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1. Classical flows

Fix a von Neumann algebra A ⊆ B(h). Let α = (αt : t ∈ R) be an ultraweakly
continuous group of ∗-automorphisms of A and let δ be its ultraweak generator.

Gaussian subordination may be used to construct an ultraweakly continuous
semigroup P 0 on A with ultraweak pre-generator 12δ

2.

If (Bt : t > 0) is a standard Brownian motion and P is Wiener measure then

jt : A → A⊗B(L
2(P)); a 7→ αBt(a)⊗ IL2(P) (t > 0)

is a ∗-homomorphism such that

jt(x) = x +

∫ t

0

js(δ(x)) dBs +
1

2

∫ t

0

js(δ
2(x)) ds (⋆)

strongly on L2(P; h), for all x ∈ dom(δ2).

Setting
P 0t (a)u := E[jt(a)u] (a ∈ A, u ∈ h ⊆ L2(P; h))

defines a semigroup (P 0t : t > 0) of completely positive contractions on A with
generator as desired.
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1. Classical flows

Cocycle structure

The process j is adapted in the following sense: for all t > 0 and a ∈ A,

jt(a) = jt](a)⊗ IL2(P[t), where jt](a) ∈ A⊗B(L
2(Pt])).

Let
̂t := jt]⊗ IB(L2(P[t)) : A⊗B(L

2(P[t))→ A⊗B(L
2(P)).

If
σt : B(L

2(P; h))→ B(L2(P[t ; h)) (t > 0)

is the unital ∗-isomorphism given by the natural shift on the path space then

js+t = ̂s ◦ σs ◦ jt for all s, t > 0,

so j is a cocycle for the shift semigroup σ.

Furthermore, if
Jt := ̂t ◦ σt|A⊗B(L2(P))

then J = (Jt : t > 0) is a semigroup.
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1. Classical flows

L–S perturbation

Given b = b∗ ∈ A, Lindsay and Sinha proved the existence of an adapted,
operator-valued process mb such that

mb
t = I +

∫ t

0

js(b)m
b
s dBs (t > 0)

strongly on L2(P; h).

If α is unitarily implemented, they showed that the exponential martingale mb

satisfies the J-cocycle identity

mb
s+t = Js(m

b
t )m

b
s

for all s, t > 0.

It follows that setting

P bt (a)u := E[jt(a)m
b
t u] (a ∈ A, u ∈ h)

gives an ultraweakly continuous semigroup (P bt : t > 0) with generator which
extends

1
2δ
2 + ρbδ : dom(δ

2)→ A; x 7→ 1
2δ
2(x) + δ(x)b.
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1. Classical flows

B–P perturbation

Bahn and Park noted that such a L–S semigroup will not, in general, be positive
or even real (∗-preserving).

They investigated a more symmetric perturbation, using a J-cocycle nb such
that

nbt f = f +

∫ t

0

js(b)E[n
b
s f |Fs] dBs −

1

2

∫ t

0

js(b
2)E[nbs f |Fs] ds (†)

for all f ∈ L2(P; h), where (Ft : t > 0) is the natural filtration of the Wiener
process B.

In this case, letting

Qbt (a)u := E[(n
b
t )
∗jt(a)n

b
t u] (a ∈ A, u ∈ h)

gives an ultraweakly continuous completely positive semigroup Qb on A, which
is contractive if b = b∗ and whose generator extends

1
2δ
2 + λbδ + ρbδ + λbρb −

1
2λb2 −

1
2ρb2,

where λc : a 7→ ca and ρc : a 7→ ac are left and right-multiplication operators.
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2. Quantum flows

To generalise, the process j constructed from α replaced with a quantum flow.

Recall that L2(P) is isomorphic to Γ = Γ(L2(R+)), the Boson Fock space over
L2(R+), and

Γ ∼= Γt] ⊗ Γ[t

where

Γt] = Γ(L
2[0, t)) ∼= L2(Pt]) and Γ[t = Γ(L

2[t,∞)) ∼= L2(P[t).

A quantum flow j = (jt : t > 0) is a family of ∗-homomorphisms

jt : A → A⊗B(Γ)

which are

• vacuum adapted, so that

jt(a) = jt](a)⊗ |Ωt〉〈Ωt| with jt](a) ∈ A⊗B(Γt]),

where Ωt ∈ Γ[t is the vacuum,

• such that a 7→ jt(a) and t 7→ jt(a) are ultraweakly continuous, and

• unital, in the sense that jt](I) = I.



7

2. Quantum flows

Moreover, j is required to satisfy the cocycle equation

js+t = ̂s ◦ σs ◦ jt for all s, t > 0,

where
̂t := jt]⊗ IB(Γ[t) : A⊗B(Γ[t)→ A⊗B(Γ)

and
t 7→ σt : B(h⊗ Γ)→ B(h⊗ Γ[t)

is the CCR flow.
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2. Quantum flows

The flow j is assumed to satisfy the quantum stochastic differential equation

djt(x) = jt(ψ
×
×(x)) dΛt + jt(ψ

0
×(x)) dAt + jt(ψ

×
0 (x)) dA

†
t + jt(ψ

0
0(x)) dt (‡)

for all x ∈ A0 ⊆ A, where the structure maps

ψ××, ψ0×, ψ×0 , ψ00 : A0 → A.

The QSDE (‡) generalises the equation (⋆), to which it reduces when

A0 = dom(δ
2), ψ×× = IA0, ψ0× = ψ

×
0 = δ|A0 and ψ00 =

1
2δ
2.

(The gauge term ψ×× is non-zero as j is vacuum adapted.)

The equation (‡) implies that the flow j has Markov semigroup P 0 such that

〈u, P 0t (x)v 〉 = 〈uΩ, jt(x)v Ω〉 = 〈u, v 〉+

∫ t

0

〈u, js(ψ
0
0(x))v 〉 ds (u, v ∈ h)

for all t > 0 and x ∈ A0, where Ω ∈ Γ is the vacuum.

Hence the generator of P 0 extends ψ00.
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2. Quantum flows

Previous authors (Evans and Hudson, Bradshaw, Das and Sinha) have examined
perturbations of quantum flows given by conjugation with a unitary process.

This work focused on the situation where the structure maps of the flow j are
elements of B(A), in which case the Markov semigroup is uniformly continuous.

If h = h∗ ∈ A and l ∈ A then there exists a unitary process U such that

U0 = I

and dUt = jt(−l
∗)Ut dAt + jt(l)Ut dA

†
t + jt(−ih −

1
2l
∗l)Ut dt.

The process U is a J-cocycle and the Markov semigroup of the perturbed flow

(a 7→ U∗t jt(a)Ut : t > 0)

has generator

ψ00 + ρlψ
0
× + λl∗ψ

×
0 + ρlλl∗ψ

×
× + i[h, ·]−

1
2{l
∗l , ·},

where [·, ·] is the commutator and {·, ·} the anticommutator,
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2. Quantum flows

Let c = (c0, c×) ∈ A×A. There exists a unique process M
c such that Mc − I

is vacuum adapted and satisfies the QSDE

d(Mc − I)t = jt(c0)M
c
t dt + jt(c×)M

c
t dA

†
t.

This is a generalisation of the B–P equation (†).

Furthermore, Mc is a J-cocycle: for all s, t > 0,

Mc
s+t = Js(M

c
t )M

c
s .

To establish this, an identity of the form

(∫ t

s

Fr dΞr

)
Gs =

∫ t

s

FrGs dΞr

is required, where Ξr ∈ {A
†
r , r}.

This identity is simple to establish for these integrators, but does not hold in the
vacuum-adapted setting for annihilation or gauge integrals.
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2. Quantum flows

Let c = (c0, c×), d = (d0, d×) ∈ A×A.

There exists an ultraweakly continuous semigroup P d,c of completely bounded
maps on A with

〈u, P d,ct (a)v 〉 = 〈uΩ, (M
d
t )
∗jt(a)M

c
t v Ω〉 (u, v ∈ h)

for all t > 0 and a ∈ A. If c = d then P d,ct is completely positive for all t > 0.

The ultraweak generator of P d,c is an extension of

ψ00 + ρc×ψ
0
× + λd∗×ψ

×
0 + ρc×λd∗×ψ

×
× + ρc0 + λd∗0 . (§)

This class includes both the L–S and the B–P examples.

It also includes those obtained by unitary conjugation; the latter give a version
of (§), subject to the constraints that c× = d× = l and c0 = d0 = −ih −

1
2l
∗l .
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