
Any program is made up of information about data and
operations to perform on the data. Our C program will be
made up of:

• global variable declarations describing the data which the
whole program can use;

• functions describing operations on data, which can in-
clude declarations for variables only that function can
use.

Comments
In addition, the program can (and should!) include com-
ments. Anything between /* and */ is a comment, as is
anything after // on a line. See the function example below.

Variable declarations and types
Variable declarations tell C to allocate memory for data of a
particular type, with a particular name. A variable declara-
tion consists of the type of the variable followed by its name
(arrays are a bit different, but we’ll come to those). Here
are examples of variable declarations for each type. The last
“word” is the name you choose, anything before that is the
type, so short foo declares a variable called “foo” of type
“short.”

short a; integer (whole number) from
-32768 to 32767

unsigned short c; integer from 0 to 65535
long someCount; integer from 0 to -2147483648 to

2147483647
unsigned long ct; integer from 0 to 4294967295
int c; same as short1

unsigned int c; same as unsigned short1

char b; a character of text OR integer from
-128 to 1272

byte v; integer from 0-2553

bool isNoseLong; either true or false4

float wibble; a floating-point number (one which
can have a fractional part, like 2.5)

1 char is just a number, but is typically used to represent a text char-
acter using the ASCII code. For example, 80 is the character ’P’.

2 short is the same as int only on the Arduino — if you’re writing
code on a PC, int is the same as long.

3 byte is a special Arduino type — on most systems this would
unsigned char.

4 bool isn’t actually a C type — it’s a C++ type. You’re actually
programming in C++ at the moment, but without using the C++
advanced facilities like classes and objects.

You can declare several variables of the same type in a single
declaration by separating the names with commas:

int a ,b, fishCount ; // declare three integers

It’s also possible to initialize a variable as you declare it —
as well as saying that the variable exists, you can give it a
starting value:

int q = 60; // give q the in i t i a l value of 60
int a=3, b=5; // set a to 3 and b to 5

Functions
Functions are blocks of statements — actual instructions for
the computer to do something. Functions can have data

passed in to them by another function, and can return val-
ues to those functions which call them. Each function has
a name, and a list of parameters (sometimes called “argu-
ments”) which are the values passed in. These become local
variables (see below) inside the function.

Scope of variables
Functions can also have their own variables — local variables
— which only exist inside the function while it’s running, and
can’t be used anywhere else. In fact, anything between curly
brackets {} can only be used within those curly brackets.
Where a variable can be used is called its scope.

Functions have the form:
returnType functionName (. . . parameters . . .) {

. . local variable declarations . .

. . statements . .
}

Here returnType is the type of the value which must be re-
turned to the calling function, and functionName is the name
of the function. If a function has the special return type void
it doesn’t return anything at all.

Here’s an example of a function named doCalc() which
takes some parameters, has a local variable, and returns a
value. It’s called by another function called process():

/∗ function doCalc returns an integer , and takes two
parameters − both integers , called x and y ∗/

int doCalc(int x, int y) {

int a ; // local variable : an integer called ”a”
a = x∗y; // multiply x by y and store in a
return a−20; // return a minus 20

}

// a function called ”process” which takes no
// parameters and returns nothing . It uses doCalc() .

void process () {
// declare 3 local variables
int a ,b, result ;

// cal l a function defined elsewhere to get values
// for a and b
a = getInput(” f i r s t number: ”) ;
b = getInput(”second number: ”) ;

// cal l doCalc to get the result
result = doCalc(a ,b) ;

}

Returning values
If the function has a return type which isn’t void, it must
return a value to the function which called it. To do this,
use the return statement as shown in the example above, in
doCalc(). The type of this value must be the same as that
given in the function’s definition.

Maths etc.: expressions and operators
Whenever you assign to a variable or pass a value to a func-
tion, you can use an expression. These are combinations of

• literals: actual values like 5, “this string”, 6.4 or true
• variables like count and x (provided they are local to

the current block or are global)
• calls to functions such as myFunction(foo,bar)
• operators which act on pairs of values, like the “+” in

count+6, or on single values like the “-” in “-20”
• brackets so you can control how the operators work:

(6+a)*b is different from 6+(a*b)

1

The most common binary (taking two values) operators are:

+ addition
- subtraction
/ division
+ multiplication
% remainder, or modulus

The most common unary (taking one value) operator is “-”,
which negates a value when placed in front, as in “-20” or
-(b/d).

Increment and decrement
These are special operators which change a variable and re-
turn either its old or new value:

x++ add 1 to x and return the old value
x++ add 1 to x and return the new value
x-- subtract 1 from x and return the

old value
--x subtract 1 from x and return the

new value

Think of x++ as “get variable, then add 1” and ++x as “add
1, then get variable”.

If statements
You can make things happen only sometimes in your functions
by using if... statements. These have the form

if(condition) {
statements...

}

Or

if(condition) {
statements...

} else {
other statements...

}

For example
i f (x>20) { // i f x is more than 20

y=20; // set y to 20
print (x+y) ; // print x+y

}

The condition is an expression which produces a boolean re-
sult (either true or false), or an integer — in which case the
statements inside the block will happen if the result is not
zero. We have special operators which return boolean values:

== equals (do not confuse with =,
which means “assign variable” !)

!= not equal
< less than
> greater than
<= less than or equal to
>= greater than or equal to

There are also useful operators which take two boolean values:

&& and — true if both sides are true
|| or — true if either side, or both, is

true

Finally, the not operator, written as “!”, negates in a logical
sense, turning its expression into its logical negative. Here’s
an example:

i f ((a<10) && (b>20) && ! isRunning()){
. . .

}

can be read as “if a<10 and b>20 and the isRunning() func-
tion does not return true, do the statements in the block”.

Switch statements
Switch statements are used to run different bits of code de-
pending on an expression which can have several different
values — usually integers. They have the form:

switch(expression) {
case value:

statements...
case value:

statements...
case value:

statements...
default:

statements...
}

On meeting a switch, the system will jump to the appropriate
case. Important: if we don’t stop it, at the end of each case
the system will keep going, falling through into the next case.
To avoid this, we usually put a break statement at the end
of each case, which will jump to after the curly bracket at the
end of the entire switch.

The default case is a special case for any values for which
we don’t have an explicit case.

For example, if the expression a/3 could have four different
values (0,1,2,3) we could write

switch(a/3){
case 0:

print (”The value i s zero”) ;
break ;

case 1:
print (”The value i s one”) ;
break ;

case 2: // f a l l through into 3’s case
case 3:

print (”The value i s two or three”) ;
break ;

default :
print (”Out of range”) ;

}

Loops
while loops
The first type of loop is the plain while loop. This runs
its block repeatedly until the expression is false — and the
expression is always checked at the start of the loop. For
example:

x=1;
while(x<=10){

print (x) ;
x++;

}

might print the numbers from 1 to 10, if we had a suitable
print() function.

2

do..while loops
Then there is the do..while loop, which is similar but does
the test at the end:

x=1;
do {

print (x++); // see how x++ works
} while(x<=10);

will print the numbers from 1 to 10 again — but sometimes
it can be important where the test goes!

for loops
The for loop is a kind of shorthand for a while loop. Instead
of writing

start statement
while(condition){

do something
variable change

}

we can write
for(start statement;condition;variable change){

do something
}

A typical use is counting through a sequence, so taking our
earlier example

x=1;
while(x<=10){

print (x) ;
x++;

}

This can be written using a for loop as
for(i =1;i <=10;i++){

print (x) ;
}

It’s possible to declare the variable in the start statement. In
this case, the variable is local to the for loop itself and cannot
be used outside it:

for(int i =0;i <10; i++){
. . .

}

Leaving a loop early: break
It’s possible to jump out of a loop early by using a break
statement:

while(true) { // loops forever
i f (isFinished ())

break ; // but this wi l l end i t
}

Arrays
Arrays are blocks of memory holding multiple values of one
type. To define an array variable, put the size of the array in
square brackets after the name of the variable. For example:

int myArray[3 2] ;

defines an array of 32 integers. Once defined, the individual
elements can be used like ordinary variables, but with the
index of the slot you want to use in square brackets after the
name:

int myArray[3 2] ;
for(int i =0;i <32; i++){

myArray[i]=i ∗ i ;
}

will fill the array with the squares of the numbers 0..31. Note
that array indices start at zero — not one.

It’s also possible to have multidimensional arrays. Here’s a
4x4 array:

int grid [4] [4] ;

You can read this is being “an array of 4 arrays of 4 integers”
— in other words, a 4x4 array of integers. This can be used
by putting each index in its own square brackets:

grid [0] [1] = grid [2] [3] + grid [x] [y] ;

Initialising arrays
The initial values of the slots in an array are undefined, but
you can give them when you declare the array by putting
them in curly brackets:

int array [5]={1 ,2 ,3 ,4 ,5};

will define an array of 5 integers, giving them the values 1 to
5. This works for multidimensional arrays too:

int boxes [2] [2] = { {1 ,2} ,{3 ,4} };

Here, box[0][0] gets the value 1, box[0][1] gets the value
2, box[1][0] gets the value 3 and box[1][1] gets the value
4.

The preprocessor
Before your code is turned into machine code, the compiler
runs it through a separate program called the preprocessor.
This looks for lines which start with a hash symbol #, scans
them for special commands, and modifies the text before it’s
compiled.

#define
One of the most common commands is #define. This will
define a preprocessor symbol. After this, when the symbol is
found anywhere in the program it will be replaced with the
text it was defined as (provided the symbol is not part of
another word, and is not inside a string). For example, if we
had the line

#define PI 3.1415927

at the start of the program, we could write something like
float circ = rad∗2.0∗PI ;

and it would automatically become
float circ = rad∗2.0∗3.1415927;

This is extremely useful for defining constants — values which
look like variables but don’t change.

#ifdef
We can also use #define to do conditional compilation —
compiling parts of our program optionally. If we had some
code like this:

x=y∗10;
#ifdef DEBUG
print (x) ;

#endif

The part between #ifdef and #endif would only become part
of our program if we had

#define DEBUG 1

somewhere before it. We could define DEBUG as anything,
it would still work — what’s important is that it has been
defined.

3

#include
This is possibly the most common preprocessor command.
It simply includes another file into the text of the program.
You’re currently using it to include the definitions of the func-
tions for various Arduino libraries.

The Arduino
Programming on the Arduino requires you to write two func-
tions: loop() and setup(). Neither return any values nor
take any parameters. The setup() function runs once when
the Arduino is switched on or reset. After that, the loop()
function runs over and over again.

However, any local variables defined in loop() will be de-
stroyed and recreated each time it runs — loop() will not
remember anything from the last time it ran!

The serial port
This allows you to talk to your PC. Set up the serial port by
putting

Serial . begin(9600) ;

inside your setup() function. This tells the serial port to
start at a speed of 9600 bits per second. Once this is done,
you can send text to the PC with

Serial . print (x) ;

where x is a variable, string or number. More serial port
functions can be found in your lecture notes, such as functions
to read data from the PC.

Timing
• Stop the program for a time using the delay() func-

tion, which takes a time in milliseconds as its only pa-
rameter.

• Get the time in milliseconds since the Arduino was
switched on or reset using the millis() function.

void setup (){
Serial . begin(9600) ;

}

void loop (){
delay(100) ; // wait 1/10 second
Serial . println (mi l l i s ()) ; // print time since start

}

Reading and writing digital pins
(Skip this if you’re not interested in using the pins directly.)
First, add calls to the pinMode() function to your setup().
to tell the Arduino whether the pin is input or output. Then
use digitalWrite() to write HIGH or LOW to the pin, and
digitalRead() to read HIGH or LOW from the pin. Here’s an
example of an entire Arduino program to flash the LED on
and off, stopping when it reads a digital HIGH from pin 5:

void setup (){
pinMode(13 ,OUTPUT) ; // the output is the LED, pin 13
pinMode(5 ,INPUT) ; // we’re reading pin 5

}

void loop (){
i f (digitalRead (5)==HIGH){

// i f pin 5 goes high , just wait
// forever by looping a 1 second
// delay
while(1){

delay(1000) ;
}

}

digitalWrite (5 ,HIGH) ;
delay(200) ;
digitalWrite (5 ,LOW) ;
delay(200) ;

}

The graphics shield
To use the graphics shield, you need to install the AberLED
library and add

#include <AberLED.h>

at the start of your code, and call AberLED.begin() in your
setup(). Generally, your program will repeatedly draw im-
ages to the display. Each time round your loop, you should:

• clear the “back buffer”
• draw your image on the back buffer
• swap the display so that the back buffer becomes the

front buffer, which is shown on the screen.

I recommend doing all this in a separate function you define
— I typically call it render().

• Clear the display by calling AberLED.clear()
• Set a pixel by calling AberLED.set(x,y,colour) where

colour is RED, GREEN, YELLOW, or BLACK
• Swap the display buffers after drawing by calling

AberLED.swap().

Here’s an example which bounces a dot across the screen:
#include <AberLED.h>
void setup (){

AberLED. begin () ;
}

int x=0; // position
int dx=1; // direction

void render (){
AberLED. clear () ; // clear the screen
AberLED. set (x,4 ,GREEN) ; // draw the dot
AberLED.swap() ; // display the image we made

}

void loop (){
x = x+dx; // move the dot

i f (x==7 | | x==0) // change direction
dx = −dx; // i f we hit the edge

render () ; // draw everything
delay(100) ; // wait a bit

}

Input
• getButton(n) reads the current state of button n —

nonzero (i.e. true) if the button is pressed;
• getButtonDown(n) returns nonzero (true) if the button

was pressed down sometime between the last two swap()
calls.

getButtonDown() is useful if you don’t want a piece of code
to keep repeating once the button has been pressed — you
only want it to happen when it is first pressed.

Make sure you only call AberLED.swap() once in your loop
— getButtonDown() will stop working properly if you don’t
call it, or call it several times.

4

