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1. Classical flows

Fix a von Neumann algebra A C B(h). Let a = (a; : t € R) be an ultraweakly
continuous group of x-automorphisms of A and let ¢ be its ultraweak generator.

Gaussian subordination may be used to construct an ultraweakly continuous
semigroup PY on A with ultraweak pre-generator %62.

If (B : t > 0) is a standard Brownian motion and IP is Wiener measure then
Jt A — A@B(LZ(P)), ar— OéBt(a) X /L2(]P) (t = O)

IS a *-homomorphism such that

i) = x+ [ 5600)dB.+5 [ (800)ds (+)

strongly on L?(IP; h), for all x € dom(6?).
Setting
PP(a)u = E[j:(a)u] (ac€ A, uchCL*(P;h))

defines a semigroup (P : t > 0) of completely positive contractions on A4 with
generator as desired.



1. Classical flows

Cocycle structure

The process J is adapted in the following sense: for all t > 0 and a € A,
Jji(a) = Jjy(a) ® /LZ(]P)[t), where jy(a) € A@B(LQ(PH)).

Let
Jt ::J.t]@/B(LQ(]P’[t)) : A®B(L2(P[t)) — A® B(L*(P)).

o¢ : B(L*(P;h)) — B(L*(Pi; h)) (= 0)

Is the unital *-isomorphism given by the natural shift on the path space then
Jstt =Jsoogsojy  foralls, t >0,

so J Is a cocycle for the shift semigroup o.

Furthermore, If
Jt =7t 0 0t amBr12(P))
then J = (J; : t > 0) is a semigroup.



1. Classical flows

L—S perturbation

Given b = b* € A, Lindsay and Sinha proved the existence of an adapted,
operator-valued process m® such that

t
mf:/—l—/ojs(b)mdes (t > 0)

strongly on L?(IP; h).

If o is unitarily implemented, they showed that the exponential martingale m®

satisfies the J-cocycle identity
b b\ b
mg. . = Js(my)mg
forall s, t > 0.

It follows that setting
PP(a)u = E[j;(a)m;u] (ae A, ueh)

gives an ultraweakly continuous semigroup (Ptb . t > 0) with generator which

extends
16° 4 ppd 1 dom(67) = A; x — 26%(x) 4+ 6(x)b.



1. Classical flows

B—P perturbation

Bahn and Park noted that such a L=S semigroup will not, in general, be positive
or even real (x-preserving).

They investigated a more symmetric perturbation, using a J-cocycle n® such

that
t

=t [ om0 L [ L ERAE s ()
0 0

for all £ € L?(P;h), where (F; : t > 0) is the natural filtration of the Wiener
process B.

In this case, letting
Q:(a)u = E[(n))"je(a)nfu]  (a€ A uch)

gives an ultraweakly continuous completely positive semigroup Q® on A, which
Is contractive If b = b* and whose generator extends

%52 + Xp0 + pp0 + Xpop — %)\bz — %,Obz,
where \. : a+ ca and p. : a — ac are left and right-multiplication operators.



2. Quantum flows
To generalise, the process j constructed from o replaced with a quantum flow.

Recall that L?(PP) is isomorphic to [ = I'(L?(IR..)), the Boson Fock space over
L?(R.), and
(=TT
where
Mg =T(L7[0,t)) = L*(Py)  and T =T(L7[t,00)) = L*(Py).
A quantum flow j = (J; : t > 0) is a family of *-homomorphisms
Ji i A= AR B(IN)
which are
e vacuum adapted, so that
(@) =jg(a) @ [2)Qel with  Jjy(a) € ABB(Ty).
where €2, € ['; is the vacuum,

e such that a — js(a) and t — j;(a) are ultraweakly continuous, and

e unital, in the sense that j4(/) = /.



2. Quantum flows

Moreover, J Is required to satisfy the cocycle equation
Jstt =Jso0soj,  foralls, t >0,

where
j} = J't]®/3(r[t) : A@B(F[t) — A@B(F)
and
t—=or:Bhel) = Bh®)

Is the CCR flow.



2. Quantum flows

The flow J I1s assumed to satisfy the quantum stochastic differential equation

dje(x) = Je(P (x)) A + Je(92(x)) dAL + e (5 (x)) dAL + Je($ (X)) dt - (3)

for all x € Ay C A, where the structure maps
Voo Y v YAl — A
The QSDE (1) generalises the equation (x), to which it reduces when
Ao =dom(6%), Yl =1l4, YL =9 =04, and g=16"
(The gauge term 1 is non-zero as J is vacuum adapted.)
The equation (1) implies that the flow j has Markov semigroup PP such that
t
0
forall t > 0 and x € Ag, where 2 € I is the vacuum.

(u, PP(X)v) = (uQ, j:(x)v Q) = (u, v) +/ (u, js(Po(x))v) ds (u,v € h)

Hence the generator of PY extends 1.



2. Quantum flows

Previous authors (Evans and Hudson, Bradshaw, Das and Sinha) have examined
perturbations of quantum flows given by conjugation with a unitary process.

This work focused on the situation where the structure maps of the flow j are
elements of B(.A), in which case the Markov semigroup is uniformly continuous.

If h=h* € A and | € A then there exists a unitary process U such that
Up =1
and  dU; = ji(—1")U; dA; + (U dAL + jie(—ih — LI U, dt.
The process U Is a J-cocycle and the Markov semigroup of the perturbed flow
(a— U j(a)U; : t > 0)
has generator
Y3+ oY + Aeg 4+ pdewl +ilh, ] — 3{171, )

where [+, -] is the commutator and {-, -} the anticommutator,
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2. Quantum flows

Let ¢ = (co, cx) € A x A. There exists a unique process M€ such that M€ — |
Is vacuum adapted and satisfies the QSDE

d(ME — )¢ = je(co)ME dt + ji(c, )ME dAL.
This is a generalisation of the B—P equation (t).

Furthermore, M€ is a J-cocycle: for all s, t > 0,
Mg, = Js(M7)M;.

To establish this, an identity of the form

t t
( / FrdEr)GS: / F.G.d=,

is required, where =, € {Al, r}.

This identity 1s simple to establish for these integrators, but does not hold in the
vacuum-adapted setting for annihilation or gauge integrals.
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2. Quantum flows

Let c = (cg, cx), d = (dp, dx) € A X A.

There exists an ultraweakly continuous semigroup P9 ¢ of completely bounded
maps on A with

(u, P(a)v) = (u, (M) je(@)MEv ) (u,v € h)
forall t > 0 and a € A. If c = d then P?€ is completely positive for all t > 0.
The ultraweak generator of P?¢ is an extension of
Vo + e W+ Agx Wy + PeAax Pl + Py + A (8)
This class includes both the L=S and the B—P examples.

It also includes those obtained by unitary conjugation; the latter give a version
of (§), subject to the constraints that ¢, = dx =/ and ¢ = dy = —ih — %/*/.
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