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Classical Product Formulae

Theorem. (Lie, 1870).
Let C = A + B for A,B ∈ Mn(C).
Then

eC = lim
n→∞

(
eA/neB/n)n

Theorem. (Trotter, 1959).
Let P(1) and P(2) be C0-contraction semigroups on a Banach space E with
generators Z1 and Z2, and suppose that Z1 + Z2 is a pre-generator of a
C0-semigroup P on E . Then

Ptξ = lim
n→∞

(
P

(1)
t/nP

(2)
t/n

)n
ξ

for all ξ ∈ E .

Remark.
The convergence is uniform on compact intervals.
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Symmetric Fock Space/Exponential Hilbert Space

In symmetric Fock space

Γ(H) := C⊕ H⊕ H⊗sym2 ⊕ · · ·

the exponential vectors

ε(v) :=
(
1, v , (2!)−1/2v⊗2, · · ·

)
(v ∈ H)

witness the exponential property

Γ(H1 ⊕ H2) = Γ(H1)⊗ Γ(H2).

The linear independence and totality of the exponential vectors also facilitates
the definition of operators on Fock spaces.
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Quantum Stochastics

Fix two Hilbert spaces h and k and set F = Fk := Γ(L2(R+; k)).

Also set D+ := {2−nk : n ∈ N, k ∈ Z+}.

The exponential property transforms the orthogonal decompositions

L2(R+; k) = L2([0, r [; k
)
⊕ L2([r , t[; k

)
⊕ L2([t,∞[; k

)
and

L2(R+; k1)⊕ L2(R+; k2) = L2(R+; k) where k = k1 ⊕ k2

into the tensor factorisations

h⊗F = h⊗F[0,r [ ⊗F[r,t[ ⊗F[t,∞[ and h⊗Fk1 ⊗Fk2 = h⊗F ;

B(h⊗F) = B(h)⊗B(F[0,r [)⊗B(F[r,t[)⊗B(F[t,∞[) = B(h)⊗B(Fk1 )⊗B(Fk2 ).

For T ⊂ k, let S′T denote the set{
f ∈ L2(R+; k) : f is a rt.-cts. T-valued step fn. whose pts. of discontinuity lie in D+

}
.

Theorem. (Parthasarathy-Sunder, Skeide).
If T is total in k and contains 0 then

{
ε(f ) : f ∈ S′T

}
is total in Fk.
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Quantum Stochastic Processes

Definition.
A contraction process on h (with noise dimension space k) is family of
contraction operators (Vt)t>0 on h⊗F satisfying the adaptedness and
measurability properties:

I Vt ∈ B(h⊗F[0,t[)⊗ I[t,∞[;

I s 7→ Vsξ is weakly measurable (ξ ∈ h⊗F).

Fundamental QS Processes (k = C).

I Annihilation process. Atε(f ) :=
∫ t

0
f (s) ds ε(f );

I Creation process. A∗t ε(f ) := St
0 ε(f ) ds;

I Preservation process. Ntε(f ) := St
0 (f (s)ε(f )) ds.

Here S denotes the Hitsuda-Skorohod integral.

Remark.
These are all unbounded processes.
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Quantum Stochastic Semigroups

Definition.
A (left) QS contraction cocycle on h is a contraction process V satisfying

V0 = I and Vs+t = Vsσs(Vt), (1)

where (σs)s>0 is the right shift on B(F) (the CCR flow with index k) ampliated
by idB(h).

Remarks.

I Ranσs = B(h)⊗ I[0,s[ ⊗ B(F[s,∞[); Vs ∈ B(h)⊗B(F[0,s[)⊗ I[s,∞[.

I If k = {0} then (1) reduces to the semigroup law.

I Setting Vs,t = σs(Vt−s) for (s < t), (1) is equivalent to the evolution law

V0 = I , Vr,t = Vr,sVs,t .

I Associated semigroups:

Pc,d
t :=

(
idB(h)⊗ωε(c[0,t[),ε(d[0,t[)

)
(Vt) (c, d ∈ k).

I (Vacuum) expectation semigroup: P0,0.
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Example: Randomised Unitary Evolution

Take k = C;
let U = (e isH)s∈R be a strongly continuous one-parameter unitary group.

Let Qt := (A∗t + At)
− (t ∈ R+), where (A∗t )t>0 and (At)t>0 are the creation

and annihilation processes (with one noise dimension).

Then W :=
(
e iH⊗Qt

)
t>0

defines a unitary QS cocycle.

Remarks.

I Under the Segal isomorphism h⊗F ∼= L2(W; h),

(Wtu)(ω) = Uω(t)u = e iω(t)Hu (u ∈ h, ω ∈ W).

I W satisfies the Itô equations (u ∈ Dom H2)

W0u = u, d(Wtu)(ω) = i(WtHu)(ω) dBt(ω)− 1

2
(WtH

2u)(ω) dt.

I The expectation semigroup of this cocycle has generator − 1
2
H2.
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Quantum Stochastic Generators

Set k̂ := C⊕ k;
let ∆ ∈ B(k̂⊗ h) = B

(
h⊕ (h⊗ k)

)
be the orthogonal projection [ 0

I ].

Definition.
A QS cocycle V on h is Markov-regular if all of its associated semigroups are
norm-continuous.

Remark.
I Contractivity of V implies that Markov-regularity reduces to

norm-continuity of just the expectation semigroup.

Theorem. (Hudson-JML, JML-Wills).
Let V be a contraction process on h. Then TFAE:

I V is a Markov-regular left QS cocycle;
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Contractive Structure Relations

Let V be the solution of the QSDE dVt = Vt dΛF (t) for

F ∈ B(k̂⊗ h) = B
(
h⊕ (h⊗ k)

)
with block matrix form

[
K M
L W−I

]
.

Theorem. (Fagnola, Mohari-Parthasarathy, JML-Wills). TFAE:

I V is contractive;

I F ∗ + F + F ∗∆F 6 0;

I F + F ∗ + F ∆F ∗ 6 0.

We call F the stochastic generator of V .

Example.
Let Z be the vacuum projection process given by

Zt := Ih ⊗ |Ωt〉〈Ωt | ⊗ I[0,t[ for Ωt := ε(0) ∈ F[0,t[,

then Z is a QS contraction cocycle with stochastic generator −∆, and

VtZt = V ′t (t ∈ R+),

where V ′ is the QS cocycle with generator F ′ :=
[

K
L −I

]
.
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Unitary Structure Relations

Let V be the left QS contraction cocycle with stochastic generator

F =

[
K M
L W − I

]
∈ B(k̂⊗ h) = B

(
h⊕ (h⊗ k)

)
.

Theorem. (Hudson-Parthasarathy, 1984). TFAE:

I V is unitary;

I F ∗ + F + F ∗∆F = 0 = F + F ∗ + F ∆F ∗;

I W is unitary, M = −L∗W and K∗ + K = −L∗L;

I W is unitary, L = −WM∗ and K + K∗ = −MM∗.

Examples.

I F =
[

iH
W−I

]
, where H = H∗ and W is unitary.

I F =
[

(iH− 1
2
L∗L) −L∗

L

]
where H = H∗.
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The Problem

Let V (1) and V (2) be Markov-regular QS contraction cocycles on h with noise
dimension spaces k1 and k2 respectively, and quantum stochastic generators

F1 :=
[

K1 M1
L1 W1−I1

]
∈ B

(
h⊕ (h⊗ k1)

)
and F2 :=

[
K2 M2
L2 W2−I2

]
∈ B

(
h⊕ (h⊗ k2)

)
.

Then, setting

F =

K1 + K2 M1 M2

L1 W1 − I1
L2 W2 − I2

 ∈ B
(
h⊕ (h⊗ k1)⊕ (h⊗ k2)

)
,

(F ∗ + F + F ∗∆F 6 0 and so) F generates a QS contraction cocycle V with
noise dimension space k = k1 ⊕ k2.

The Problem.
Express V in terms of the QS cocycles V (1) and V (2).

Remark.

I In case k = {0}, this reduces to the Lie-Trotter problem.
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Semigroup-Decomposition Characterisation

The key to the solution of the QS Trotter product problem is the
semigroup-decomposition characterisation of QS cocycles.

Theorem. (Parthasarathy-JML, JML-Wills, Accardi-Kozyrev).
Let V be a contraction process on h and define

Pc,d
t :=

(
idB(h)⊗ωε(c[0,t[),ε(d[0,t[)

)
(Vt) (c, d ∈ k, t ∈ R+).

Then, for any total subset T of k containing 0, TFAE:

I V is a QS cocycle;

I for each c, d ∈ T, (Pc,d
t )t>0 defines a semigroup on h and, for all

f , g ∈ S′T,(
idB(h)⊗ωε(f[0,t[),ε(g[0,t[)

)
(Vt) = P

f (t0),g(t0)
(t1−t0) · · ·P f (tn),g(tn)

(tn+1−tn)

where t0 = 0, tn+1 = t and{
t1 < · · · < tn

}
⊂ D+

is the (possibly empty) union of the sets of points of discontinuity of f and
g in ]0, t[.
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The Solution: Preamble

Let V (1), V (2) and V be Markov-regular QS contraction cocycles on h with
noise dimension spaces k1, k2 and k = k1 ⊕ k2 respectively, and quantum

stochastic generators F1 :=
[

K1 M1
L1 W1−I1

]
, F2 :=

[
K2 M2
L2 W2−I2

]
and

F = F1 � F2 :=

K1 + K2 M1 M2

L1 W1 − I1
L2 W2 − I2

 .
Define

tn
k := 2−n([2nt] + k

)
for n ∈ N and k ∈ Z s.t. k > −[2nt].

Thus
tn
0 6 tn+1

0 6 t 6 tn+1
1 6 tn

1 and |tn
k+1 − tn

k | = 2−n.
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The Solution: Lemma

Define

V
(1,2)
r,t := (V

(1)
r,t ⊗ I (2)) (idB(h)⊗Σ2,1)

(
V

(2)
r,t ⊗ I (1)), where V

(j)
r,t := σr (V

(j)
t−r ),

for the tensor flip

Σ2,1 : B(Fk2 ⊗Fk1 )→ B(Fk1 ⊗Fk2 ) = B(F),

and set

V (1,2)
n (t) :=

(
V

(1,2)

0,2−n V
(1,2)

2−n,2.2−n · · · V
(1,2)
tn−1,tn0

)
V

(1,2)
tn0 ,t (t ∈ R+).

Lemma.
Let f , g ∈ S′, and let N ∈ N be sufficiently large that f and g are constant on
intervals of the form [2−N j , 2−N(j + 1)[. Then, for all n > N,(

idB(h)⊗ωε(f[0,t[),ε(g[0,t[)

)(
V (1,2)

n (t)
)

=[(1,2)P
f (0),g(0)

2−n

] [(1,2)P
f (2−n),g(2−n)

2−n

]
· · ·

[(1,2)P
f (tn−1),g(tn−1)

2−n

] [(1,2)P
f (tn0 ),g(tn0 )

t−tn0

]
where

(1,2)P
(c,d)
t :=

[(1)P
(c1,d1)
t

] [(2)P
(c2,d2)
t

]
,

for c =
(
c1

c2

)
and d =

(
d1

d2

)
in k = k1 ⊕ k2.

Here (1)P and (2)P denote the associated semigroups of V (1) and V (2).
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The Solution: QS Lie Product Formula

We may now state our basic convergence result for random Trotter products.

Theorem.
Let V (1), V (2) and V be Markov-regular QS contraction cocycles on h with
noise dimension spaces k1, k2 and k = k1 ⊕ k2, and respective QS generators[

K1 M1

L1 W1 − I1

]
,

[
K2 M2

L2 W2 − I2

]
and

K1 + K2 M1 M2

L1 W1 − I1
L2 W2 − I2

 .
Then, in terms of

V
(1,2)
r,t := (V

(1)
r,t ⊗ I (2)) (idB(h)⊗Σ2,1)

(
V

(2)
r,t ⊗ I (1)),

we have (
V

(1,2)

0,2−n V
(1,2)

2−n,2.2−n · · · V
(1,2)
tn−1,tn0

)
V

(1,2)
tn0 ,t → Vt (W.O.T.)

as n→∞ (t ∈ R+).
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Remarks and Extensions

Remarks.

I In the semigroup case, convergence holds in the strong operator topology
(in fact norm topology here, since this is the QS Lie Product Theorem).

I When the cocycle V is isometric (weak operator convergence implies
strong operator convergence and so) the convergence here is necessarily in
the strong operator topology.

I The type of convergence obtained in the stochastic case is actually a
norm-W.O. hybrid topology “norm in h and W.O. in F”.

Extensions.

I The QS Lie Product Formula extends to strongly continuous contraction
cocycles (i.e. a QS Trotter Product Formula) under various
conditions—most satisfactorily, for those with holomorphic expectation
semigroups.

I Again the convergence is in a hybrid topology in general (now
S.O.T-W.O.T.), strongly converging when V is isometric.

I There are corresponding QS Product Formulae for QS mapping cocycles
on operator spaces and QS flows on C∗-algebras.
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