Supplementary notes for FIEmspro

Wanchang Lin
October 16, 2007

1 Introduction

The package FIEmspro is a collection of R functions for the rapid analysis
of flow injection fingerprints. FIEmspro is focusing on several aspects from
fingerprint processing, data integrity checking, discrimination task and finally
feature ranking. The note gives a brief explanation on how to use the main
functions implemented in the package to carry out the feature ranking and
classification using the provided methods.

It is aimed at supporting data analysis for researchers who already have
some basic experience of R command-line usage. The package is updated reg-
ularly with regard to bug fixing, code improvement and new functions based
on current research findings. For Windows and MacOS X platforms, straight-
forward installing can be realised via the binary packages available from the
website. For any other platforms, source code can be downloaded and compiled
appropriately.

Note that this document has been generated with Sweave and aims at repro-
ducing the workflow with additional comments. In order to reduce computation
time, subset of the original data signals and/or smaller number of resampling
steps have used, resulting in slight differences between the outcome of the orig-
inal the workflow.r and whose produced in this document.

To use the package, type in R console window:

>library (FIEmspro)

It also loads its dependent packages, for example, randomForest. The reference
manual is supplying details on how to use the functions provided by the package,
including a simple example for each function. Use the command help (or simply
? followed by the name of the function) to view the content about FIEmspro or
any information regarding a function:

>help(package = FIEmspro)
>help(accest)

2 Load data into R

There are several possibilities to loading data into R:

e For dataset as an ASCII file, use read.table to import the data by select-
ing the appropriate separator in sep. For e.g. tab and comma separated
files can be loaded this way:

>pos <- read.table(file = "./data/abrl/pos.txt",
+ sep = ”\t")

>fact <- read.table(file = "./data/abril/fact.csv",
+ sep = ",", header = T)

e For R binary dataset, typically with a .RData or .rda extension, use load
instead:

>load("./data/abrl.Rdata")

e When profiles are stored as ANDI NetCDF files (*.cdf), generate the fin-
gerprint matrix according to specialized functions. Type ?fiems_lct_main
or ?fiems_ltq_main for more information regarding the conversion pro-
tocol.

e In R, datasets can be loaded using data.

FIEmspro is providing a FIE-MS dataset abr1 which is a list including two self-
explanatory data frames, pos and neg corresponding the fingerprint recorded
in the positive and negative ionisation modes, and a data frame, fact where
meta-data are kept.

>data(abri)
>names (abri)

[1] "fact" "pOS" nnegn

A subset of the positive mode data and experimental factor matrix will enter
further statistical treatments. To extract the required information, one can do
the following:

>X <- abri$pos[, 110:1930]
>Y <- abri$fact
3 Preliminary data structure assessment

You can check X and Y dimensions using the function dim for matrices or length
for vectors:

>dim(X)

[1] 120 1821

>dim(Y)

[1] 120 9
>length(Y$class)
[1] 120

Variable names in X can be printed out with colnames:

>colnames (X)

Ideally, the names should be meaningful to avoid confusions when interpreting
feature ranking output for example. In this case, changing the names can be
easily done with paste. In the following example, the name of first variable will
be pos110, the second one, pos111 etc...:

>colnames (X) <- paste("pos", 110:1100, sep = "")

It is also necessary to check the number of zero values in each variable. The
following code sum up the number of times X=0 alongside the dimension 2 (i.e.
columns):

>nzero <- apply(X == 0, 2, sum)

>plot(nzero, xlab = "Variable id", ylab = "Number of zeros")
g —
8 -
o e
~N
o .
g & -
5
=1
P4
8 7 cooc
n - o
o Swanm
T T T T
0 500 1000 1500
Variable id

Figure 1: Number of zeros for each signals across samples.

One can keep only the variables with less than 20 zeros:
>X.noz <- X[, (nzero < 80)]

Function table builds a contingency table of the counts at each combination of
factor levels (or discrete elements). It is possible to get some insights into the
original design and interactions between to experimental factors. The distribu-
tion of ‘day’ and contingency table between ‘rep’ and ‘day’ can be done as
follows:

>table(Y$day)

1 2 3 4 65 H
20 20 20 20 20 20

>table(Yday, Yrep)

oo W N -

N NN NS O N
K N N NN
O NN NS N
N N NN NS
N N N N N NS

To assess that factor ‘day’ is correctly randomised, one can plot the distri-
bution of each level of ‘ day ’ according the order of injection (Figure 2) as well

as print out, for

each level, statistics related to the location and dispersion of

the corresponding injection order (Table 1):

>plot(Y$injorder, Y$day)
>tmp <- tapply(Y$injorder, Y$day, summary)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1

Ot W

4.00 31.75 62.50 62.35 94.50 120.00
1.00 36.25 68.50 59.80 84.50 119.00
2.00 33.00 66.50 60.35 82.75 113.00
3.00 33.00 52.50 52.45 66.00 101.00
2.00 37.75 77.50 71.00 107.00 117.00
9.00 25.75 58.00 57.05 85.75 118.00

Table

Figure 2:

1: Summary of injection order for each level of 'day’.

Ys$day

— - oo o w oo om o ® o owo

0 20 40 60 80 100 120

Ys$injorder

Position in the injection for each factor levels of 'day’.

4 Data assessment by means of Total Ion Count

By definition the total ion count of a spectrum is the sum of all the m/z signal
intensities. As an easy diagnostic measure, the TIC can provide an estimation of
factors that may affect the overall intensity of the run such as gradual instrument
drift (e.g. resulting from loss of sensitivity of the ion source), or step changes
in instrument characteristics after maintenance. For each sample, calculate the
Total Ion Count (TIC) by summing up all signal intensities. This time, apply
is summing up all the intensity for each row (dimension 1). In figure 3, sample
TIC (y-axis) is plotted against sample position during the chemical analysis
(x-axis):

>tic <- apply(X, 1, sum)
>plot(tic, xlab = "Order of Injection", ylab = "TIC")

TIC
1050000
| |
o
°
o °
°
°

950000
|

850000
|

0 20 40 60 80 100 120

Order of Injection

Figure 3: Sample TIC versus injection order.

A robust regression can be built to model the effect of the injection order on
the TIC of each sample as shown in the function ticstats. As a conservative
rule, any sample for which the residual deviates more than thres=3 times from
the median absolute deviation (MAD) of the residuals (e.g sample 6 in Figure
4) must be examined manually to identify the origin of the different intensity
behaviour and then potentially removed before further statistical analysis if cor-
rective measures do not improve the individual fingerprint. The list of potential
outliers is given in restic$lout:

>restic <- ticstats(X, Y$injorder, thres = 3)
>print (restic$lout)

6
6

Total lon Count (TIC)
900000 1000000 1100000 1200000

800000
|

Order of Injection

Figure 4: Detection of outlying samples by analysis of the sample TIC.

5 Baseline correction

. A simple consensual approach consists in fitting a monotone local minimum
curve to each fingerprint by using FIEmspro functions onebc and multibc. Ba-
sically, the fingerprint is divided into equally spaced m/z intervals (wsise) and
a local minimum intensity value ((qtl)) is returned as the baseline estimate for
this region. Finally, the whole fingerprint baseline is computed by linear inter-
polation based on pairs made of the centre of the interval and its corresponding
local minima. While it is not necessary in the context of abril, the following
example illustrates a baseline correction of sample 60 using the highest intensity
in the lowest 10% intensities contained in window comprising wsize=50 bins.
The result of baseline correction is shown in Figure 5. For better visualisation,
the maximum intensity is set to maxy=4000.

>res.onebc <- onebc(X[60,], wsize = 50, qtl = 0.1,
+ maxy = 4000, title = F)

multibc performs baseline correction on multiple samples:

>resbc <- multibc(X, wsize = 50, qtl = 0.1, maxy = 4000)
>X.bc <- resbc$x

where X.bc is the new baseline corrected matrix. This function also provides two
arguments to view visualization of baseline correction with a pause, plotting
and pause. For example, one examine the baseline correction process for the
first 10 samples with a delay of 0.5 seconds between each sample:

>resbc <- multibc(X[1:10,], wsize = 50, qtl = 0.1,
+ maxy = 4000, plotting = T, pause = 0.5)

4000
1

—— Processed
—— Baseline
—— Raw

3000
1

Signal Intensity
2000
l

1000

0 500 1000 1500

Index of M/Z

Figure 5: Illustration of the baseline correction

6 Imputation of low values

For many signals in the FIE-MS data matrix, zero values should typically con-
cern no more than a maximum of roughly 3% of the total number of cells in
the matrix. This being said, quite often imputation of very small values is more
of a computational convenience (very few multivariate techniques can intrinsi-
cally accommodate missing data points) than a significant contribution to the
improvement of model predictive abilities.A conservative strategy to improve
data quality consists of calculating an intensity value representing a “limit of
detection” signal to Oin fillO cells with missing values to avoid the effect of zero
values skewing further data analysis. For e.g, we can set the threshold in to 1
in the new matrix X.thr:

>X.thr <- abri$pos[, 110:1930]
>X.thr[X.thr < 1] <- 1

An alternative solution is to adopted a non-parametric k-nearest neighbours
based technique to impute low /missing information. To determine the efficiency
of the method to obtain reasonable solutions, one can evaluate the error between
imputed values obtained by artificially assigning random missing cells in the
matrix and their original true values. The FIEmspro function koptimp is a
wrapper function to determine this error for several values of k and several
random assignment. In the code below (for illustration purposes only variables
100 to 300 are considered), knn based imputation is done as follows:

e data imputation is done on log transformed data and values < 1 are con-
sidered of low value.

e perform imputation with k from 1 to 10.
e 10% of low values are randomly generated to evaluate the RMSE.

e 5 iterations are performed.

>resimp <- koptimp(X[, 100:300], thres = 1, log.t = TRUE,
+ lk = 1:10, perc = 0.1, niter = 5)

Iteration (5): 1 2345

RMSE over 5 runs

—
8 ;E ==
£ - =25 L e o
_A__‘_ o
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

Number of neighbours

Figure 6: Imputation error for various number of neighbors.

Figure 6 depicts imputation error for various number of neighbors k. Character-
istics of the graph elbow is the most convenient way to determine the optimum
k (i.e. trade-off between under and overfitting). An optimum value is also
calculated with koptim (resimp$koptim) to generate the imputed matrix in
resimp$x:

>print (resimp$koptim)
>X.imp <- resimp$x

7 Logarithmic transformation

To perform a logarithmic transformation, FIEmspro function preproc with
method="log" is equivalent to R function log:

>X <- abri$pos[, 110:1930]
>X.log <- loglO(X + 1)
>X.log <- preproc(X, method = "logl0", add = 1)

The main advantage on using preproc lies several data transformation methods
that can be used sequentially. For details, see preproc (?preproc).

For purposes of statistical analysis, the logarithmic transformation of signal
intensity can be made in order to alleviate the dependency of the variance with
the intensity. Essentially, log transformation converts multiplicative errors into
additive errors so that, ideally, variance becomes more constant across the range
of signal intensity on the logarithm scale and thus variance is stabilised. This
illustrated by plotting the rank of median intensity against the rank of their
dispersions for each signal.

Median and interquartile range ranks on the original data is computed as
follows:

>iqr.raw <- apply(X, 2, IQR)

>med.raw <- apply(X, 2, median)

>iqr.raw <- rank(iqr.raw, na.last = T, ties.method = "random")
>med.raw <- rank(med.raw, na.last = T, ties.method = "random")

Idem for the log transformed data:

>igr <- apply(X.log, 2, IQR)

>med <- apply(X.log, 2, median)

>igr <- rank(iqr, na.last = T, ties.method
>med <- rank(med, na.last = T, ties.method

"random")
"random")

Figure 7 is produced as follows:

>opar <- par(mfrow = c(1, 2), pty = "m")
>xlab <- "Rank of m/z median intensity"
>ylab <- "Rank of m/z signal interquatitle range"

>plot(med.raw, iqr.raw, main = "Raw data'", xlab = xlab,
+ ylab = ylab)

>plot (med, iqr, main = "Log 10 Tranformed data",

+ xlab = xlab, ylab = ylab)

>par (opar)

8 Normalisation to sample TIC

A common way to normalise metabolomics profile data is the use of one or more
internal standards of "known” concentration, which is not possible in FIE-MS
fingerprints and so the most widely used solution consists of a so called global
normalisation by rescaling each measurement within a spectrum by a constant
factor, such as the sum of all the spectra intensities (Total Ion Count). To do
so, global normalisation to the sample TIC can be performed by preproc with
method="TICnorm".

>X.tic <- preproc(X, method = "TICnorm")

An assumption behind such normalization approaches is that the overall inten-
sity captures a sort of average of both up and down changes in concentration
related to biological treatment. To check that there is no dependency between
sample TIC an a factor of interest, one can plot the sample TIC distributions
for each factor levels, such day and rep:

Raw data Log 10 Tranformed data

1500
|
1500
|

1000
1000

500

Rank of m/z signal interquatitle range
500

Rank of m/z signal interquatitle range

T T T T T T T T
0 500 1000 1500 0 500 1000 1500

Rank of m/z median intensity Rank of m/z median intensity

Figure 7: Effects of log transformation on the intensity dispersion dependency
to its location.

>opar <- par(mfrow = c(1, 2), pty = "m")
>boxplot (apply (X, 1, sum) ~ Y$day, main = "Day")
>boxplot (apply (X, 1, sum) ~ Y$rep, main = "Rep")
>par (opar)

In this case as shown in Figure 8, yes. The normalisation needs to be corrected
to ‘day’

>X.cltic <- preproc(X, method = "TICnorm", y = Y$day)

It does not look bad for factor rep but TIC dependency to day seems to
be evident. In the following, we examine the effects of normalisation practices
considering day=3 and day=4. Here, we select samples corresponding to class 3
and 4 and perform no normalisation, global normalisation and class corrected
normalisation:

>dat <- abril$pos

>cl <- Y$day

>ind <- which(cl == 3 | c1 == 4)

>cl <- cl1[ind, drop = TRUE]

>levels(cl) <- c(0, 1)

>mat.1 <- dat[ind, , drop = FALSE]

>mat.2 <- preproc(mat.1, method = "TICnorm")

>mat.3 <- preproc(mat.l, method = "TICnorm", y = cl)

For each dataset, compute the Area under the ROC curve for discriminating
classes 3 and 4:

>auc.1l <- apply(mat.l, 2, FIEmspro:::auc, cl)
>auc.2 <- apply(mat.2, 2, FIEmspro:::auc, cl)
>auc.3 <- apply(mat.3, 2, FIEmspro:::auc, cl)

10

Day Rep

—_ —_
' '

1050000
|
1050000
|

950000
950000
|

|- 7 *H* T
T

850000
850000

Figure 8: TIC normalisation

Figure 9 is generated as follows:

>opar <- par(mfrow = c(2, 2), pty = "m")

>plot(auc.1, auc.2, ylab = "AUC (normalised total data)",
+ xlab = "AUC raw data")

>plot(auc.1, auc.3, ylab = "AUC (class corrected normalised data)",
+ xlab = "AUC raw data")

>tic.1 <- apply(mat.1, 1, sum)

>tic.1 <- data.frame(tic.1[cl == 0], tic.1[cl ==

+ 1)

>colnames (tic.1) <- c("3", "4")

>ylab <- "Raw Total Ion Count (TIC)"

>boxplot(tic.1, xlab = "Treatment class", ylab = ylab)
>tic.3 <- apply(mat.3, 1, sum)

>tic.3 <- data.frame(tic.3[cl == 0], tic.3[cl ==

+ 1)

>colnames (tic.3) <- c("3", "4")

>ylab <- "Class corrected normalized TIC"

>boxplot(tic.3, xlab = "Treatment class", ylab = ylab)
>par (opar)

9 Carry out outlier detection

Despite an initial inspection of distribution of sample TIC, subsequent outliers
may not be detected unless they exhibit gross intensity differences from the
mean. Rather than concentrating on individual variables that could potentially
lead to the rejection of all the samples, outlier detection can be approached from
a different angle that consists of looking at the homogeneity of the samples in
the main directions of variance. Standard methods are based on calculating

11

)
[
o
< kel
§ .
= ©
g S £ 31
= 2
Q o
2 & o
g S % 2 S
g g -
S o e 2 o e
T © 7 T T T T T A T T T T T
00 02 04 06 08 1.0 8 00 02 04 06 08 1.0
<
AUC raw data AUC raw data
Q
o)
S - 3 2] —_—
[i GNJ -
1< T ! T]
2 8 : E g
(&) S —_— o -
c 8 ' ; .
g = L2 o
g s ! 8 3
[o 5] .
z 9 7 | ! o
T g —_ — a ’C; ————
@ T T 3 o T T
3 4 © 3 4
Treatment class Treatment class

Figure 9: Effect of global and class dependant normalization on a subset of the
original data.

12

(robust) Mahalanobis distances between each sample and the centre in a given
reduced space such as that derived from Principal Component Analysis (PCA).
outl.det is a function that output the robust square root distance from the
center is displayed alongside a 2D mapping of the data and its confidence ellipse.
In the following example, class 3 for outlier detection on the first two PCs:
outl.det.

>X.2 <- logl0(abri$pos[, 110:1930] + 1)

>ind.y <- which(Y$day == 3)

>dat.y <- X.2[ind.y, , drop = FALSE]

>x.y <- prcomp(dat.y, scale = FALSE)$x

>resoutd.y <- outl.det(x.y[, c(1, 2)], method = "mcd",
+ dimen = c(1, 2), conf.level = 0.975)

>print (resoutd.y$outlier)

[1] 14

Distance Plot Tolerance Ellipse (97.5%)

35

14 o

25

Distance Square Root
15 2.0
I
Dimension 2

1.0

-4
|

Index Dimension 1

Figure 10: Sample outlier detection based on PCA analysis samples from day=3

The outlier, resoutd.y$outlier, is located above the cut-off line of distance
plot shown in the left of Figure 10 and outside of confidential boundary of ellipse
plot shown in the right of Figure 10.

10 Multivariate analysis on the training data

Principal Components Analysis. An initial inspection of the sample group-
ing alongside the axis of variability can be realised by Principal Components
Analysis. the percentage of explained variance is calculated in the variable
vars and grpplot creates a scatter plot by group. Figure 11 depicts the PC1
vs PC2 with percentage of variance and data points are coloured according the
factor day: shown in the axies.

13

>X <- preproc(X, method = "TICnorm")
>X.pca <- prcomp(X, scale = F)

>vars <- X.pca$sdev~2

>vars <- vars/sum(vars)

>names (vars) <- colnames(X.pca$rotation)
>print (vars[1:5])

PC1 PC2 PC3 PC4 PC5
0.64244972 0.20005760 0.04445056 0.02671619 0.01765645

>pcl <- round(vars[1] * 100, 2)
>pc2 <- round(vars[2] * 100, 2)
>grpplot (X.pca$x[, 1:2], Y$day, legend.loc = "rightside",

+ ylab = paste(”PC2”, " (u, pC2, "y ", sep = nu),
+ xlab = paste(”PCl woomo(n, pcl, nyyn, sep = nny)
g @ N
= v
v
.+
8 cvv + xxx
> o v
= © R AAA X
S g o F x
o % 2N
8 o avm + +
~ 2 +
g ° g&xﬁ ++ >8><< x X
VoA + X
ca A + X
= YN Tox X
s 1° + X x
‘ %
Va©os N g
IN x X
S | +
g \ T T T
-0.02 0.00 0.02 0.04

PC1 (64.24%)

Figure 11: PCA analysis

Linear Discriminant Analysis. The function nlda in FIEmspro implements
linear discriminant analysis for high dimensional problems that do not require
any special parameter optimisation. Commands for building a model based
on all the data for training and summarising NLDA associated statistics and
training data confusion matrix are given below:

>ldamod <- nlda(X, Y$day)
>print (1damod$st)

Eig Perceig Cancor
DF1 12.840 71.902 0.963
DF2 2.779 15.564 0.858

14

DF3 1.728 9.674 0.796
DF4 0.321 1.798 0.493
DF5 0.190 1.062 0.399

>print (1damod$conf)
pred

cl 1 2 3 4 5 H
117 0 0 0 0 3
2 020 0 0 0 O
3 0 020 0 O O
4 0 0 019 1 O
5 0 0 0 119 0
H 2 0 0 0 018

Score plots of every possible discriminant functions can be done by not sup-
plying any argument dimen. In the following example, only DF 1 and 2 are
considered.

>plot (1damod)

or plot only the first two dimensions
>plot(ldamod, dimen = c(1, 2))
Plot the HCA between group centres.

>hca.nlda(ldamod)

Random Forest. A useful multivariate discrimination available in R is Ran-
dom Forest form the package ranfomForest. The call for RF is quite simple:

>rfmod <- randomForest (X, Y$day, ntree = 1000)

A couple of meaningful metrics can be derived from the model built on all
the data. First, the confusion matrix calculated from out of bag predictions is
a fairly good approximation of the discrimination power:

>print (rfmod$confusion)

1 2 3 4 5 H class.error
117 0 0 0 O 3 0.15
2 019 1 0 0 O 0.05
3 0 218 0 0 O 0.10
4 0 0 020 0 O 0.00
5 0 0 0 218 0 0.10
H 5 0 1 0 014 0.30

Secondly, a finer inspection of individual sample prediction margin can bring a
greater insight into the confidence of the classification. In the following, one can
check the class error at each iteration to verify that the property that RF does
not overfit. In the case that errors do not converge, more trees must be built in
the model (argument ntree). Sample margin of predictions are also plotted to
identify misclassified or weakly discriminated samples.

15

-0.010 0.000

0.001

-0.003

-0.010 0.000
| |

DF1 (12.84, 71.9%)

3

T

-0.003

0.001
1 11 1 1 1

H

25

%}3@@33
34 4y
4%44

-0.015 0.000

i 4
4‘,443@ %ﬁ DF2 (2.78, 15.6%)
T 34“ 4
4 4 4 4
3 2 R
3 3 2 3; 3. o 3 2
LEE | Ul | one il
4 3 4 31 1 3 3 27500
; 24 H) DF3 (1.73, 9.7%) B %;HFHA i ﬁﬂﬂ%ﬁm
4351“ H 4 44§ ; ’1} H t g My, -
a1 e @ b d 1 A
1 1 1
| 2 2 2
i 2, L %
4 1 411 2
Tt Bl | < Ao |4 g8 A
L7 % LA 22, DF4 (0.32, 1.8%) X aaﬂ;{
_ 4443 % 1 % BB, 3 4 H
3 1 WH“%% 3 @ s
- Mﬁs 3 3 5 3334
E H H H H
2 22 Y 20
2 2 2
" : ﬂ 4, 220 a ’ﬂH 22 S
g o e | |ais o | ke
%4% I I % ¥ 32 357_ 4 25%%2 DF5 (0.19, 1.1%)
4 3 ‘a7 113914573 3 o4l
3 33 33 3 3
I s e TT T T T 17T T T T T T 7T
-0.015 0.000 -0.006 0.002 -0.003 0.001

Figure 12: Plotting LDA scores

16

0.002

—0.006

-0.003 0.001

0.010

wn

[=3

S

o
g
S

5 3

< S
d
N
[T

o 8

o

)

[

o

=y

S)

o

|

Figure 13:

3

=

o
8
c
s

s 3

o <

Q2 o
o
=
&
©
<
[

> 0

o

o

[S)

[=3

(=]

o

[S)

Figure 14

T T T T T T
-0.015 -0.010 -0.005 0.000 0.005 0.010

DF1 (12.8, 72%)

Plotting LDA scores in the first two dimensions

Aggregation of group centres

: HCA of the distances between group centres.

17

>opar <- par(mfrow = c(1, 2), pty = "m")

>plot(rfmod, main = "Class Error in the Random Forest model")

>plot (margin(rfmod, Y$day), sort = FALSE, main = "Sample Margin in the RF model")
>print (mean (margin(rfmod, Y$day)))

[1] 0.3023432

>par (opar)

Class Error in the Random Forest model Sample Margin in the RF model

0.6
L

0.4

Error

0.2
0.0

0.0

0 200 400 600 800 1000 0 20 40 60 80 100 120

trees Index

Figure 15: Plotting randomForest: error and margin

The following example is the binary comparison between class 1 and H, class
2 and 5, and class 3 and 4 using random forest classifier. Function dat.sel
implemented in FIEmspro generates pairwise data set based on class labels.

>dat.sub <- dat.sel(X, Y$day, choices = list(c("1",

+ "H"), c("2", "5"), c("3", "4")))

>n <- nrow(dat.sub$com)

>com <- apply(dat.sub$com, 1, paste, collapse = """)

>marg <- sapply(l:n, function(x) {

+ val <- randomForest(dat.sub$dat[[x]], dat.sub$cl[[x]],
+ ntree = 1000)

+ mean (margin(val, dat.sub$cl[[x]]))

+ 1

>names (marg) <- com
>marg <- data.frame(Margin = marg)
>marg

Margin
1"H 0.1076623
275 0.8876986
374 0.6302070

11 Multivariate discrimination results assessment

Two wrapper functions, accest and accest.1 are available in FIEmspro to as-
sess classification estimates based on re-sampling procedures. They can be em-

18

ployed to both multi-class and two-class discrimination. The former works with
some generic classifiers that fulfil R standards to define predictive techniques
such as the ones available in packages like MASS (1da and qda), €1071(svm)
or randomForest(randomForest) and nlda. The latter works with user defined
classifiers. Both of them require as input valipars and trainind objects that
provide information regarding re-sampling strategy and the actual data parti-
tioning.

An example of multiple class problem is given below. 10 stratified 5-fold
stratified cross-validation (CV) resampling strategy is done as follows

>pars <- valipars(sampling = "cv"

+ strat = T)

, niter = 2, nreps = 4,

The index of training samples based on the re-sampling method is generated by:
>tr.idx <- trainind(Y$day, pars)

The main advantage of generating data partitioning that way is that tr.idx can
be re-used with different classifiers or saved to be reused later for reproducibility
purposes. The validation with re-sampling procedure, in which the classifier is
SVM with linear kernel can be done as follows:

>svm.res <- accest(X, Y$day, clmeth = "svm", pars = pars,
+ tr.idx = tr.idx, kernel = "linear")

ACCEST.1 Iteration (2): 1 2

>svm.res

Method: svm

Arguments: kernel=linear
Discrimination: 1727374"5"H

No. of iteration: 2

Sampling: cross validation
No. of replicatioms: 4

Accuracy: 0.9

Margin: 0.435

Overall confusion matrix of training data:

all.pred
all.cl 1 2 3 4 5 H
13 0 0 0 0 5
2 040 0 0 0 O
3 0 43 1 0 O
4 0 0 137 2 O
5 0 0 0 337 0
H 5 3 0 0 032

In a batch-process involving more than one classifier (for e.g randomForest and
nlda), a simple set of code lines could be (note that as a partitioning is generated
each time, results are not strictly comparable) :

19

>method <- c("randomForest", "nlda")
>res <- lapply(method, function(m) {

+ accest(X, Y$day, clmeth = m, pars = pars,
+ tr.idx = tr.idx, ntree = 1000)

+ 3}

ACCEST.1 Iteration (2): 1 2

ACCEST.1 Iteration (2): 1 2

>names (res) <- method

>res

$randomForest

Method: randomForest
Arguments: ntree=1000
Discrimination: 172737475"H

No. of iteration: 2

Sampling: cross validation
No. of replicationms: 4

Accuracy: 0.908

Margin: 0.283

Overall confusion matrix of training data:

all.pred
all.cl 1 2 3 4 5 H

13 0 0 0 0 6

2 038 2 0 0 O

3 0 337 0 0 O

4 0 0 040 0 O

5 0 0 0 436 O

H 6 1 0 0O 033
$nlda
Method: nlda
Arguments: ntree=1000
Discrimination: 1727374"5"H
No. of iteration: 2
Sampling: cross validation
No. of replicatioms: 4
Accuracy: 0.825
Margin: 0.64

Overall confusion matrix of training data:

all.pred

all.cl 1 2 3 4 5 H
129 0 0 0 011
2 03 6 0 0 1

20

j==¢ 2 I S OV)

1

O O O

o

3
0 13 3 0
0
1

For two class problem, both accest and accest.1 will output additional in-
formation such as classifier AUC. The following code lines perform multivariate
analysis on a three two-class problem using two classifiers. As a result, we are
interested in both classifier AUC and accuracies (note that as a partitioning is
generated each time, results are not strictly comparable) :

>val.rf.nlda <- do.call("cbind", lapply(method,
function(y) {

+ + + + 4+ +++F+++F+F++ o+

ACCEST.
ACCEST.
ACCEST.
ACCEST.
ACCEST.
ACCEST.

»)

1
1
1
1
1
1

func.cl <- function(m) {
acc.auc <- sapply(c(1:n), function(x) {
val <- accest(dat.sub$dat[[x]],
dat.sub$cl[[x]], clmeth = m,
pars = pars, ntree = 1000)
return(c(valacc, valauc))
P
acc.auc <- t(acc.auc)
rownames (acc.auc) <- com
colnames(acc.auc) <- c(paste(m, ".acc",

sep = ""), paste(m, ".auc", sep = ""))
acc.auc
}
func.cl(y)

Iteration (2):
Iteration (2):
Iteration (2):
Iteration (2):
Iteration (2):
Iteration (2):

N
N NDNDNDDNDDN

>print(val.rf.nlda)

randomForest.acc randomForest.auc nlda.acc nlda.auc

(A)[\)ll—\
Do m

12

0.8500 0.91 0.725 0.810
1.0000 1.00 1.000 1.000
0.9875 1.00 0.950 0.995

Feature Ranking

FIEmspro provides several feature selection or ranking methods, such as ANOVA,
Random Forest and AUC. Some methods can be applied to both multiple and
binary class problems, but some only to two-class problem. For more details,
see 7?fs.techniques.

21

Simple feature ranking example. An example of feature selection by AUC
based on the whole data is

>fs.1H <- fs.auc(dat.sub$dat[["1"H"]], dat.sub$cl[["1"H"]])
The top 20 features are

>fs.1H$fs.order[1:20]

[1] P236 P274 P141 P371 P257 P130 P1812 P712 P232
[10] P187 P565 P615 P762 P210 P717 P166 P890 P966
[19] P536 P224

Re-sampling based feature ranking. The feature selection methods im-
plemented in package FIEmspro can be validated by the re-sampling strategies.
This is fullfiled by the function feat.rank.se. Just like using classification
validation performed by accest or accest.1, data partition strategies are need
to be prepared before using feat.rank.se.

The following is an example for batch-processing of feature ranking for bi-
nary comparison, 1 ~ H, 2 ~ 5 and 3 ~ 4 using three methods, randomFor-
est(fs.rf), AUC(fs.auc) and ANOVA (fs.anova). The re-sampling method
is randomised validation(rand). The number of iteration is 1 and there are 30
repeats in each iteration.

>rank.method <- c("fs.rf", "fs.auc", "fs.anova")
>pars <- valipars(sampling = "rand", niter = 1,
+ nreps = 3)

>fs.all <- lapply(1:n, function(i) {

+ func.fs <- function(x, y) {

+ res <- lapply(rank.method, function(m) feat.rank.re(x,
+ y, method = m, pars = pars))

+ names (res) <- rank.method

+ fs.rank <- sapply(res, function(x) x$fs.rank)
+ fs.stats <- sapply(res, function(x) x$fs.stats)
+ fs.order <- sapply(res, function(x) x$fs.order)
+ list(fs.rank = fs.rank, fs.order = fs.order,

+ fs.stats = fs.stats)

+ }

+ func.fs(dat.sub$dat[[i]], dat.sub$cl[[i]])

+

B

Iteration (1):
Iteration (1):
Iteration (1):
Iteration (1):
Iteration (1):
Iteration (1):
Iteration (1):
Iteration (1):
Iteration (1):

e e

>(names (fs.all) <- com)

22

[1] ||1~H|| ll2"‘5ll ||3~4||
>names (fs.all$"1"H")
[1] "fs.rank" "fs.order" "fs.stats"

where fs.rank, fs.order and fs.stats are the feature ranks, feature orders
and feature statistics or values. Using these results, user can construct or gen-
erates some specific results. For example, to generate a ranking table based on
feature statistics or values, it is done by

>fs.tab <- lapply(names(fs.all), function(x) {
feat.tab <- function(fs.stats) {
mz <- rownames(fs.stats)
rank.tab <- lapply(as.data.frame(fs.stats),
function(x) {
x <- round(x, digits = 4)
df <- data.frame(mz = mz, values = x)
df <- df[order(df$values, decreasing = TRUE),
1
rownames (df) <- 1:nrow(df)
df
»
rank.tab <- do.call("cbind", rank.tab)
rank.tmp <- colnames(rank.tab)
rank.tmp <- sapply(rank.tmp, function(x) substr(x,
4, 100))
colnames (rank.tab) <- rank.tmp
return(rank.tab)

+ + + + 4+ ++F+ A+ FF 4

}
feat.tab(fs.all[[x]]$fs.stats)

+

+ })
>names (fs.tab) <- com
>fs.tab$"1"H"[1:20,]

rf.mz rf.values auc.mz auc.values anova.mz anova.values

1 P274 0.0076 P236 0.9201 P236 22.8921
2 Pl141 0.0044 P371 0.8803 pP274 19.4212
3 P130 0.0037 P274 0.8764 P257 17.3141
4 P236 0.0032 P141 0.8683 P141 14.9097
5 P224 0.0027 P1409 0.8304 pP1812 12.8630
6 Pi1812 0.0025 P257 0.8245 P1125 11.6568
7 P232 0.0021 P130 0.8130 P890 10.8452
8 P802 0.0021 P232 0.8108 P305 10.5780
9 P257 0.0020 P762 0.8067 P371 10.5714
10 P1440 0.0017 P717 0.8066 p1444 10.0517
11 P1055 0.0015 P210 0.8051 P1128 9.7809
12 P305 0.0013 P1930 0.8049 P712 9.6497
13 P1236 0.0012 P471 0.7986 P717 9.6298
14 P371 0.0011 P615 0.7953 P1492 9.3813
15 P1409 0.0011 P712 0.7947 P615 9.0500

23

16 P118 0.0010 P510 0.7944 P714 9.0029

17 P187 0.0010 P187 0.7929 p224 8.8891
18 P222 0.0009 P1812 0.7929 P438 8.7753
19 P1378 0.0009 P472 0.7913 P130 8.7100
20 P194 0.0008 P536 0.7913 P232 8.6489

Or plot the random forest importance score in order to decide a significance
threshold for variables with adequate explanatory power via

>par(mfrow = c(1, 1))
>rf.1H <- sort(as.data.frame(fs.all[["1"H"]]$fs.stats)[["fs.rf"]],

+ decreasing = T)

>rf.25 <- sort(as.data.frame(fs.all[["275"]]$fs.stats)[["fs.rf"]],
+ decreasing = T)

>rf.34 <- sort(as.data.frame(fs.all[["374"]]$fs.stats)[["fs.rf"]],
+ decreasing = T)

>rf.scores <- data.frame(rf_1_H = rf.1H, rf_2_5 = rf.25,

+ rf_3_4 = rf.34)

>n <- ncol(rf.scores)

>oldpar <- par(mar = c(5, 6, 4, 2))

>if (require("plotrix", quietly = TRUE)) {

+ matplot(rf.scores[1:60, 1, type = "n", col = 1:n,

+ Ity = 1:n, pch = 1:n, xlab = "Variable rank",

+ ylab = "", las = 1)

+ gradient.rect(1, 0.001, 60, 0.003, col = gray(100:60/100),
+ gradient = "y", border = NA)

+ oldpar <- par(new = TRUE)

+ }

>matplot (rf.scores[1:60,], type = "o", col = 1:n,

+ Ity = 1:n, pch = 1:n, xlab = "Variable rank",

+ ylab = "" las = 1)

>legend("topright", inset = 0.02, c("1_H", "2_5",

+ "3_4"), 1ty = 1:n, col = 1:n, pch = 1:n, box.1lty = 0)
>mtext (2, text = "RF importance scores", line = 4)

>par (oldpar)

In addition, FIEmspro provides two functions for post-processing the feature
selection with re-sampling. One is fs.mrpval which computes the pseudo mrp-
value and another is fs.summary for aggregating results obtained from the re-
sampling based feature selection.

Here is the example of feature ranking by Welch T-test based on bootstrap

>pars <- valipars(sampling = "boot", niter = 1,
+ nreps = 10)

>wel.1H.re <- feat.rank.re(dat.sub$dat[["1"H"]],
+ dat.sub$cl[["1"H"]], "fs.welch", pars)

Iteration (1): 1
Compute stability mr-p value using the 75% worst features as irrelevant

>wel.1H.re.mrp <- fs.mrpval(wel.1lH.re, 0.25)

24

0.006 —

0.004

RF importance scores

0.002 —

0 10 20 30 40 50 60

Variable rank

Figure 16: Random Forest importance scores

Summarise the re-sampling based ranking and correct the original p values by
FDR

>wel.1H <- fs.summary(wel.1H.re, wel.lH.re.mrp,
+ padjust = "fdr")

The top twenty feature selected are listed in Table 2.

25

fs.welch OriRk pval pval.ad AvgRk SdevRk mrp-0.25
P236 5.93 1 1.72e—06 3.13e—03 7.50 12.62 1.46e—04
P257 4.66 2 4.40e—05 3.27e—02 28.30 32.79 1.17e—03
P274 4.55 3 5.39e—05 3.27e—02 33.00 59.48 1.46e—03
P141 4.51 4 1.03e—04 3.37e—02 36.40 41.90 2.20e—03
P615 3.50 5 1.62e—03 1.74e—01 39.20 29.07 2.27e—03
P187 3.73 6 6.25e—04 1.42e—01 56.60 78.71 4.39e—03
P371 4.40 7 1.11le—04 3.37e—02 72.60 80.06 6.00e—03
P1444 2.93 8 5.64e—03 2.80e—01 72.90 77.36 6.00e—03
P1930 3.41 9 1.73e—03 1.75e—01 76.10 59.05 6.52e—03
P1812 4.33 10 1.07e—04 3.37e—02 78.20 75.69 6.73e—03
P305 3.36 11 2.06e—03 1.98e—01 84.70 80.42 7.83e—03
P438 3.26 12 2.40e—03 2.08e—01 90.70 75.89 9.15e—03
P1409 3.47 13 1.32¢e—03 1.63e—01 98.10 73.87 1.13e—02
p717 3.56 14 1.03e—03 1.63e—01 99.70 151.35 1.16e—02
P1492 3.02 15 4.55e—03 2.77e—01 108.30 106.67 1.34e—02
P427 2.96 16 5.33e—03 2.77e—01 113.70 140.42 1.44e—02
P445 2.96 17 5.69e—03 2.80e—01 114.60 103.71 1.47e—02
P802 2.97 18 5.22e—03 2.77e—01 115.40 114.73 1.49e—02
P472 3.03 19 4.62¢e—03 2.77e—01 117.20 115.71 1.52e—02
P1010 2.63 20 1.25e—02 3.82¢e—01 118.90 149.16 1.55e—02

Table 2: Results of feature selection using Welch t-test with bootstrap validation

Contents

1 Introduction

2 Load data into R

3 Preliminary data structure assessment

4 Data assessment by means of Total Ion Count
5 Baseline correction

6 Imputation of low values

7 Logarithmic transformation

8 Normalisation to sample TIC

9 Carry out outlier detection

10 Multivariate analysis on the training data

11 Multivariate discrimination results assessment

12 Feature Ranking

26

11

13

18

21

