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Linear systems

Xp+1 = Axp+ Buj
Yn = Cxy, +Du,

Given xp and (up)nen, We can use these equations to compute
(Xn)neNo and ()/n)neNo recursively.

output internal state input
(Yn)nENo (Xn)nENo (Un)nENo




Toy model 1

We want to discuss a new approach to describe quantum
mechanical systems in the language of linear systems.

atom beam




Toy model 2

Given

three Hilbert spaces H, KC, P

a unitary operator U: HOK - H® P
(U*U =UU*=1)
unit vectors Q" € H, QF € K, QF € P such that

U@ter) =" q”

we call U an interaction with vacuum vectors Q% QX QF.



Model of repeated interaction 1

Infinite Hilbert space tensor products
Ko :=QK: Ki~K
=1

Poo =P Pi=P
(=1

along unit vectors QX = ®°QF and QF, = QT Q7.

natural embeddings

HoHRK CHOKw 20Ky ~ K.



Model of repeated interaction 2

We can now define repeated interactions. For £ € N let
U HO Koo = HOKp1,0-1) ® Pr & Kip41,00)

be the unitary operator which is equal to U on H ® K, and which
acts identically on the other factors of the tensor product. Then
the repeated interaction up to time n € N is defined by

U(n) = Un e U1 TH® ICOO - H®® P[l,n] ® K[”"FLOO)

Uz

U
1 2 3 Uy 2

atom beam H ® K ® K ®K3




Markovian nature of the model

We can think of our model as a noncommutative Markov chain

or, from a physicist’s point of view, as a Markovian approximation

of a repeated atom-field interaction.

Change of an observable X € B(H) until time n compressed to H:
Zy(X)=PrU(n)" X @1 U(n)|x.

For ONB (¢;j) of the Hilbert space P and for & € H write
UERQR) =) Agacg
J

with operators A; € B(H). Then
Z(X)= > ALLALXA,LLL A =Z7(X),
J14j25-+2dn
where Z =3 . AT - A; : B(H) — B(H) is a noncommutative

transition operator. This semigroup property is one of the basic
features of Markovianity.



Some concepts from multivariate operator theory

T1,..., Tq € B(L) for a Hilbert space £L (d = oo allowed)

T =(Ty,..., Ty) is called a row contraction if it is contractive
as an operator from @fﬁ to L or, equivalently, if Zf T;TF <1

T =(T1,..., Ty) is called a row isometry if it is isometric as an
operator from @fﬁ to L or, equivalently, if the T; are isometries
with orthogonal ranges.

A row isometry T = (Ty,..., Ty) is called a row shift if there
exists a subspace £ of £ (the wandering subspace) such that
L= @aeFj ToE  (F] free semigroup with generators 1,...,d)



Some concepts from multivariate operator theory 2

An outgoing Cuntz scattering system is a collection
(L, V=(V,...,Va), G, G)

where V is a row isometry on the Hilbert space £ and G and G
are subspaces of £ such that

1. G is the smallest V-invariant subspace containing
&= LOspanj=1,. .4 VL,

thus V|g+ is a row shift and G = Dacrs Vals
2. V|g is a row shift, thus G = @aeFj Vo€ with

£ =GO spanj—1,. 4 V;G.



Outgoing Cuntz scattering system from interaction model

Theorem:
Let U be an interaction with vacuum vectors Q*, Q% QP Then
we have an outgoing Cuntz scattering system

(H®Ks)? V=(V1,...,Vu), G, G

where
(H® Kw)® = (H® Ke) © C(Q" @ QL)

Vi(€on) = U (E@e)@n e (HRK1) ®Kpo)
E=WYCH®K:, GFf=P Vué.

aeFj
with W* = sot— lim U(n)*|ps., ¥ :=Q"®(Q]) ©Qp.00) C P,
n—oo
E=H () 9y, G= P Vul.

aeFj



F [ -linear systems 1

> input space U ==& = H® (Q})* ®Q§7oo) C (H®Kwx)®,
> output space V= (Q7)' @ Qf ) C (Px)’

With H® K = H & U the interaction U maps H & U onto H® P
which contains ) (identifying P and P1). Hence for j=1,...,d
we can define

Aix-H—H, Bg:U—-H, C:H—=Y, D:U—=)Y

d
Ugen) = > (AE+Bm) g
j=1
PyU(®n) = C{+ Dn,

with £ € H, n € U and (61);1:1 ONB of P and Py proj. onto Y
I



F [ -linear systems 2

Further we define the colligation

A B
. . d

Ccy=| ' | Hou—-EPHoY
Ad Bd j=1
C D

As usual, the colligation Cy gives rise to a Fj—linear system >
(noncommutative Fornasini-Marchesini system)

x(jo) = Ajx(a)+ Bju(a)
y(a) = Cx(a) + Du(a),
where j =1,...,d, further o, ja (concatenation) are words in Fj

and
x:Fj—>H, u:Fj—>Z/{, y:Fj—>)7.



F [ -linear systems 3

Given x(()) and u we can use L to compute x and y recursively.

11
1
21
0 dyadic tree for d =2
12
2
2



Transfer function 1

A very elegant way to encode all the information about the
evolution of an Fj—linear system into a single mathematical object
is the use of a transfer function. For this we define the ‘Fourier
transform’ of x as

aEF;
where z¢ =z, ...zo, ifa=ap...01 € Fj and z = (z1,...,24)
is a d-tuple of formal non-commuting indeterminates. Similarly
i(z) = ZaeFj u(a)z®* and y(z) = EaeFj y(a)z®.
For x()) = 0 we have the input-output relation
y(2) = ©u(2) 0(2)
where
Ou(z) = Z 957)20‘ =D+ C Z AsB;z%

aeFj BEFJ'
Jj=1,..,d



Transfer function 2

We call the formal non-commutative power series
Ou(z) := Zae,_-; @(Ua)zo‘ the transfer function associated to the

interaction U. The ‘Taylor coefficients’ @(L‘f) are operators from U
to ).

Now we want to proceed from formal power series to operators
between Hilbert spaces.

Theorem
The input-output relation

¥(z) = ©u(z) i(2)
corresponds to a contraction
Me, : CC(F,U) — C(Ff,Y)

which (with x(0) = 0) maps an input sequence u to the

corresEondinﬁ outﬁut sei)uence ‘



Transfer function 3

The operator Mg, has the property that it intertwines with right

translation, i.e., forall j=1,...,d
Me, ( Z x(a)z® zj) = Mg, ( Z x(a)z®) Z.
aeF aeF,

Such operators have been called analytic intertwining operators
or multianalytic operators: there are analogies to the theory of
multiplication operators by analytic functions on Hardy spaces.
The non-commutative power series @y is called the symbol of
Me

v
It was one of the motivations for this work to make this theory
available for the study of interaction models and non-commutative
Markov chains. Note that because Mg, is a contraction the

transfer function © belongs to the socalled non-commutative
Schur class S, 4 (U, D).



Physical interpretation 1

We may think of H as the (quantum mechanical) Hilbert space of
an atom, Ky as the Hilbert space of a part of a light beam or field
which interacts with the atom at time .

We think of Q7 as a vacuum state of the atom and of
QF = QP in K = P as a state indicating that no photon is
present. Then

neEU=HR () @) CHOKs

represents a vector state with

» photons arriving at time 1 and stimulating an interaction
between the atom and the field,

» but no further photons arriving at later times.

» Nevertheless it may happen that some activity (emission) is
induced which goes on for a longer period.



Physical interpretation 2

The orthogonal projection P, onto
€y ... Q€q, ; ® (Qf)l @ Q[n—l—l,oo)7

corresponds to the following event:

» We measure data ag,...,a,_1 at times 1,...,n— 1 in the
field, finally there is a last detection of photons corresponding
to (QF)* at time n, nothing happens after time n.

» This experimental record is obtained by measuring (at times
indexed by the positive integers) an observable Y € B(P)
with eigenvectors €1, ..., €4. Such lists of data have been used
for indirect measurements of an atom, for quantum filtering
and for updating protocols such as quantum trajectories.



Physical interpretation 3

We can obtain the formula
Po U(n)n = e(L(Jl)U

According to the usual probabilistic interpretation of quantum
mechanics this means for example that

o = || € n |2
is the probability for the event described by P, if we start in the

state 1 at time O.

» Actually the transfer function also keeps track of the complex
amplitudes and contains additional coherent information.

Conclusion: We can think of the transfer function © as a
convenient way to assemble such data into a single mathematical
object.



» The control theoretic concept of ‘observability’ for our model
is closely related to an operator-algebraic scattering theory for
noncommutative Markov chains.

» Developing ‘noncommutative analyticity’ with applications to
open quantum systems and quantum control seems to be a
promising idea.

For the contents of this talk and for references see

Rolf Gohm, Non-Commutative Markov Chains and Multi-Analytic
Operators, arXiv:0902.3445



