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1 Introduction

2 Functionalities of accest

accest is a wrapper function for calculating classification estimates using pre-
defined data partitioning sets. As for accest, this function loop over each set
of data, generate generate training and test data and then evaluate predictions
of a classifier built on the training data. Unless the classifier can only cope
with two-class problems, these functions allow the manipulation of any problem
complexity. Three types of estimates are given for each replication: accuracy,
so-called margin and AUC are calculated by accest. The fundamental differ-
ence between the two functions is that accest requires the methods that must
be explictly defined whereas accest requires generic classifiers that fulfil R stan-
dards to define predictive techniques such as the ones available in packages like
MASS or e1071. In the current implementation, several differences do exist. As
input:

• accest accepts datasets in a form of a list containing X and Y matrices and
optionally validation parameters in addition to the class data matrix/class
vector couple and formula type.

• To speed up calculations, accest can be run on parallel nodes (i.e. multi-
core processors or workstation network)

• accest allows a better control of the random number generator not only
for issues related for parallelisation but also for reproducibility purposes
with algorithms such randomForest

• Control if iterations should be printed or not

The output of accest is the same as for accest except that few features
have been added:

• Arguments used by the classifier can be useful to keep trace of the classifier
parametrisation (for e.g one might compare RF using ntree=10 and RF
using ntree=1000).
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• Extra information provided by the user defined classifier are also kept so
that any important piece of information computed during the training
phase can be extracted with little efforts.

• Class predictions and decision boundary information are kept for post
analysis of the classifier properties or comparison of the classifier abilities.

• Classification task is available to keep trace of the classification problem.

3 Classifiers design

Despite the availability of 10s of different classifier techniques in R, the main
drawback is that only very few fulfil R standard requirement to call and output
the outcome of of accest is that the classification method must be implemented.
However, this effort is quickly rewarded by numerous advantages regarding the
flexibility to create new classifier and the possibility to integrate code that do
not fit accest constraints. To illustrate this point, the two functions below are
simply reproducing randomForest discrimination algorithm:

sameasrf <- function(data,...){

## Possible arguments
dots <- list(...)

## Build RF model and predict data$te
mod <- randomForest(data$tr,data$cl,...)
## Get votes on data$te
prob <- predict(mod,data$te,type="vote")
## Get hard predictions
pred <- predict(mod,data$te)

## Return a list
## here mod does not contain anything
list(mod=NULL,pred=pred,prob=prob,arg=dots)

}

All what a user defined function needs as input is a list data that may
contain:

• tr: training data X matrix

• cl: training example labels

• te: test data X matrix

• clte: training example labels

• ltr: indices of the training examples in the original dataset

Optionally, further arguments (...) can be passed or not to the classifier
(here optional arguments will be passed to the core randomForest function).
The output of such classifier is a list of four elements:
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• mod - Anything related to the classifier. The content of mod is kept for
post processing analysis of user defined relevant properties.

• pred - A factor vector containing the prediction made from dat.te.

• prob - A table where posteriori probabilities or equivalent are transferred
in order to calculate decision boundary and margins in accest.

• arg - simply contains a list of arguments.

4 Simple example

This simple is given to show the equivalence between running accest with
different calls. The classification task consists in discriminating the famous 3
iris species. For more fun, a random selection of 30 sample labels have been
permuted:

>data(iris)

>dat = as.matrix(iris[, 1:4])

>cl = iris[, 5]

>lrnd = sample(1:150)[1:30]

>cl[lrnd] = sample(cl[lrnd])

We first define the data partitioning mechanism. In this case, we have
adopted a 10 bootstrap resampling strategy, repeated twice:

>pars <- valipars(sampling = "boot", niter = 2,

+ nreps = 10)

>tr.idx <- trainind(iris$Species, pars)

accest and accest are run in the same conditions and results can be com-
pared:

>ntree = 1000

>set.seed(70)

>accrf <- accest(dat, cl, clmeth = "randomForest",

+ pars = pars, tr.idx = tr.idx, ntree = ntree)

ACCEST.1 Iteration (2): 1 2

>set.seed(70)

>acc.1rf <- accest(dat, cl, clmeth = "sameasrf",

+ pars = pars, tr.idx = tr.idx, ntree = ntree)

ACCEST.1 Iteration (2): 1 2

>summary(accrf)

Method: randomForest
Arguments: ntree=1000
Discrimination: setosa~versicolor~virginica

No. of iteration: 2
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Sampling: bootstrap
No. of replications: 10

Accuracy: 0.823
Margin: 0.499

Overall confusion matrix of training data:
all.pred

all.cl setosa versicolor virginica
setosa 325 31 13
versicolor 22 289 44
virginica 15 74 310

Accuracy on each iteration:
1 2

0.826 0.819

>summary(acc.1rf)

Method: sameasrf
Arguments: ntree=1000
Discrimination: setosa~versicolor~virginica

No. of iteration: 2
Sampling: bootstrap
No. of replications: 10

Accuracy: 0.823
Margin: 0.499

Overall confusion matrix of training data:
all.pred

all.cl setosa versicolor virginica
setosa 325 31 13
versicolor 22 289 44
virginica 15 74 310

Accuracy on each iteration:
1 2

0.826 0.819

5 Simple example for comparing classifiers

An interesting aspect of customising your classifier lies on the fact that complex
task can implemented easily. One of these is the need of proper double cross
validation to for e.g. determine the number of components to use in a PLS
model. Another issue relates to proper validation of classifiers with an embedded
feature selection step where the selection of relevant features must be done on
each individual training set before evaluating classifier predictive abilities using
the reduced data. The following function featselrf illustrates this point: we
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want to test the fact that selecting features with AUC greater than a defined
threshold(thres improves Random Forest classification. During the validation
process, we are also interested in knowing which variables have selected as well
as the average margin of the classifier:

featselrf <- function(data,thres=0.8,...){

dots <- list(...,thres=thres)

## Select the best variables according to the univariate AUC
fs.res=fs.auc(data$tr,data$cl)
listvar<-which(fs.res$stats>=thres)

## Quick fix for case where no feature are selected
## by taking the best one !
if(length(listvar)==0){listvar=which(fs.res$fs.rank==1)}

## Build and predict using listvar
mod=randomForest(data$tr[,listvar,drop=FALSE],cl.tr,...)
mod.mar=mean(FIEmspro:::marg(mod$votes,data$cl),na.rm=TRUE)
prob=predict(mod,data$te[,listvar,drop=FALSE],type="vote")
pred=predict(mod,data$te[,listvar,drop=FALSE])

## For illustration, mod contains some elements that can be processed
## - the list of variables used in the modelling
## - the average training data margin
list(mod=list(vkeep=listvar,mar=mod.mar),

pred=pred,prob=prob,arg=dots)

}

Simple example involving classes ”1” and ”H” in the positive mode of Abr1.
A 10- cross validation repeated 5 times resampling strategy is adopted and the
partitioning of the data (variable tridx) is kept to allow strict comparison of
the models:

>data(abr1)

>dat <- as.matrix(abr1$pos)

>y <- factor(abr1$fact$day)

>l = which(y == "1" | y == "H")

>y = factor(y[l])

>x <- preproc(dat[l, ], y = y, method = c("log",

+ "TICnorm"), add = 10)[, 110:1000]

>pars <- valipars(sampling = "cv", niter = 5, nreps = 10)

>tridx = trainind(y, pars)

Let’s play with the first comparison

>ntree = 1000

>acc.ori <- accest(x, y, clmeth = "randomForest",

+ ntree = ntree, pars = pars, tr.idx = tridx)
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>acc.fs <- accest(x, y, clmeth = "featselrf", thres = 0.8,

+ ntree = ntree, pars = pars, tr.idx = tridx)

The following couple of command lines illustrate the benefits of keeping some
relevant information in the field mod of the designed functions. Initially, one may
be interested to know the actual classifier margin when calculated on the reduced
data set. For this, parse_vec can be employed to retrieve a single value (or a
vector of fixed length) contained in the mod component acc.fs accest result
list

>mod.mar <- parse_vec(acc.fs$mod, "mar")

>print(mod.mar)

1 2 3 4 5
[1,] 0.6048592 0.5891361 0.5512730 0.5718900 0.5998948
[2,] 0.5810958 0.5501153 0.5642818 0.5671209 0.5725256
[3,] 0.5726227 0.5656413 0.6044914 0.6006592 0.5632466
[4,] 0.6327399 0.5544643 0.5418408 0.5573158 0.6018214
[5,] 0.5828614 0.5686539 0.5597689 0.5563240 0.5645886
[6,] 0.5735325 0.5705638 0.5927953 0.5910292 0.5554221
[7,] 0.5901023 0.6084433 0.6115622 0.5595218 0.6087871
[8,] 0.5826032 0.5919817 0.6043900 0.5711402 0.5598140
[9,] 0.5858241 0.5839319 0.5384233 0.5846734 0.5988981
[10,] 0.5810726 0.5813648 0.5948212 0.5974576 0.5565579

Another function has been designed to, this time, retrieve the frequency of
the members of a list contained in the mod component of the accest. In the
illustrated example, we only print out the 5 most frequent variables selected by
AUC:

>var.freq <- parse_freq(acc.fs$mod, "vkeep")

>print(var.freq[1:5, ])

lvar lfreq
P141 32 50
P236 127 50
P257 148 50
P274 165 50
P371 262 50

The following lines consist in aggregating the results into one list. In the
scope of this example is to ease the output and comparison of the results. For
visualisation purposes, names in two columns of lclas have been modified, the
rest have been generated automatically. Therefore, for traceability purposes, it
is advised that these first 6 columns should not be modified.

>lclas = mc.agg(acc.ori, acc.fs)

>lclas

Model Alg Arg
1 "Mod_1" "randomForest" "ntree=1000"
2 "Mod_2" "featselrf" "thres=0.8,ntree=1000"
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Pars Dis AlgId DisId Other
1 "5xNSt-10-cv" "1~H" "Alg_1" "Dis_1" ""
2 "5xNSt-10-cv" "1~H" "Alg_2" "Dis_1" ""

>lclas$cldef[, 7] = lclas$cldef[, 5]

>lclas$cldef[, 6] = c("RF", "AUC+RF")

>lclas

Model Alg Arg
1 "Mod_1" "randomForest" "ntree=1000"
2 "Mod_2" "featselrf" "thres=0.8,ntree=1000"
Pars Dis AlgId DisId Other

1 "5xNSt-10-cv" "1~H" "RF" "1~H" ""
2 "5xNSt-10-cv" "1~H" "AUC+RF" "1~H" ""

The aims of the following section are to get a greater insight into the real
differences between the two classification procedures. As such, mc.summary is a
convenience function to output statistics related to accuracy, AUC and margins
for a selection of models. It is simply called by:

>mcomp.sum <- mc.summary(lclas)

>mcomp.sum

Multiple classifiers predictions summary :

1~H
Acc.mean Acc.sd Mar.mean Mar.sd AUC.mean AUC.sd

RF 0.890 0.029 0.184 0.015 0.933 0.031
AUC+RF 0.915 0.014 0.476 0.015 0.950 0.034

mc.comp.1 tests for significant differences between predictions made by the two
classifiers:

>mcomp.res <- mc.comp.1(lclas, p.adjust.method = "holm")

>mcomp.res

Multiple classifiers comparisons :

1~H
Diff Var t-stat DF pval holm

AUC+RF-RF 0.025 0.018 0.508 49 0.614 0.614

Aggregated ROC curves over each iteration and fold can be directly investi-
gated and plotted

>mcomp.auc = mc.roc(lclas, 1:2, method = "thres")

>plot(mcomp.auc, leg = "AlgId")

Predictive margins for both classifiers are also simply compared:

>mar.iter = mc.meas.iter(lclas, type = "mar", nam = "AlgId")

>boxplot(mar.iter)
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Figure 1: Aggregated FPR and TPR for the two classifiers
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Figure 2: Distributions of the average predictive margins in the two classifiers

9



A simple t.test can then be optionally run to test for mean equality of margins
in the two models:

>t.test(mar.iter[, 1], mar.iter[, 2], paired = TRUE)

Paired t-test

data: mar.iter[, 1] and mar.iter[, 2]
t = -117.187, df = 4, p-value = 3.18e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2992458 -0.2853942
sample estimates:
mean of the differences

-0.29232

6 Multiple classifiers and/or multiple discrimi-
nation problems

Analysis of multiple classifiers performed on several discrimination problems can
become tricky in a sense that it requires a lot of programming to handle similar
tasks on multiple datasets. The aim of this secion is to illustrate an advanced
use of the package to handle such problem in the most effective way.

6.1 List of datasets

One way to alleviate generation of several variables containing data matrices,
class information or validation strategy. Each subset can enter accest and
feat.rank.re analysis without specifying both class and data matrix. Addi-
tionally, each subset can also contain validation parameters so that direct com-
parison between classifiers and feature ranking technique can be easily done.
dat.sel1 is a that function allows generation of a selection of pairwise prob-
lems and/or multiple class problems. For e.g, several pairwise comparisons are
selected and an identical data partitioning is performed on each data subset:

>data(abr1)

>dat <- abr1$pos

>y <- factor(abr1$fact$day)

>x <- preproc(dat, y = y, method = c("log", "TICnorm"),

+ add = 10)[, 110:1000]

>pars <- valipars(sampling = "cv", niter = 5, nreps = 10)

>lpwise = list(c("1", "H"), c("1", "2"), c("2",

+ "3"), c("3", "4"), c("4", "5"))

>dat1 = dat.sel1(x, y, pwise = lpwise, mclass = NULL,

+ pars = pars)

Print out the comparisons available in dat1:

>unlist(lapply(dat1, function(x) x$name))

[1] "1~H" "1~2" "2~3" "3~4" "4~5"
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6.2 Multiple classifier comparisons in a few lines

Function lapply is a useful command to apply a function to a list of elements
in a list. Here the list is the list of data subsets and the function is calling accest
with different parameters. In the following, Random Forest, nlda and SVM are
applied consecutively to each subsets. The main reason why each classification
task are kept apart comes from the fact that either two different algorithms may
share conflictual arguments (e.g. argument scale in nlda and svm) or that the
same discrimination method may be run with two different parametrisations:

>resrf = lapply(dat1, function(x) accest(x, clmeth = "randomForest",

+ ntree = 1000))

>resnlda = lapply(dat1, function(x) accest(x, clmeth = "nlda"))

>ressvm = lapply(dat1, function(x) accest(x, clmeth = "svm",

+ kernel = "linear", cost = 0.1))

Overall, 3x5 accest have been formed. To simplify the handling of these
classifiers, mc.agg is a routine that can be applied to aggregate then all in one
list. The other advantage is that, in this case, only two variables are saved for
later processing.

>lclas <- mc.agg(resrf, resnlda, ressvm)

>save(lclas, dat1, file = "mcexample.rda")

As before, it is also simpler to compare each classifier performance with
mc.comp.1:

>lclas$cldef[, 7] <- lclas$cldef[, 5]

>mcomp.res <- mc.comp.1(lclas, p.adjust.method = "holm")

>mcomp.res

Multiple classifiers comparisons :

1~H
Diff Var t-stat DF pval holm

Alg_2-Alg_1 -0.020 0.015 -0.453 49 0.653 1
Alg_3-Alg_1 0.005 0.014 0.117 49 0.908 1
Alg_3-Alg_2 0.025 0.013 0.597 49 0.554 1

1~2
Diff Var t-stat DF pval holm

Alg_2-Alg_1 0 0 0 49 1 1
Alg_3-Alg_1 0 0 0 49 1 1
Alg_3-Alg_2 0 0 0 49 1 1

2~3
Diff Var t-stat DF pval holm

Alg_2-Alg_1 -0.035 0.010 -0.956 49 0.344 0.688
Alg_3-Alg_1 0.020 0.005 0.806 49 0.424 0.688
Alg_3-Alg_2 0.055 0.011 1.452 49 0.153 0.459

3~4
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Diff Var t-stat DF pval holm
Alg_2-Alg_1 -0.01 0.002 -0.558 49 0.579 1
Alg_3-Alg_1 0.00 0.000 0.000 49 1.000 1
Alg_3-Alg_2 0.01 0.002 0.558 49 0.579 1

4~5
Diff Var t-stat DF pval holm

Alg_2-Alg_1 0.035 0.010 0.956 49 0.344 0.953
Alg_3-Alg_1 0.030 0.007 1.010 49 0.318 0.953
Alg_3-Alg_2 -0.005 0.004 -0.224 49 0.824 0.953

Similarly, ROC curves on a selection of models can be plotted. For e.g., ROC
curves resulting from RF analysis on the five binary comparisons:

>mcomp.auc = mc.roc(lclas, 1:5, method = "thres")

>plot(mcomp.auc, lcol = c("black", "red", "blue",

+ "green", "purple"), llty = rep(2, 5), leg = "DisId")
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Figure 3: Aggregated ROC curves for all comparisons

Also, this can be done on ROC curves resulting from the three analysis on
the first comparison (class 1 vs. class H):

>l = which(lclas$cldef[, 7] == "1~H")

>mcomp.auc = mc.roc(lclas, lmod = l, method = "thres")

>plot(mcomp.auc, leg = c("RF", "NLDA", "SVM"))
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Figure 4: Aggregated ROC curves for the 3 classifiers
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6.3 Multiple feature ranking

A similar approach can be undertake to perform multiple resampling based
feature rankings on multiple dataset. This time, feat.rank.re replaces accest
and ft.agg mc.agg to realise and aggregate feature rankings. Further treatment
and output of the results are performed with summ.ftrank and tidy.ftrank.

7 Parallel computation with accest

>pack.avai <- installed.packages()

>if (any(pack.avai[, 1] == "snow")) {

+ library(snow)

+ clcomp <- makeCluster(2, type = "MPI")

+ clusterEvalQ(clcomp, library(FIEmspro))

+ clusterExport(clcomp, "accest")

+ }

2 slaves are spawned successfully. 0 failed.

>if (any(pack.avai[, 1] == "snow")) {

+ ntree = 1000

+ time1 <- system.time(acc1 <- accest(dat, cl,

+ clmeth = "randomForest", pars = pars,

+ tr.idx = tr.idx, ntree = ntree))

+ time2 <- system.time(acc2 <- accest(dat, cl,

+ clmeth = "randomForest", clmpi = NULL,

+ pars = pars, tr.idx = tr.idx, ntree = ntree,

+ seed = 1))

+ time3 <- system.time(acc3 <- accest(dat, cl,

+ clmeth = "randomForest", clmpi = clcomp,

+ pars = pars, tr.idx = tr.idx, ntree = ntree,

+ seed = 1))

+ time4 <- system.time(acc4 <- accest(dat, cl,

+ clmeth = "randomForest", clmpi = clcomp,

+ pars = pars, tr.idx = tr.idx, ntree = ntree,

+ seed = NULL))

+ }

>if (any(pack.avai[, 1] == "snow")) {

+ time = rbind(time1, time2, time3, time4)[,

+ 1:3]

+ print(cbind(time, time[, 3]/time[4, 3]))

+ }

user.self sys.self elapsed
time1 44.205 12.168 61.188 1.3463299
time2 44.285 12.081 63.540 1.3980813
time3 0.773 0.247 44.700 0.9835416
time4 0.767 0.238 45.448 1.0000000
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>if (any(pack.avai[, 1] == "snow")) {

+ lclas = mc.agg(acc2, acc3, acc4)

+ boxplot(mc.meas.iter(lclas, type = "mar"))

+ }
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Figure 5: Distributions of the average predictive margins for 3 different accest
calls

>stopCluster(clcomp)

[1] 1
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