak{h}\otimes\mathcal{F}_{[0,r[}\otimes\mathcal{F}_{[r,t[}\otimes\mathcal{F}_{[t,\infty[} \ \text{ and } \ \mathfrak{h}\otimes\mathcal{F}_{\mathsf{k}_1}\otimes\mathcal{F}_{\mathsf{k}_2}=\mathfrak{h}\otimes\mathcal{F};$$

$$B(\mathfrak{h}\otimes\mathcal{F})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{[0,r[})\overline{\otimes}B(\mathcal{F}_{[r,t[})\overline{\otimes}B(\mathcal{F}_{[t,\infty[})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_1})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_2}).$$

For $T \subset k$, let \mathbb{S}'_T denote the set

 $\{f \in L^2(\mathbb{R}_+; \mathsf{k}) : f \text{ is a rt.-cts. T-valued step fn. whose pts. of discontinuity lie in } \mathbb{D}_+\}.$

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

$$\mathfrak{h}\otimes\mathcal{F}=\mathfrak{h}\otimes\mathcal{F}_{[0,r[}\otimes\mathcal{F}_{[r,t[}\otimes\mathcal{F}_{[t,\infty[} \ \text{ and } \ \mathfrak{h}\otimes\mathcal{F}_{\mathsf{k}_1}\otimes\mathcal{F}_{\mathsf{k}_2}=\mathfrak{h}\otimes\mathcal{F};$$

$$B(\mathfrak{h}\otimes\mathcal{F})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{[0,r[})\overline{\otimes}B(\mathcal{F}_{[r,t[})\overline{\otimes}B(\mathcal{F}_{[t,\infty[})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_1})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_2}).$$

For $T \subset k$, let \mathbb{S}'_T denote the set

 $\{f \in L^2(\mathbb{R}_+; \mathsf{k}) : f \text{ is a rt.-cts. T-valued step fn. whose pts. of discontinuity lie in } \mathbb{D}_+\}.$

Theorem. (*Parthasarathy-Sunder, Skeide*). If T is total in k and contains 0

The exponential property transforms the orthogonal decompositions

$$L^{2}(\mathbb{R}_{+};\mathsf{k}) = L^{2}([0,r[;\mathsf{k}] \oplus L^{2}([r,t[;\mathsf{k}] \oplus L^{2}([t,\infty[;\mathsf{k}] \text{ and} L^{2}(\mathbb{R}_{+};\mathsf{k}_{1}) \oplus L^{2}(\mathbb{R}_{+};\mathsf{k}_{2}) = L^{2}(\mathbb{R}_{+};\mathsf{k}) \quad \text{where } \mathsf{k} = \mathsf{k}_{1} \oplus \mathsf{k}_{2}$$

into the tensor factorisations

$$\mathfrak{h}\otimes \mathcal{F}=\mathfrak{h}\otimes \mathcal{F}_{[0,r[}\otimes \mathcal{F}_{[r,t[}\otimes \mathcal{F}_{[t,\infty[} \text{ and } \mathfrak{h}\otimes \mathcal{F}_{\mathsf{k}_1}\otimes \mathcal{F}_{\mathsf{k}_2}=\mathfrak{h}\otimes \mathcal{F};$$

$$B(\mathfrak{h}\otimes\mathcal{F})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{[0,r[})\overline{\otimes}B(\mathcal{F}_{[r,t[})\overline{\otimes}B(\mathcal{F}_{[t,\infty[})=B(\mathfrak{h})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_1})\overline{\otimes}B(\mathcal{F}_{\mathsf{k}_2}).$$

For $T\subset k,$ let \mathbb{S}_T' denote the set

 $\{f \in L^2(\mathbb{R}_+; \mathsf{k}) : f \text{ is a rt.-cts. T-valued step fn. whose pts. of discontinuity lie in } \mathbb{D}_+\}.$

Theorem. (*Parthasarathy-Sunder, Skeide*). If T is total in k and contains 0 then $\{\varepsilon(f) : f \in \mathbb{S}_{T}'\}$ is total in \mathcal{F}_{k} .

< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > の < ()

A contraction process on \mathfrak{h} (with noise dimension space k)

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

▲□▶▲□▶▲≡▶▲≡▶ ≡ 少へ?

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

 $\blacktriangleright V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[};$

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

- $\blacktriangleright V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[};$
- $s \mapsto V_s \xi$ is weakly measurable $(\xi \in \mathfrak{h} \otimes \mathcal{F})$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ 少へ⊙

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

$$\blacktriangleright V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[};$$

• $s \mapsto V_s \xi$ is weakly measurable $(\xi \in \mathfrak{h} \otimes \mathcal{F})$.

Fundamental QS Processes ($k = \mathbb{C}$).

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

- $\blacktriangleright V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[};$
- $s \mapsto V_s \xi$ is weakly measurable $(\xi \in \mathfrak{h} \otimes \mathcal{F})$.

Fundamental QS Processes ($k = \mathbb{C}$).

• Annihilation process. $A_t \varepsilon(f) := \int_0^t f(s) ds \varepsilon(f);$

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

- $\blacktriangleright V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[};$
- ▶ $s \mapsto V_s \xi$ is weakly measurable ($\xi \in \mathfrak{h} \otimes \mathcal{F}$).

Fundamental QS Processes ($k = \mathbb{C}$).

- Annihilation process. $A_t \varepsilon(f) := \int_0^t f(s) ds \varepsilon(f);$
- Creation process. $A_t^* \varepsilon(f) := S_0^t \varepsilon(f) ds;$

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

- $\blacktriangleright V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[};$
- ▶ $s \mapsto V_s \xi$ is weakly measurable ($\xi \in \mathfrak{h} \otimes \mathcal{F}$).

Fundamental QS Processes ($k = \mathbb{C}$).

- Annihilation process. $A_t \varepsilon(f) := \int_0^t f(s) ds \varepsilon(f);$
- Creation process. $A_t^* \varepsilon(f) := \mathcal{S}_0^t \varepsilon(f) ds;$
- Preservation process. $N_t \varepsilon(f) := S_0^t (f(s)\varepsilon(f)) ds$.

A contraction process on \mathfrak{h} (with noise dimension space k) is family of contraction operators $(V_t)_{t\geq 0}$ on $\mathfrak{h}\otimes \mathcal{F}$ satisfying the *adaptedness* and *measurability* properties:

- $\blacktriangleright V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[};$
- $s \mapsto V_s \xi$ is weakly measurable $(\xi \in \mathfrak{h} \otimes \mathcal{F})$.

Fundamental QS Processes ($k = \mathbb{C}$).

- Annihilation process. $A_t \varepsilon(f) := \int_0^t f(s) ds \varepsilon(f);$
- Creation process. $A_t^* \varepsilon(f) := S_0^t \varepsilon(f) ds;$
- Preservation process. $N_t \varepsilon(f) := S_0^t (f(s)\varepsilon(f)) ds$.

Here ${\mathcal S}$ denotes the Hitsuda-Skorohod integral.

Remark.

These are all *unbounded* processes.
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

6

Definition.

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

6

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

6

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition.

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへで

Definition.

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

$$\blacktriangleright \operatorname{Ran} \sigma_s = B(\mathfrak{h}) \otimes I_{[0,s[} \otimes B(\mathcal{F}_{[s,\infty[});$$

Definition.

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

► Ran
$$\sigma_s = B(\mathfrak{h}) \otimes I_{[0,s[} \otimes B(\mathcal{F}_{[s,\infty[}); V_s \in B(\mathfrak{h}) \overline{\otimes} B(\mathcal{F}_{[0,s[}) \otimes I_{[s,\infty[}))$$

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

6

- $\blacktriangleright \ \mathsf{Ran} \, \sigma_s = B(\mathfrak{h}) \otimes I_{[0,s[} \otimes B(\mathcal{F}_{[s,\infty[}); \ V_s \in B(\mathfrak{h}) \overline{\otimes} B(\mathcal{F}_{[0,s[}) \otimes I_{[s,\infty[}.$
- If $k = \{0\}$ then (1) reduces to the semigroup law.

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

6

- $\blacktriangleright \ \mathsf{Ran} \, \sigma_s = B(\mathfrak{h}) \otimes I_{[0,s[} \otimes B(\mathcal{F}_{[s,\infty[}); \ V_s \in B(\mathfrak{h}) \overline{\otimes} B(\mathcal{F}_{[0,s[}) \otimes I_{[s,\infty[}.$
- If $k = \{0\}$ then (1) reduces to the semigroup law.
- Setting $V_{s,t} = \sigma_s(V_{t-s})$ for (s < t),

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

Remarks.

- $\blacktriangleright \text{ Ran } \sigma_s = B(\mathfrak{h}) \otimes I_{[0,s[} \otimes B(\mathcal{F}_{[s,\infty[}); V_s \in B(\mathfrak{h}) \overline{\otimes} B(\mathcal{F}_{[0,s[}) \otimes I_{[s,\infty[}.$
- If $k = \{0\}$ then (1) reduces to the semigroup law.
- Setting $V_{s,t} = \sigma_s(V_{t-s})$ for (s < t), (1) is equivalent to the *evolution law*

$$V_0 = I, \quad V_{r,t} = V_{r,s} V_{s,t}.$$

・ロト・日・・日・・日・ つへぐ

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

Remarks.

- $\blacktriangleright \ \mathsf{Ran} \, \sigma_s = B(\mathfrak{h}) \otimes I_{[0,s[} \otimes B(\mathcal{F}_{[s,\infty[}); \ V_s \in B(\mathfrak{h}) \overline{\otimes} B(\mathcal{F}_{[0,s[}) \otimes I_{[s,\infty[}.$
- If $k = \{0\}$ then (1) reduces to the semigroup law.
- Setting $V_{s,t} = \sigma_s(V_{t-s})$ for (s < t), (1) is equivalent to the *evolution law*

$$V_0 = I, \quad V_{r,t} = V_{r,s} V_{s,t}.$$

Associated semigroups:

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}\big)(V_t) \quad (c,d\in \mathsf{k}).$$

< ロ > < 団 > < 目 > < 目 > < 目 > の < ??

A (left) QS contraction cocycle on \mathfrak{h} is a contraction process V satisfying

$$V_0 = I \text{ and } V_{s+t} = V_s \sigma_s(V_t), \tag{1}$$

where $(\sigma_s)_{s \ge 0}$ is the right shift on $B(\mathcal{F})$ (the *CCR flow with index* k) ampliated by $id_{B(\mathfrak{h})}$.

Remarks.

- $\blacktriangleright \ \mathsf{Ran} \, \sigma_s = B(\mathfrak{h}) \otimes I_{[0,s[} \otimes B(\mathcal{F}_{[s,\infty[}); \ V_s \in B(\mathfrak{h}) \overline{\otimes} B(\mathcal{F}_{[0,s[}) \otimes I_{[s,\infty[}.$
- If $k = \{0\}$ then (1) reduces to the semigroup law.
- Setting $V_{s,t} = \sigma_s(V_{t-s})$ for (s < t), (1) is equivalent to the *evolution law*

$$V_0 = I, \quad V_{r,t} = V_{r,s} V_{s,t}.$$

Associated semigroups:

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}(V_t) \quad (c,d\in \mathsf{k}).$$

• (Vacuum) expectation semigroup: $P^{0,0}$.

Example: Randomised Unitary Evolution

Take $k = \mathbb{C}$; let $U = (e^{isH})_{s \in \mathbb{R}}$ be a strongly continuous one-parameter unitary group.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Let $Q_t := (A_t^* + A_t)^ (t \in \mathbb{R}_+)$, where $(A_t^*)_{t \ge 0}$ and $(A_t)_{t \ge 0}$ are the creation and annihilation processes (with one noise dimension).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Let $Q_t := (A_t^* + A_t)^ (t \in \mathbb{R}_+)$, where $(A_t^*)_{t \ge 0}$ and $(A_t)_{t \ge 0}$ are the creation and annihilation processes (with one noise dimension).

Then $W := (e^{iH \otimes Q_t})_{t \ge 0}$ defines a unitary QS cocycle.

Let $Q_t := (A_t^* + A_t)^ (t \in \mathbb{R}_+)$, where $(A_t^*)_{t \ge 0}$ and $(A_t)_{t \ge 0}$ are the creation and annihilation processes (with one noise dimension).

Then $W := (e^{iH \otimes Q_t})_{t \ge 0}$ defines a unitary QS cocycle.

Remarks.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Let $Q_t := (A_t^* + A_t)^ (t \in \mathbb{R}_+)$, where $(A_t^*)_{t \ge 0}$ and $(A_t)_{t \ge 0}$ are the creation and annihilation processes (with one noise dimension).

Then $W := (e^{iH \otimes Q_t})_{t \ge 0}$ defines a unitary QS cocycle.

Remarks.

• Under the Segal isomorphism $\mathfrak{h} \otimes \mathcal{F} \cong L^2(\mathcal{W}; \mathfrak{h})$,

$$(W_t u)(\omega) = U_{\omega(t)} u = e^{i\omega(t)H} u \quad (u \in \mathfrak{h}, \omega \in \mathcal{W}).$$

Let $Q_t := (A_t^* + A_t)^ (t \in \mathbb{R}_+)$, where $(A_t^*)_{t \ge 0}$ and $(A_t)_{t \ge 0}$ are the creation and annihilation processes (with one noise dimension).

Then $W := (e^{iH \otimes Q_t})_{t \ge 0}$ defines a unitary QS cocycle.

Remarks.

• Under the Segal isomorphism $\mathfrak{h} \otimes \mathcal{F} \cong L^2(\mathcal{W}; \mathfrak{h})$,

$$(W_t u)(\omega) = U_{\omega(t)} u = e^{i\omega(t)H} u \quad (u \in \mathfrak{h}, \omega \in \mathcal{W}).$$

▶ W satisfies the Itô equations ($u \in \text{Dom } H^2$)

$$W_0 u = u, \quad d(W_t u)(\omega) = i(W_t H u)(\omega) dB_t(\omega) - \frac{1}{2}(W_t H^2 u)(\omega) dt.$$

Let $Q_t := (A_t^* + A_t)^ (t \in \mathbb{R}_+)$, where $(A_t^*)_{t \ge 0}$ and $(A_t)_{t \ge 0}$ are the creation and annihilation processes (with one noise dimension).

Then $W := (e^{iH \otimes Q_t})_{t \ge 0}$ defines a unitary QS cocycle.

Remarks.

• Under the Segal isomorphism $\mathfrak{h} \otimes \mathcal{F} \cong L^2(\mathcal{W}; \mathfrak{h})$,

$$(W_t u)(\omega) = U_{\omega(t)} u = e^{i\omega(t)H} u \quad (u \in \mathfrak{h}, \omega \in \mathcal{W}).$$

▶ W satisfies the Itô equations ($u \in \text{Dom } H^2$)

$$W_0 u = u, \quad d(W_t u)(\omega) = i(W_t H u)(\omega) dB_t(\omega) - \frac{1}{2}(W_t H^2 u)(\omega) dt.$$

• The expectation semigroup of this cocycle has generator $-\frac{1}{2}H^2$.

Set
$$\widehat{k} := \mathbb{C} \oplus k$$
;
let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection $[{}^{0}_{I}]$.

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection $[{}^{0}_{I}]$.

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Set
$$\widehat{k} := \mathbb{C} \oplus k$$
;
let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection [⁰,]

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection [⁰,].

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぐら

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection $[{}^{0}_{I}]$.

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

Theorem. (*Hudson-JML*, *JML-Wills*).

Let V be a contraction process on \mathfrak{h} . Then TFAE:

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection $[{}^{0}_{I}]$.

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

Theorem. (*Hudson-JML*, *JML-Wills*).

Let V be a contraction process on \mathfrak{h} . Then TFAE:

► *V* is a Markov-regular left QS cocycle;

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection $[{}^{0}_{I}]$.

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

 Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

Theorem. (*Hudson-JML*, *JML-Wills*).

Let V be a contraction process on \mathfrak{h} . Then TFAE:

- ► *V* is a Markov-regular left QS cocycle;
- there is $F \in B(\widehat{k} \otimes \mathfrak{h})$ s.t. V is the unique strong solution of the QSDE

$$dV_t = V_t \, d\Lambda_F(t), \quad V_0 = I. \tag{2}$$

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection $[{}^{0}_{I}]$.

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

 Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

Theorem. (*Hudson-JML*, *JML-Wills*).

Let V be a contraction process on \mathfrak{h} . Then TFAE:

- V is a Markov-regular left QS cocycle;
- there is $F \in B(\widehat{k} \otimes \mathfrak{h})$ s.t. V is the unique strong solution of the QSDE

$$dV_t = V_t \, d\Lambda_F(t), \quad V_0 = I. \tag{2}$$

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection [⁰,].

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

 Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

Theorem. (*Hudson-JML*, *JML-Wills*).

Let V be a contraction process on \mathfrak{h} . Then TFAE:

- V is a Markov-regular left QS cocycle;
- there is $F \in B(\widehat{k} \otimes \mathfrak{h})$ s.t. V is the unique strong solution of the QSDE

8

$$dV_t = V_t \, d\Lambda_F(t), \quad V_0 = I. \tag{2}$$

Remark.

Strong solution of (2) means

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection [⁰,].

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

 Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

Theorem. (*Hudson-JML*, *JML-Wills*).

Let V be a contraction process on \mathfrak{h} . Then TFAE:

- V is a Markov-regular left QS cocycle;
- there is $F \in B(\widehat{k} \otimes \mathfrak{h})$ s.t. V is the unique strong solution of the QSDE

$$dV_t = V_t \, d\Lambda_F(t), \quad V_0 = I. \tag{2}$$

Remark.

Strong solution of (2) means

$$V_t = I + \int_0^t V_t ig(L \, dA_t^* + (W - I) \, dN_t + M \, dA_t + K \, dt ig),$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Set $\widehat{k} := \mathbb{C} \oplus k$; let $\Delta \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ be the orthogonal projection [⁰,].

Definition.

A QS cocycle V on \mathfrak{h} is *Markov-regular* if all of its associated semigroups are norm-continuous.

Remark.

 Contractivity of V implies that Markov-regularity reduces to norm-continuity of just the expectation semigroup.

Theorem. (*Hudson-JML*, *JML-Wills*).

Let V be a contraction process on \mathfrak{h} . Then TFAE:

- V is a Markov-regular left QS cocycle;
- there is $F \in B(\widehat{k} \otimes \mathfrak{h})$ s.t. V is the unique strong solution of the QSDE

$$dV_t = V_t \, d\Lambda_F(t), \quad V_0 = I. \tag{2}$$

Remark.

Strong solution of (2) means

$$V_{t} = I + \int_{0}^{t} V_{t} (L \, dA_{t}^{*} + (W - I) \, dN_{t} + M \, dA_{t} + K \, dt),$$

where $\begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ is the block matrix form of $F = \mathbb{R}$

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\hat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

► *V* is contractive;

▲□▶▲□▶▲□▶▲□▶ □ シペ?

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

- V is contractive;
- $F^* + F + F^* \Delta F \leq 0$;

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

- ► *V* is contractive;
- $F^* + F + F^* \Delta F \leq 0;$
- ► $F + F^* + F\Delta F^* \leq 0.$

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\hat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

- ► *V* is contractive;
- $F^* + F + F^* \Delta F \leq 0$;
- $\blacktriangleright F + F^* + F\Delta F^* \leq 0.$

We call F the stochastic generator of V.

▲□▶▲□▶▲≡▶▲≡▶ ≡ 少へ?

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\hat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

- ► *V* is contractive;
- $F^* + F + F^* \Delta F \leq 0;$
- ► $F + F^* + F\Delta F^* \leq 0.$

We call F the stochastic generator of V.

Example.

Let Z be the vacuum projection process given by

$$Z_t := I_{\mathfrak{h}} \otimes |\Omega_t
angle \langle \Omega_t | \otimes I_{[0,t[} ext{ for } \Omega_t := arepsilon(0) \in \mathcal{F}_{[0,t[}, t)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ◆ � ◆
Contractive Structure Relations

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\hat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

- ► *V* is contractive;
- $F^* + F + F^* \Delta F \leq 0;$
- $\triangleright F + F^* + F\Delta F^* \leq 0.$

We call F the stochastic generator of V.

Example.

Let Z be the vacuum projection process given by

$$Z_t := I_{\mathfrak{h}} \otimes |\Omega_t\rangle \langle \Omega_t| \otimes I_{[0,t[} \text{ for } \Omega_t := \varepsilon(0) \in \mathcal{F}_{[0,t[},$$

then Z is a QS contraction cocycle with stochastic generator $-\Delta$,

< ロ > < 回 > < 目 > < 目 > < 目 > < 回 > < ○

Contractive Structure Relations

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\hat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

- ► *V* is contractive;
- $F^* + F + F^* \Delta F \leq 0;$
- $\triangleright F + F^* + F\Delta F^* \leq 0.$

We call F the stochastic generator of V.

Example.

Let Z be the vacuum projection process given by

$$Z_t := I_{\mathfrak{h}} \otimes |\Omega_t\rangle \langle \Omega_t| \otimes I_{[0,t[} \text{ for } \Omega_t := \varepsilon(0) \in \mathcal{F}_{[0,t[},$$

then Z is a QS contraction cocycle with stochastic generator $-\Delta$, and

$$V_t Z_t = V_t' \quad (t \in \mathbb{R}_+),$$

< ロ > < 回 > < 国 > < 国 > < 国 > < 国 > < 回 > < < つ < の <

Contractive Structure Relations

Let V be the solution of the QSDE $dV_t = V_t d\Lambda_F(t)$ for $F \in B(\hat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k))$ with block matrix form $\begin{bmatrix} K & M \\ L & W-I \end{bmatrix}$.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

- ► *V* is contractive;
- $F^* + F + F^* \Delta F \leq 0;$
- $\triangleright F + F^* + F\Delta F^* \leq 0.$

We call F the stochastic generator of V.

Example.

Let Z be the vacuum projection process given by

$$Z_t := I_{\mathfrak{h}} \otimes |\Omega_t\rangle \langle \Omega_t| \otimes I_{[0,t[} \text{ for } \Omega_t := \varepsilon(0) \in \mathcal{F}_{[0,t[},$$

then Z is a QS contraction cocycle with stochastic generator $-\Delta$, and

$$V_t Z_t = V_t' \quad (t \in \mathbb{R}_+),$$

where V' is the QS cocycle with generator $F' := \begin{bmatrix} K \\ L & -I \end{bmatrix}$.

Unitary Structure Relations

Let V be the left QS contraction cocycle with stochastic generator

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k)).$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k})).$$

Theorem. (*Hudson-Parthasarathy, 1984*). TFAE:

<□> <□> <□> <=> <=> <=> <=> <=> <=> <</p>

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k)).$$

Theorem. (*Hudson-Parthasarathy, 1984*). TFAE:

► *V* is unitary;

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k})).$$

Theorem. (*Hudson-Parthasarathy, 1984*). TFAE:

- ► *V* is unitary;
- $F^* + F + F^* \Delta F = 0 = F + F^* + F \Delta F^*;$

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k)).$$

Theorem. (*Hudson-Parthasarathy, 1984*). TFAE:

- ► *V* is unitary;
- $F^* + F + F^* \Delta F = 0 = F + F^* + F \Delta F^*;$
- W is unitary, $M = -L^*W$ and $K^* + K = -L^*L$;

< ロ > < 団 > < 三 > < 三 > < 三 > < ○ < ○

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k)).$$

Theorem. (*Hudson-Parthasarathy, 1984*). TFAE:

- V is unitary;
- $F^* + F + F^* \Delta F = 0 = F + F^* + F \Delta F^*;$
- W is unitary, $M = -L^*W$ and $K^* + K = -L^*L$;
- W is unitary, $L = -WM^*$ and $K + K^* = -MM^*$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへ⊙

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k)).$$

Theorem. (*Hudson-Parthasarathy, 1984*). TFAE:

- ► *V* is unitary;
- $F^* + F + F^* \Delta F = 0 = F + F^* + F \Delta F^*;$
- W is unitary, $M = -L^*W$ and $K^* + K = -L^*L$;
- W is unitary, $L = -WM^*$ and $K + K^* = -MM^*$.

Examples.

•
$$F = \begin{bmatrix} iH \\ W-I \end{bmatrix}$$
, where $H = H^*$ and W is unitary.

$$F = \begin{bmatrix} K & M \\ L & W - I \end{bmatrix} \in B(\widehat{k} \otimes \mathfrak{h}) = B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k})).$$

Theorem. (*Hudson-Parthasarathy, 1984*). TFAE:

- ► *V* is unitary;
- $F^* + F + F^* \Delta F = 0 = F + F^* + F \Delta F^*;$
- W is unitary, $M = -L^*W$ and $K^* + K = -L^*L$;
- W is unitary, $L = -WM^*$ and $K + K^* = -MM^*$.

Examples.

•
$$F = \begin{bmatrix} {}^{iH} \\ {}^{W-I} \end{bmatrix}$$
, where $H = H^*$ and W is unitary.
• $F = \begin{bmatrix} ({}^{iH-\frac{1}{2}L^*L}) & -L^* \\ L \end{bmatrix}$ where $H = H^*$.

The Problem

Let $V^{(1)}$ and $V^{(2)}$ be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 and k_2 respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} \kappa_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_1)) \text{ and } F_2 := \begin{bmatrix} \kappa_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_2)).$

The Problem

Let $V^{(1)}$ and $V^{(2)}$ be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 and k_2 respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} \kappa_1 & M_1 \\ L_1 & W_1 - l_1 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_1)) \text{ and } F_2 := \begin{bmatrix} \kappa_2 & M_2 \\ L_2 & W_2 - l_2 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_2)).$

Then, setting

$$F=egin{bmatrix} K_1+K_2&M_1&M_2\ L_1&W_1-I_1\ L_2&W_2-I_2 \end{bmatrix}\in Big(\mathfrak{h}\oplus(\mathfrak{h}\otimes \mathsf{k}_1)\oplus(\mathfrak{h}\otimes \mathsf{k}_2)ig),$$

Let $V^{(1)}$ and $V^{(2)}$ be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 and k_2 respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} \kappa_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_1)) \text{ and } F_2 := \begin{bmatrix} \kappa_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_2)).$

Then, setting

$$egin{aligned} \mathcal{F} &= egin{bmatrix} \mathcal{K}_1 + \mathcal{K}_2 & \mathcal{M}_1 & \mathcal{M}_2 \ \mathcal{L}_1 & \mathcal{W}_1 - \mathcal{I}_1 \ \mathcal{L}_2 & \mathcal{W}_2 - \mathcal{I}_2 \end{bmatrix} \in Big(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k}_1) \oplus (\mathfrak{h} \otimes \mathsf{k}_2)ig), \end{aligned}$$

 $(F^* + F + F^*\Delta F \leq 0 \text{ and so}) F$ generates a QS contraction cocycle V with noise dimension space $k = k_1 \oplus k_2$.

Let $V^{(1)}$ and $V^{(2)}$ be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 and k_2 respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} \kappa_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_1)) \text{ and } F_2 := \begin{bmatrix} \kappa_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_2)).$

Then, setting

$$F = egin{bmatrix} K_1 + K_2 & M_1 & M_2 \ L_1 & W_1 - I_1 \ L_2 & W_2 - I_2 \end{bmatrix} \in Big(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k}_1) \oplus (\mathfrak{h} \otimes \mathsf{k}_2)ig),$$

 $(F^* + F + F^*\Delta F \leq 0 \text{ and so}) F$ generates a QS contraction cocycle V with noise dimension space $k = k_1 \oplus k_2$.

The Problem.

Express V in terms of the QS cocycles $V^{(1)}$ and $V^{(2)}$.

Let $V^{(1)}$ and $V^{(2)}$ be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 and k_2 respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} \kappa_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_1)) \text{ and } F_2 := \begin{bmatrix} \kappa_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes k_2)).$

Then, setting

$$F = egin{bmatrix} K_1 + K_2 & M_1 & M_2 \ L_1 & W_1 - I_1 \ L_2 & W_2 - I_2 \end{bmatrix} \in Big(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k}_1) \oplus (\mathfrak{h} \otimes \mathsf{k}_2)ig),$$

 $(F^* + F + F^*\Delta F \leq 0 \text{ and so}) F$ generates a QS contraction cocycle V with noise dimension space $k = k_1 \oplus k_2$.

The Problem.

Express V in terms of the QS cocycles $V^{(1)}$ and $V^{(2)}$.

Remark.

• In case $k = \{0\}$, this reduces to the Lie-Trotter problem.

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

Theorem. (*Parthasarathy-JML*, *JML-Wills*, *Accardi-Kozyrev*). Let V be a contraction process on \mathfrak{h}

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

Theorem. (*Parthasarathy-JML*, *JML-Wills*, *Accardi-Kozyrev*). Let V be a contraction process on \mathfrak{h} and define

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}\big)(V_t) \quad (c,d\in\mathsf{k},t\in\mathbb{R}_+).$$

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

Theorem. (*Parthasarathy-JML*, *JML-Wills*, *Accardi-Kozyrev*). Let V be a contraction process on \mathfrak{h} and define

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}\big)(V_t) \quad (c,d\in\mathsf{k},t\in\mathbb{R}_+).$$

Then, for any total subset T of k containing 0, TFAE:

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

Theorem. (*Parthasarathy-JML*, *JML-Wills*, *Accardi-Kozyrev*). Let V be a contraction process on \mathfrak{h} and define

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}\big)(V_t) \quad (c,d\in\mathsf{k},t\in\mathbb{R}_+).$$

Then, for any total subset T of k containing 0, TFAE:

► *V* is a QS cocycle;

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

Theorem. (*Parthasarathy-JML*, *JML-Wills*, *Accardi-Kozyrev*). Let V be a contraction process on \mathfrak{h} and define

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}\big)(V_t) \quad (c,d\in\mathsf{k},t\in\mathbb{R}_+).$$

Then, for any total subset T of k containing 0, TFAE:

- ► *V* is a QS cocycle;
- ▶ for each $c, d \in T$, $(P_t^{c,d})_{t \ge 0}$ defines a semigroup on \mathfrak{h}

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

Theorem. (*Parthasarathy-JML*, *JML-Wills*, *Accardi-Kozyrev*). Let V be a contraction process on \mathfrak{h} and define

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}\big)(V_t) \quad (c,d\in\mathsf{k},t\in\mathbb{R}_+).$$

Then, for any total subset T of k containing 0, TFAE:

- ► *V* is a QS cocycle;
- for each c, d ∈ T, (P^{c,d}_t)_{t≥0} defines a semigroup on 𝔥 and, for all f, g ∈ 𝔅'_T,

$$\left(\operatorname{\mathsf{id}}_{B(\mathfrak{h})}\overline{\otimes}\omega_{\varepsilon(f_{[0,t[}),\varepsilon(g_{[0,t[})})}\right)(V_t)=P_{(t_1-t_0)}^{f(t_0),g(t_0)}\cdots P_{(t_{n+1}-t_n)}^{f(t_n),g(t_n)}$$

The key to the solution of the QS Trotter product problem is the *semigroup-decomposition characterisation* of QS cocycles.

Theorem. (*Parthasarathy-JML*, *JML-Wills*, *Accardi-Kozyrev*). Let V be a contraction process on \mathfrak{h} and define

$$P_t^{c,d} := \big(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(c_{[0,t[}),\varepsilon(d_{[0,t[})})}\big)(V_t) \quad (c,d\in\mathsf{k},t\in\mathbb{R}_+).$$

Then, for any total subset T of k containing 0, TFAE:

- ► *V* is a QS cocycle;
- for each c, d ∈ T, (P^{c,d}_t)_{t≥0} defines a semigroup on 𝔥 and, for all f, g ∈ 𝔅'_T,

$$\left(\operatorname{\mathsf{id}}_{B(\mathfrak{h})}\overline{\otimes}\omega_{\varepsilon(f_{[0,t[}),\varepsilon(g_{[0,t[})})}(V_t)=P_{(t_1-t_0)}^{f(t_0),g(t_0)}\cdots P_{(t_{n+1}-t_n)}^{f(t_n),g(t_n)}\right)$$

where $t_0 = 0$, $t_{n+1} = t$ and

$$\{t_1 < \cdots < t_n\} \subset \mathbb{D}_+$$

is the (possibly empty) union of the sets of points of discontinuity of f and g in]0, t[.

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$ respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} K_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix}$, $F_2 := \begin{bmatrix} K_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix}$ and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$ respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} \kappa_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix}$, $F_2 := \begin{bmatrix} \kappa_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix}$ and

$$F = F_1 \diamond F_2 := egin{bmatrix} K_1 + K_2 & M_1 & M_2 \ L_1 & W_1 - I_1 \ L_2 & W_2 - I_2 \end{bmatrix}.$$

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$ respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} K_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix}$, $F_2 := \begin{bmatrix} K_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix}$ and

$$F = F_1 \diamond F_2 := \begin{bmatrix} K_1 + K_2 & M_1 & M_2 \\ L_1 & W_1 - I_1 \\ L_2 & W_2 - I_2 \end{bmatrix}$$

Define

$$t_k^n := 2^{-n} ([2^n t] + k)$$
 for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ s.t. $k \ge -[2^n t]$.

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$ respectively, and quantum stochastic generators $F_1 := \begin{bmatrix} K_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix}$, $F_2 := \begin{bmatrix} K_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix}$ and

$$F = F_1 \diamond F_2 := \begin{bmatrix} K_1 + K_2 & M_1 & M_2 \\ L_1 & W_1 - I_1 \\ L_2 & W_2 - I_2 \end{bmatrix}$$

Define

$$t_k^n := 2^{-n} ([2^n t] + k)$$
 for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ s.t. $k \ge -[2^n t]$.

Thus

$$t_0^n \leqslant t_0^{n+1} \leqslant t \leqslant t_1^{n+1} \leqslant t_1^n$$
 and $|t_{k+1}^n - t_k^n| = 2^{-n}$.

Define

$$V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \quad \text{ where } V_{r,t}^{(j)} := \sigma_r(V_{t-r}^{(j)}),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧<?

Define

$$V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \quad \text{ where } V_{r,t}^{(j)} := \sigma_r (V_{t-r}^{(j)}),$$
for the tensor flip

$$\Sigma_{2,1}:B(\mathcal{F}_{k_2}\otimes \mathcal{F}_{k_1})\to B(\mathcal{F}_{k_1}\otimes \mathcal{F}_{k_2})=B(\mathcal{F}),$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへぐ

Define

$$V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \text{ where } V_{r,t}^{(j)} := \sigma_r (V_{t-r}^{(j)}),$$
for the tensor flip

$$\Sigma_{2,1}:B(\mathcal{F}_{k_2}\otimes \mathcal{F}_{k_1})\to B(\mathcal{F}_{k_1}\otimes \mathcal{F}_{k_2})=B(\mathcal{F}),$$

and set

$$V_n^{(1,2)}(t) := \left(V_{0,2^{-n}}^{(1,2)} V_{2^{-n},2.2^{-n}}^{(1,2)} \cdots V_{t_{-1}^n,t_0^n}^{(1,2)}
ight) V_{t_0^n,t}^{(1,2)} \quad (t \in \mathbb{R}_+).$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへぐ

Define

 $V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \text{ where } V_{r,t}^{(j)} := \sigma_r (V_{t-r}^{(j)}),$ for the tensor flip

$$\Sigma_{2,1}:B(\mathcal{F}_{k_2}\otimes \mathcal{F}_{k_1}) \to B(\mathcal{F}_{k_1}\otimes \mathcal{F}_{k_2})=B(\mathcal{F}),$$

and set

$$V_n^{(1,2)}(t) := \left(V_{0,2^{-n}}^{(1,2)} V_{2^{-n},2.2^{-n}}^{(1,2)} \cdots V_{t_{-1}^n,t_0^n}^{(1,2)}
ight) V_{t_0^n,t}^{(1,2)} \quad (t \in \mathbb{R}_+).$$

Lemma.

Let $f, g \in S'$, and let $N \in \mathbb{N}$ be sufficiently large that f and g are constant on intervals of the form $[2^{-N}j, 2^{-N}(j+1)]$.

Define

 $V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \text{ where } V_{r,t}^{(j)} := \sigma_r (V_{t-r}^{(j)}),$ for the tensor flip

$$\Sigma_{2,1}:B(\mathcal{F}_{k_2}\otimes \mathcal{F}_{k_1}) \to B(\mathcal{F}_{k_1}\otimes \mathcal{F}_{k_2})=B(\mathcal{F}),$$

and set

$$V_n^{(1,2)}(t) := \left(V_{0,2^{-n}}^{(1,2)} V_{2^{-n},2.2^{-n}}^{(1,2)} \cdots V_{t_{-1}^n,t_0^n}^{(1,2)}
ight) V_{t_0^n,t}^{(1,2)} \quad (t \in \mathbb{R}_+).$$

Lemma.

Let $f, g \in S'$, and let $N \in \mathbb{N}$ be sufficiently large that f and g are constant on intervals of the form $[2^{-N}j, 2^{-N}(j+1)[$. Then, for all $n \ge N$,

Define

 $V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \text{ where } V_{r,t}^{(j)} := \sigma_r (V_{t-r}^{(j)}),$ for the tensor flip

$$\Sigma_{2,1}:B(\mathcal{F}_{k_2}\otimes \mathcal{F}_{k_1})\to B(\mathcal{F}_{k_1}\otimes \mathcal{F}_{k_2})=B(\mathcal{F}),$$

and set

$$V_n^{(1,2)}(t) := \left(V_{0,2^{-n}}^{(1,2)} V_{2^{-n},2.2^{-n}}^{(1,2)} \cdots V_{t_{-1}^n,t_0^n}^{(1,2)}
ight) V_{t_0^n,t}^{(1,2)} \quad (t \in \mathbb{R}_+).$$

Lemma.

Let $f, g \in S'$, and let $N \in \mathbb{N}$ be sufficiently large that f and g are constant on intervals of the form $[2^{-N}j, 2^{-N}(j+1)[$. Then, for all $n \ge N$,

$$\left(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(f_{[0,t[}),\varepsilon(g_{[0,t[}))}) \left(V_n^{(1,2)}(t) \right) = \\ \left[{}^{(1,2)} P_{2^{-n}}^{f(0),g(0)} \right] \left[{}^{(1,2)} P_{2^{-n}}^{f(2^{-n}),g(2^{-n})} \right] \cdots \left[{}^{(1,2)} P_{2^{-n}}^{f(t_{-1}^n),g(t_{-1}^n)} \right] \left[{}^{(1,2)} P_{t-t_0^n}^{f(t_0^n),g(t_0^n)} \right]$$

▲□▶▲□▶▲≡▶▲≡▶ ■ 少へ⊙

Define

 $V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \text{ where } V_{r,t}^{(j)} := \sigma_r (V_{t-r}^{(j)}),$ for the tensor flip

$$\Sigma_{2,1}: B(\mathcal{F}_{k_2}\otimes \mathcal{F}_{k_1}) \to B(\mathcal{F}_{k_1}\otimes \mathcal{F}_{k_2}) = B(\mathcal{F}),$$

and set

$$V_n^{(1,2)}(t) := \left(V_{0,2^{-n}}^{(1,2)} V_{2^{-n},2.2^{-n}}^{(1,2)} \cdots V_{t_{-1}^n,t_0^n}^{(1,2)}
ight) V_{t_0^n,t}^{(1,2)} \quad (t \in \mathbb{R}_+).$$

Lemma.

Let $f, g \in S'$, and let $N \in \mathbb{N}$ be sufficiently large that f and g are constant on intervals of the form $[2^{-N}j, 2^{-N}(j+1)[$. Then, for all $n \ge N$,

$$\left(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(f_{[0,t[}),\varepsilon(g_{[0,t[}))}) \left(V_n^{(1,2)}(t) \right) = \right. \\ \left[{}^{(1,2)} P_{2^{-n}}^{f(0),g(0)} \right] \left[{}^{(1,2)} P_{2^{-n}}^{f(2^{-n}),g(2^{-n})} \right] \cdots \left[{}^{(1,2)} P_{2^{-n}}^{f(t_{-1}^n),g(t_{-1}^n)} \right] \left[{}^{(1,2)} P_{t-t_0^n}^{f(t_0^n),g(t_0^n)} \right]$$

where

$${}^{(1,2)}P_t^{(c,d)} := \left[{}^{(1)}P_t^{(c^1,d^1)} \right] \left[{}^{(2)}P_t^{(c^2,d^2)} \right],$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Define

 $V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) \text{ (id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}), \text{ where } V_{r,t}^{(j)} := \sigma_r (V_{t-r}^{(j)}),$ for the tensor flip

$$\Sigma_{2,1}:B(\mathcal{F}_{k_2}\otimes \mathcal{F}_{k_1})\to B(\mathcal{F}_{k_1}\otimes \mathcal{F}_{k_2})=B(\mathcal{F}),$$

and set

$$V_n^{(1,2)}(t) := \left(V_{0,2^{-n}}^{(1,2)} V_{2^{-n},2.2^{-n}}^{(1,2)} \cdots V_{t_{-1}^n,t_0^n}^{(1,2)}
ight) V_{t_0^n,t}^{(1,2)} \quad (t \in \mathbb{R}_+).$$

Lemma.

Let $f, g \in S'$, and let $N \in \mathbb{N}$ be sufficiently large that f and g are constant on intervals of the form $[2^{-N}j, 2^{-N}(j+1)[$. Then, for all $n \ge N$,

$$\left(\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \omega_{\varepsilon(f_{[0,t[}),\varepsilon(g_{[0,t[}))}) \left(V_n^{(1,2)}(t) \right) = \\ \left[{}^{(1,2)} P_{2^{-n}}^{f(0),g(0)} \right] \left[{}^{(1,2)} P_{2^{-n}}^{f(2^{-n}),g(2^{-n})} \right] \cdots \left[{}^{(1,2)} P_{2^{-n}}^{f(t_{-1}^n),g(t_{-1}^n)} \right] \left[{}^{(1,2)} P_{t-t_0^n}^{f(t_0^n),g(t_0^n)} \right]$$

where

$${}^{(1,2)}P_t^{(c,d)} := \left[{}^{(1)}P_t^{(c^1,d^1)} \right] \left[{}^{(2)}P_t^{(c^2,d^2)} \right],$$

for $c = \begin{pmatrix} c^1 \\ c^2 \end{pmatrix}$ and $d = \begin{pmatrix} d^1 \\ d^2 \end{pmatrix}$ in $k = k_1 \oplus k_2$. Here ${}^{(1)}P$ and ${}^{(2)}P$ denote the associated semigroups of $V {}^{(1)}$ and $V {}^{(2)}$.
The Solution: QS Lie Product Formula

We may now state our basic convergence result for random Trotter products.

Theorem.

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$,

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Theorem.

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$, and respective QS generators

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の < @

Theorem.

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$, and respective QS generators

$$\begin{bmatrix} K_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix}, \begin{bmatrix} K_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix} \text{ and } \begin{bmatrix} K_1 + K_2 & M_1 & M_2 \\ L_1 & W_1 - I_1 \\ L_2 & W_2 - I_2 \end{bmatrix}.$$

Theorem.

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$, and respective QS generators

$$\begin{bmatrix} K_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix}, \begin{bmatrix} K_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix} \text{ and } \begin{bmatrix} K_1 + K_2 & M_1 & M_2 \\ L_1 & W_1 - I_1 \\ L_2 & W_2 - I_2 \end{bmatrix}.$$

Then, in terms of

$$V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) (\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Theorem.

Let $V^{(1)}$, $V^{(2)}$ and V be Markov-regular QS contraction cocycles on \mathfrak{h} with noise dimension spaces k_1 , k_2 and $k = k_1 \oplus k_2$, and respective QS generators

$$\begin{bmatrix} K_1 & M_1 \\ L_1 & W_1 - I_1 \end{bmatrix}, \begin{bmatrix} K_2 & M_2 \\ L_2 & W_2 - I_2 \end{bmatrix} \text{ and } \begin{bmatrix} K_1 + K_2 & M_1 & M_2 \\ L_1 & W_1 - I_1 \\ L_2 & W_2 - I_2 \end{bmatrix}.$$

Then, in terms of

$$V_{r,t}^{(1,2)} := (V_{r,t}^{(1)} \otimes I^{(2)}) (\operatorname{id}_{B(\mathfrak{h})} \overline{\otimes} \Sigma_{2,1}) (V_{r,t}^{(2)} \otimes I^{(1)}),$$

we have

$$\left(V_{0,2^{-n}}^{(1,2)} V_{2^{-n},2.2^{-n}}^{(1,2)} \cdots V_{t_{-1}^{n},t_{0}^{n}}^{(1,2)}\right) V_{t_{0}^{n},t}^{(1,2)} \to V_{t} \text{ (W.O.T.)}$$

as $n \to \infty$ $(t \in \mathbb{R}_+)$.

▲□▶▲□▶▲≡▶▲≡▶ ■ 少々ぐ

Remarks.

In the semigroup case, convergence holds in the strong operator topology (in fact norm topology here, since this is the QS Lie Product Theorem).

Remarks.

- In the semigroup case, convergence holds in the strong operator topology (in fact norm topology here, since this is the QS Lie Product Theorem).
- When the cocycle V is isometric (weak operator convergence *implies* strong operator convergence and so) the convergence here is necessarily in the strong operator topology.

Remarks.

- In the semigroup case, convergence holds in the strong operator topology (in fact norm topology here, since this is the QS Lie Product Theorem).
- When the cocycle V is isometric (weak operator convergence *implies* strong operator convergence and so) the convergence here is necessarily in the strong operator topology.
- The type of convergence obtained in the stochastic case is actually a norm-W.O. hybrid topology "norm in h and W.O. in *F*".

Remarks.

- In the semigroup case, convergence holds in the strong operator topology (in fact norm topology here, since this is the QS Lie Product Theorem).
- When the cocycle V is isometric (weak operator convergence *implies* strong operator convergence and so) the convergence here is necessarily in the strong operator topology.
- The type of convergence obtained in the stochastic case is actually a norm-W.O. hybrid topology "norm in h and W.O. in *F*".

Extensions.

The QS Lie Product Formula extends to strongly continuous contraction cocycles (i.e. a QS Trotter Product Formula) under various conditions—most satisfactorily, for those with holomorphic expectation semigroups.

Remarks.

- In the semigroup case, convergence holds in the strong operator topology (in fact norm topology here, since this is the QS Lie Product Theorem).
- When the cocycle V is isometric (weak operator convergence *implies* strong operator convergence and so) the convergence here is necessarily in the strong operator topology.
- The type of convergence obtained in the stochastic case is actually a norm-W.O. hybrid topology "norm in h and W.O. in *F*".

Extensions.

- The QS Lie Product Formula extends to strongly continuous contraction cocycles (i.e. a QS Trotter Product Formula) under various conditions—most satisfactorily, for those with holomorphic expectation semigroups.
- Again the convergence is in a hybrid topology in general (now S.O.T-W.O.T.), strongly converging when V is isometric.

Remarks.

- In the semigroup case, convergence holds in the strong operator topology (in fact norm topology here, since this is the QS Lie Product Theorem).
- When the cocycle V is isometric (weak operator convergence *implies* strong operator convergence and so) the convergence here is necessarily in the strong operator topology.
- The type of convergence obtained in the stochastic case is actually a norm-W.O. hybrid topology "norm in h and W.O. in *F*".

Extensions.

- The QS Lie Product Formula extends to strongly continuous contraction cocycles (i.e. a QS Trotter Product Formula) under various conditions—most satisfactorily, for those with holomorphic expectation semigroups.
- Again the convergence is in a hybrid topology in general (now S.O.T-W.O.T.), strongly converging when V is isometric.
- There are corresponding QS Product Formulae for QS mapping cocycles on operator spaces and QS flows on C*-algebras.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで