
Rover walking: a neuroendocrine controller for
switching between rolling and walking

locomotion

Final Report for CS39440 Major Project

Author: James C Finnis (jcf1@aber.ac.uk)

Supervisor: Dr. Mark Neal (mjn@aber.ac.uk)

5th May 2014

Version: 1.2 (Release)
Wordcount: 19920

This report was submitted as partial fulfilment of a BSc degree in
Computer Science (G401)

Department of Computer Science
Aberystwyth University
Aberystwyth
Ceredigion
SY23 3DB
Wales, UK



Declaration of originality

In signing below, I confirm that:

• This submission is my own work, except where clearly indicated.

• I understand that there are severe penalties for plagiarism and other unfair practice, which
can lead to loss of marks or even the withholding of a degree.

• I have read the sections on unfair practice in the Students’ Examinations Handbook and the
relevant sections of the current Student Handbook of the Department of Computer Science.

• I understand and agree to abide by the University’s regulations governing these issues.

Signature ............................................................

Date ............................................................

Consent to share this work

In signing below, I hereby agree to this dissertation being made available to other students and
academic staff of the Aberystwyth Computer Science Department.

Signature ............................................................

Date ............................................................



Acknowledgements

I am grateful to Mark Neal for his supervision and suggestions through this project, and to Elio
Tuci for helpful guidance in the mid-project demonstration.

I’d also like to thank Colin Sauzé and Hannah Dee for helpful comments throughout the pro-
cess; Mark, Dave Price and Dave Barnes for their kind assistance in setting up the Vicon, Lawrence
Tyler for help with using the Vicon, and finally my wife Catrin for useful criticism, advice and
proofreading.



Abstract

Power management is an important issue in planetary rovers. In many cases the largest power
expenditure is locomotion. In addition, planetary surfaces are extremely challenging to drive
across, particularly on powdery slopes. Often rovers can become stuck, expending large amounts
of power to escape (or never escaping at all). Therefore, novel locomotion modalities must occa-
sionally be employed to both save power and get the rover out of trouble.

In this project, novel “walking” gaits are described for an ExoMars Concept-E locomotion
prototype. These are compared with two different plain rolling speeds. The metrics used are
selected based on prior work in the literature, theoretical considerations of their relationship to
power usage, and on statistical analyses of their ability to consistently distinguish between and
rank the different gaits.

The results of tests of all gaits at different inclinations, and under different surface conditions
(i.e. surface packing) are presented, and show that rolling at a relatively high speed is generally
most efficient in all cases, although on some steep, loosely packed runs the rover became stuck
because of shearing forces acting on the soil.

The work demonstrates that rolling at a lower speed is inefficient because the motors were
running near their stall speed. However, an analysis of the failure modes of the walking gaits
shows that it is possible than an alternative low-level control regime may improve their efficiency
markedly.

Furthermore, although a fast roll is generally more efficient, an artificial neuroendocrine sys-
tem is presented which switches between the slow rolling gait and one of the two “walking” gaits,
the input for which was the current. This was found to work well — the rover switched to the
“lurching” mode when on the slope, and back again once on the flat.



CONTENTS

i



LIST OF FIGURES

ii



LIST OF TABLES

iii



Chapter 1 Background & Objectives

Chapter 1

Background & Objectives

In this section, the need for improved power management techniques on planetary rovers is out-
lined, and some existing work using artificial endocrine systems is described (with a brief descrip-
tion of such systems).

The possibility of increasing power efficiency over difficult terrain using the different locomo-
tion modalities available to the ExoMars rover is then discussed, and the idea of using an AES to
switch between the modalities — the “gaits” — is introduced.

Following this, the problems of measuring gait efficiency and finding a switching algorithm
are discussed.

1.1 Background

Planetary rovers, such as the Mars Exploration Rovers Spirit and Opportunity and the Mars Sci-
ence Laboratory rover Curiosity, operate in an extremely constrained power environment. The
MSL has circumvented this problem by using a costly (and controversial) radioisotope genera-
tor [?], which provides a continuous 125W of electrical power from 2000W of thermal power
(which is also used to heat the rover’s components, protecting them from the harsh temperatures
on Mars).

In contrast, the MER rovers and the future ExoMars rover use solar power to recharge batteries
[?]. The solar panels for the MER provide about 140W for roughly four hours per day, some of
which must be used for heating, and over time both batteries and solar panels degrade significantly.
In addition, the amount of solar energy varies greatly during the Martian year, with possible dust
storm activity decreasing it still further.

The latitude of the rover also determines the solar energy availability, with high latitudes being
effectively “out of bounds” for a solar-powered mission: Spirit and Opportunity were limited to
the equatorial regions of Mars between 10◦N and 15◦S.

Therefore, power management on a solar-powered rover is of paramount importance. If the
available power can be utilised more efficiently, it may be possible to extend the range of the rover,
increase the lifetime of the mission, do more science in the available time and even increase the
range of available landing sites.

1 of ??



Chapter 1 Background & Objectives

1.1.1 ExoMars and the ENDOVER project

The author has previously worked closely with Mark Neal and colleagues at EADS on the EN-
DOVER project (Mars Rover Autonomy using Endocrine based Algorithms). Using a mission
simulator based on both solar energy availability information gleaned from the MER mission, and
a detailed power usage model of the ExoMars rover, this project studied the possible gains from
using an artificial endocrine system.

1.1.1.1 Artificial endocrine systems

Artificial Endocrine Systems (AES) are a relatively new technique in biologically inspired com-
puting, in which Aberystwyth has taken a pioneering role [?, ?, ?].

In the biological endocrine system, hormones are released from endocrine glands in response
to neural stimuli, and remain in the body after release with their concentrations decaying over time.
These hormones modulate the behaviours of cells around the body which have the appropriate
receptors. In many cases, these cells are neurons, and in these cases a hormone causes the neuron
to respond differently. This provides two new features: a broadcast model of communication, and
a memory — a stimulus may continue to have an effect on the system after it has ceased, for as
long as the concentration of the relevant hormone remains significant.

In the prototypical AES as described in [?], the hormones exist as global scalar values which
modulate the connection weights of an artificial neural network (ANN). This is shown in Fig-
ure 1.1, which assumes only a single hormone exists in the system.

w1

w2

wn

Σ
Summation

function

inputs

connection
weights h

hormone concentration
modulates weights

Activation function,
typically sigmoid

output

Figure 1.1: A simple single-hormone artificial (neuro)endocrine system, shown modulating the
connections of a single neuron.

This simple system has some powerful new properties compared with ANNs, the most notable
of which is the memory effect mentioned above. In a standard ANN, the output of the network is
a function of the input alone; whereas in an ANN+AES, the output is a function of the input and
all the previous hormone stimuli. Applications of AESs include:

2 of ??



Chapter 1 Background & Objectives

• short-term global behaviour modulation, such as modifying the behaviour of a robot in a
hazardous situation or environment;

• long-term modulation, such as dealing with low power conditions [?];

• homeostasis — maintaining the state of a system by regulating internal variables [?];

• planning [?];

• cyclic behaviour, where a periodic function controls hormone release.

In the case of ENDOVER, remarkable efficiency gains were seen in both the duration of the
mission and also in the management of the battery charge levels [?], showing that using artificial
endocrine systems to change the behaviour of a rover during a mission can be a useful approach
to power management.

1.1.2 Further work into power balancing

The author then went on to perform independent research into artificial endocrine systems1, con-
structing a system to balance power usage across a wheeled rover [?]. This approach demonstrated
that AES techniques can be useful in rover control over short timescales, as well as in mission
planning.

1.1.3 Rover design and the possibility of “walking”

Most existing planetary rovers (including the MER and MSL rovers) are built around a“rocker/bogie”
system as shown in Figure 1.2.

chassis connection

bogie joint

bogie

rocker

Figure 1.2: The rocker-bogie configuration currently favoured by NASA.

In this system, two wheels on each side are on a bogie, which is connected to the third by a
rocker connected to the chassis. The two sides are connected by a differential, such that when
one side’s rocker rotates, the other rotates in the opposite direction. This system helps equalise
the loading across the rover both on transit and during landing, where significant forces impact
the suspension [?], but requires complex mechanics which are prone to failure. The ExoMars
“Concept-E” system provides even loading through constant contact of all wheels with the surface,
without a cross-linked differential [?, ?].

1Strictly speaking, the system constructed in this work was an artificial paracrine system, modelling how closely-
connected tissues communicate within an organism.

3 of ??



Chapter 1 Background & Objectives

Concept-E is a “three-module concept”: there are three independent suspension modules with
two wheels each, each module having a central freely rotating pivot point [?] as shown in Fig-
ure 1.3. Each of the six wheels has three degrees of freedom: drive, steer and lift as shown in

Figure 1.3: Configuration of the suspension modules and wheels in the ExoMars Concept-E
chassis, with wheel numbering.

Figure 1.4.

Lift

Steer

drive

Figure 1.4: The rotation axes for each degree of freedom on each wheel in the ExoMars Concept-
E chassis

• The drive motors rotate each wheel around its axis, rolling the rover across the terrain

• The steer motors rotate each wheel around the vertical axis, allowing the rover to turn or (if
all wheels are rotated to the same angle) roll in a “crab” fashion

• The lift or walking motors rotate each wheel’s leg at the point where it meets the chassis,
allowing the leg to be swung forwards and backwards. This functionality was originally

4 of ??



Chapter 1 Background & Objectives

intended to allow the legs to be stowed during the rover’s flight to Mars, minimising the
space taken in the spacecraft, but is still available after landing.

More details of the rover are available in Appendix A.

1.1.4 “Walking” and power efficiency

It is probable that simply rolling on all six wheels limits the rover to relatively flat and well-packed
soil, because of the power expense of trying to roll through loose or slipping soil. In addition, there
is a considerable risk to the rover of becoming stuck in such soil, as eventually happened to the
Spirit rover. The ExoMars rover, however, has the ability to rotate its legs parallel to the rover
body, permitting the development of additional locomotion modalities.

One example of such a modality demonstrated on a four-wheeled rover is “inching”: a two-
phase “gait” in which the forward wheels roll forwards while the back wheels remain static, after
which the back wheels roll forward while the front wheels remain static. This gait shows an
very large increase in tractive force (approximately double) caused by a “unified deep soil mass”
underneath each static wheel [?].

Little work has been done on such “hybrid” gaits on six-wheeled rovers such as ExoMars —
most research on walking with wheeled-legged robots has concentrated on rovers which are able
to lift their legs above the surface to swing them forwards [?], thus emulating the gaits of legged
robots.

1.1.5 Implementation of gaits

Biologically, gaits are thought to be the result of neural structures termed “central pattern gener-
ators”: collections of neurons which produce a cyclic patterned output even when disconnected
from any inputs. Evidence for CPGs in the spinal cord of vertebrates is discussed in [?], which
describes how a CPG generates “alternating activity in groups of flexors and extensors.” It is likely
that a successful gait system will, in some way, be a model of biological CPGs.

Biological evidence for CPGs shows that there appears to be a number of such systems as-
sociated with each limb. This implies achieving a gait may require an interlocking system of
“machines”, each producing a different behaviour and modulating each others’ behaviour (a “be-
havioural” system in Wettergreen and Thorpe’s classification [?]).

While an attempt was made to implement gaits using a simple sequence of motor commands,
the solution eventually arrived at in this study was a such a behavioural system, built around
Brooks’ subsumption architecture [?]. This is a bio-inspired system, given how closely it resem-
bles the arrangement of CPGs postulated in vertebrates.

1.1.6 Different efficiencies at different inclines

It is likely that different gaits (including plain rolling) may have different efficiencies in different
circumstances: the most simple example being the incline along which the rover is driving.

Other parameters which could have an effect include the condition of the surface, the number
and type of solid obstacles (e.g. small boulders) and the lateral inclination. However, the scope of

5 of ??



Chapter 1 Background & Objectives

this project is necessarily limited by time and the available facilities.

Therefore it was decided that an investigation be made into the relative efficiencies of such
gaits — first looking into possible metrics — at different inclines, and then an attempt be made
at constructing a controller to switch between them as required. However, an attempt was made
to perform the experiments on “packed” and “loose” soil, although no suitable equipment for
measuring this quantitatively was available.

1.1.7 Summary

In this section, we have discussed power management in planetary rovers and compared the wheel
configurations of such rovers. We suggest that the “walking” motors of the ExoMars rover may be
suitable for executing “gaits” which have improved efficiency over difficult terrain. We will now
analyse the problems involved in generating these gaits, evaluating them, and switching between
them automatically.

1.2 Analysis

This section outlines the end goal of the research, and the subsidiary goals which needed to be
achieved. This is followed by a brief discussion of some of the issues involved, which informed
and limited the research questions. The research questions themselves follow.

1.2.1 Initial analysis

The ultimate goal was to construct a rover which can switch between gaits, selecting the most
efficient gait for the circumstances.

Given the limited time and facilities available, “circumstances” were limited to a two terrain
parameters: inclination and soil packing. Inclination is easy to vary: the Planetary Analogue
Terrain Laboratory (see Section 3.2) has a sloped section for the rover to traverse, which has a
roughly sigmoid profile permitting a large range of inclinations (see Figures 4.2 and 4.1). Packing
is more difficult, because no facilities were available to measure this, so a simple binary value,
“packed” or “loose” was selected.

In order to switch between gaits, gaits needed to be constructed and analysed for efficiency;
therefore suitable efficiency metrics needed to be found.

1.2.2 Finding an efficiency metric

Metrics used by most existing studies are based on wheel slip — how much the rover wheels rotate,
compared with how much the rover is moving [?,?]. However, this may not be the best measure to
use on a planetary rover because it requires a highly accurate ground truth for the velocity. Most
rovers rely on visual odometry, which can achieve an reasonable level of accuracy in a feature-rich
environment but has problems with featureless, sandy areas: the precise areas where wheel slip is
likely and gait switching may have benefits [?].

6 of ??



Chapter 1 Background & Objectives

Therefore another efficiency metric should be found, relying entirely on interoceptive sensors:
sensors which measure the internal rover state rather than external properties [?]. This process
was the subject of the first series of experiments. Nevertheless, metrics involving slip were also
investigated.

1.2.3 Construction of gaits

Software to generate different gaits was created (including ordinary rolling). There are many tech-
niques for constructing such gaits, from simple pre-programmed sequences to bio-inspired solu-
tions, but the solution selected should be a good fit for control by an AES in the final system. For
this reason, Rodney Brooks’ subsumption architecture was used, as described in section 2.10.5.

1.2.4 Research questions

The analysis described above leads to the following research questions:

Question 1: Is there a metric based on interoceptive sensor data which is a sensi-
ble measure of efficiency, is sufficiently accurate, and is practical on our ExoMars
Concept-E chassis-based prototype rover?

Question 2: Is there a locomotion technique (or “gait”) for the our rover, involving
both the drive and walking motors, which is more efficient (under some metric) than
plain rolling when used on an incline, on both packed and loose soil?

Question 3: If so, is it possible to design an artificial endocrine or neuroendocrine
system, controlling a subsumption architecture, which will switch between locomotion
techniques automatically as the given metric demands?

1.3 Research method

Here, the overall method is described, with statements of principle. In summary, the process is:

• investigate how to construct wheel-walking gaits;

• construct gaits to investigate;

• investigate metrics for efficiency;

• evaluate the gaits, comparing them against each other and plain rolling;

• select a wheel-walking gait which is more efficient that rolling up an incline, based on the
metric;

• construct a neuroendocrine2 controller which selects between rolling and wheel-walking, in
response to the same or a similar metric to that found by the previous stage;

• compare this combined gait with both rolling and the original gaits.
2The terms “AES” and “neuroendocrine system” are used in a largely interchangeable way in this document. The

systems discussed are artificial unless stated otherwise, and AESs usually have a neurally-inspired component — al-
though that presented in Section 2.11 uses activation functions rather than perceptrons.

7 of ??



Chapter 1 Background & Objectives

1.3.1 Principles

It was decided that all experiments should take place on the rover. A very brief attempt was
made to construct a rover simulator using ODE, but this was abandoned after it was realised
that simulator would be extremely large and highly inaccurate given the complex nature of the
soil/wheel interactions. Any data collected from such a system would probably be completely
irrelevant to a real rover.

A very simple simulator was later incorporated into the C++ robot control library, associated
with a graphical simulation of the rover, but this was only used to help debug the gait and AES
systems — no actual data was collected.

Each experiment (with the exception of the final runs of the AES because of time limitations)
was performed at least five times, in identical conditions.

1.3.2 Gait construction

An obvious issue is that there are many ways to implement a wheel-walking gait. A more thorough
investigation needs to analyse the space of possible gaits in a methodical way, and evaluate each
gait. With the time given, only two walking gaits were constructed and analysed, based on a study
of the literature.

1.3.3 Gait experiments

Five runs of each gait (including the two rolling speeds) were performed on packed and loose
surfaces, both along a flat section of approximately 3m and up a roughly sigmoid slope with a
maximum incline of about 20◦.

1.3.4 Evaluating metrics

The results of the experiments on the flat were correlated across runs using Spearman’s rank coef-
ficient, generating correlation matrices showing the consistency of each metric. Rank correlation
was used because of the nonlinear and non-normally distributed nature of the metrics when mea-
sured against inclination. Unfortunately, the rover’s sensorium provided only four useful metrics:
the exteroceptive slip ratio, Yoshida slip (see Section 4.3.1) and current/velocity ratio; and the
interoceptive current measurement.

The metrics were also analysed from a theoretical standpoint, and from the point of view of
their deployability on an actual planetary rover (as alluded to in Section 1.2.2). Interoceptive met-
rics were correlated with the extroceptive metrics: interoceptive metrics which correlate strongly
with a theoretically extroceptive metric are more useful than the (possibly undeployable) extro-
ceptive metric.

1.3.5 Evaluating metrics and gaits on the slope

The aim here was to answer the first and second research questions — is there a metric which
shows differences between the various gaits at different inclinations, and is there a point at which

8 of ??



Chapter 1 Background & Objectives

one gait becomes more efficient than another?

The performance of each gait on the slope was analysed with the best of the metrics selected in
the previous section, in order to find which performed best under which circumstances. Because
of the complex behaviour of the gaits across the different runs, much of this analysis was quali-
tative or non-parametric in nature — Spearman’s rank coefficient was used to test the metrics for
consistency, for example. Attempts were made to analyse the behaviour in some depth.

1.3.6 Constructing a switching controller

A switching controller was then added to the system, which allowed the rover to switch between
gaits using an AES fed by a suitable metric. This was tuned manually, and demonstrated to work.
Unfortunately there was insufficient time to analyse its performance fully.

9 of ??



Chapter 2 Technology and Engineering

Chapter 2

Technology and Engineering

This chapter will describe the software and experimental setup developed for the study, and will
also briefly cover the existing technology used. In many cases technology previously developed
by the author was reused, and in these cases this will be clearly stated, and the technology will be
fully documented in an appendix.

2.1 Overview

This section will describe the main elements of the experimental setup:

• The rover onboard systems;

• a laptop connected to the rover, which received monitoring data and sent commands using
a monitoring system previously developed by the author;

• the rover scripting language, which ran on the rover and which was run by the experimenter
via an SSH session from the laptop;

• the motion capture system, which captured data separately from all other systems;

• the collate scripts used to pull the rover and motion capture data together.

The setup is outlined in Figure 2.1.

2.2 Rover systems

The “Blodwen” rover (Figure 2.2) used in the experiments is a half-size ExoMars Concept-E
prototype (as introduced in Section 1.1.3). While the rover chassis, wheels and gearing are of
outside manufacture, the rover’s control system was developed as part of the author’s previous
work where it was used to study paracrine control (see Section 1.1.2) and prototype an AES-based
mission scheduling system (Section 1.1.1). It is described more fully in Appendix A. A thorough
description of the control system can be found at [?].

10 of ??



Chapter 2 Technology and Engineering

Vicon motion
capture

Rover Angort
script

rover
odometry,
currents

monitor program

UDP data
messages

capture
to file

capture
to file

Python collate
data script

final
data

experiment post-processing

rover
position

data

UDP variable
changes

remote login

laptop

rover

script system/
rover library

Figure 2.1: A diagram showing the main IT elements of the experimental setup, illustrating the
data flows between them.

The rover carries a wireless router and two PCs, one for locomotion and one for possible
future science (currently unused). A small laptop computer was connected to the rover’s network,
from which the experimenter logged into the rover and started the rover scripting language (see
Section 2.6) with the appropriate script. Commands were then issued to reset and calibrate the
rover, and start the experiment code.

The scripting language system sent data back to the laptop over UDP, where it could both be
viewed and captured by the monitor system (see Section 2.3). The monitor could also send signals
to the rover, and this was used to start the experiments. During the run, additional data was sent
from the rover via the scripting language, giving details of additional variables pertinent to that
experiment (e.g. hormone levels).

2.3 The rover monitor program

The monitor program was used to monitor the progress of the rover and also capture logging data.
It is a medium sized application which developed during by the author in as part of the Tethys
2 project for EADS Foundation Wales, originally for the purpose of monitoring robotic boats.
Because the requirements were somewhat fluid, it was made to be extremely configurable. It found
extensive use during last year’s research, both for its original purpose, and also for monitoring the
rover during the experiments for a conference paper [?].

Use of the monitor program in the experiments made it easy to check the rover’s internal states
(driver unit temperatures, currents, wheel angles etc.), and gain an intuitive grasp of the behaviour
of the gait algorithms as they were taking place (by showing current draw, etc.) Since configuration
files already written for the rover, and outputting variables from the rover is so straightforward, it
was obvious that the monitor should be used.

The program reads input on a UDP port, and allows it to be displayed by a number of widgets,

11 of ??



Chapter 2 Technology and Engineering

Figure 2.2: The rover “Blodwen” used in the experiments, built around a half-sized ExoMars
Concept-E chassis.

including graphs, gauges, maps and status indicators. These are set up from a simple configuration
file. A brief description of the data protocol used is given in Section B.1.

In addition, data can be sent in the opposite direction via a UDP port on the remote, so widgets
can be specified which modify the state of the remote. These can be sliders, switches or momentary
buttons.

The monitor can also capture the data it is monitoring to a log file. This facility was used to
capture the experimental data coming from the rover.

To monitor a process, the user writes a configuration file specifying the variables which are ex-
pected in the input, how much previous data is to be stored for that variable (for graphing) and the
widgets to be built. A simple annotated example of a configuration file is shown in Appendix B.2,
as is the configuration file used for the current study (Appendix B.3).

A screenshot of the rover’s monitor is shown in Figure 2.3.

2.4 Data fusion

During a run, rover position and orientation data was also captured by a motion capture system as
described in Section 2.5. This system runs over a private network to which neither the rover nor
laptop have access, therefore data was captured separately and fused later.

Therefore, the experiment was started (by setting a variable in the rover over UDP) and motion
capture initiated at the same time. This was done simply by synchronous button presses — the
timescales of changes in the data are sufficiently long that any slight (< ∼0.1s) difference in start
times is insignificant. The go variable in the logged data, set by a packet sent from the monitoring
system, indicated whether the experiment is running. Data where go 6= 1 was stripped out by the
“collate” script which fuses the data (as described in 3.5).

12 of ??



Chapter 2 Technology and Engineering

Figure 2.3: A screenshot of the monitor program, monitoring the rover during a (simulated)
endocrine experiment.

2.5 Motion capture

The Planetary Terrain Analogue Laboratory (PATLab)1 in which the experiments took place has
a Vicon motion capture system. This consists of about a dozen cameras covering most of the
“Mars yard” — the area covered in soil simulant. Initially, it was thought that this system would
be unavailable or unsuitable for the required experiments, so some time was spent researching an
alternative. This is discussed in Appendix ??.

2.5.1 Introduction

Vicon are among the world leaders in motion capture systems, and a full Vicon MX system with
12 T-series cameras is installed in the PATLab. These can provide millimetre accuracy over the
entire experimental area. This system (in common most motion capture systems) uses a set of
active near infra-red cameras.

These cameras illuminate and capture images of the volume to be studied. Objects under study
are marked with small, highly reflective spherical markers. Corresponding markers in the images
are detected and the position determined using 3D vision techniques. Rigid objects made up of
a set of markers can be labelled, and then the location and orientation of the centroids of these
objects can be traced.

The Vicon system is on its own private network, with only one (Windows-based) computer
connected. This is because of the large quantity of data which can produced, at up to 120 frames
per second.

1See Section 3.2

13 of ??



Chapter 2 Technology and Engineering

2.5.2 Tracking an object

The first task was determining how to track the rover as a single object. Nominating the set of
markers which made up the rover in the on-screen capture image was relatively easy, but as the
rover moved, the object appeared to rotate wildly and the “lock” was often lost altogether. This
was due to the initial positioning of the markers: to track the object successfully, it must have a
unique appearance from all angles — otherwise, the vision algorithms are likely to get confused
between different poses.

Therefore the markers were repositioned in a new configuration, forming a quadrilateral on the
roof of the rover with one corner “pulled in”, a marker in the middle, and an extra marker on the
top of the rover’s “flagpole.” This arrangement is shown in Figure 2.4, with the image modified
to show the markers’ positions in red, with crosses in black. The true colour of the markers is
silver-grey, as in Figure 2.2.

Figure 2.4: The positions of the fiducial markers on the rover, shown in red with crosses.

2.5.3 Recording the track and synchronising

The next task was recording the rover’s track across the surface. Vicon’s iQ software produces
files in a proprietary format, which was of little use. There is, however, a comprehensive post-
processing system which allows a set of filters to clean up the data and save in a variety of formats.

For these experiments, the existing example pipeline for cleaning the data was supplemented
with a final stage to export to CSV. This final stage exports a 7 column CSV file describing the
position and orientation (as Euler angles) of the rover, against frame number. The coordinate
system of the Vicon is shown in Figure 2.5, with a crude sketch of the Mars yard and rover track.

Synchronising this data with the data captured from the rover itself was achieved simply by
starting the capture at the same time as starting the rover running, and the data from each file were
merged using a Python script (see section 3.5 below).

14 of ??



Chapter 2 Technology and Engineering

x

z

y

rover

slope

Figure 2.5: Coordinate system of the PATLab Mars Yard in the motion capture system. The flat
and slope experiment tracks are shown in yellow.

2.6 Rover scripting system

The code for all the experiments was written in Angort, the language briefly described in Sec-
tion 2.6.1 and more fully documented in Appendix ??. Its purpose of each experiment’s script
is to generate a gait (or simple roll) and send a continuous stream of information to the monitor
(see Section 2.3). In addition, each script manages starting the experiment in such a way that the
capture can be synchronised with the start of data capture on the Vicon motion capture system.

2.6.1 Angort

Over the last year, a C++ library was built for high-level control (as detailed in Appendix A.7).
However, C++ is not suited for controlling the rover in real-time. For this purpose, the author’s
own command and scripting language Angort was used [?].

Originally developed as part of research into language design and implementation, Angort has
the advantage of being able to control and monitor the rover efficiently in real time — for example,
to set the required speed of all the drive motors a simple function (often referred to, following the
Forth usage, as a “word”) could be defined:

:d |speed:| wheels each { ?speed i!drive };

which could then be used thus:

2500 d

to set the speed to 2500. To give a brief flavour of the language, here is an annotated version of
the d function:

:d |speed:| # begin defining a word with 1 parameter "speed", and no locals
wheels # push the predefined range "wheels": numbers from 1 to 6
each { # start an iterator over the range

?speed # push "speed" onto the stack
i # push the wheel number onto the stack
!drive # set the speed of wheel i to the given speed

} # end loop
; # end definition

15 of ??



Chapter 2 Technology and Engineering

Angort is a concatenative programming language, in which all expressions denote functions which
manipulate data on a stack — similar languages include Forth, PostScript and Joy. For example:

4 5 + .

will stack the value 4, then 5, then remove the two values on the stack and replace them with their
sum, before printing them2.

2.6.1.1 Rationale for use

The first few experiments were done using Angort because a scripting language environment based
upon it already existed. This was written to help control the rover in earlier research. However, it
was initially envisaged that the more complex parts of the code, such as the gait systems, would
be written in C++.

However, when the first attempts were made to develop a subsumption architecture in C++, the
code rapidly became large and complex, primarily because of the need to pass differently-typed
values (and nil values) through the system in a sensible way. An attempt was therefore made
to write the system in Angort, which was surprisingly easy. Therefore Angort was used for all
experimental development, with a few extra functions written in C++ (for communication with the
monitor program and rover control).

While it would have been possible to use another scripting language such as Lua or Python, it
would have taken prohibitively long to learn how to interface C++ to these languages. In addition,
Angort’s terse syntax made it suitable for real time remote control, which would have been more
difficult in either candidate. A very brief introduction to the language is presented in Section 2.7
with reference to code used in the experiments. A more full reference is in Appendix ??, and code
snippets throughout this document are heavily commented.

2.6.2 Rover scripting environment

Angort is easily incorporated into a program, consisting of a very easy-to-use C++ library. There-
fore building a simple application to control the rover was extremely simple, and was part of work
undertaken during the industrial year. Much of this code was not developed for this study, but a
list of the rover control words added is given in Appendix ??.

2.6.3 Updating in the scripting application

An important aspect of the scripting application is how the rover data is updated, and how data
is received from and sent to the monitor. When the interpreter is idle (i.e. at a command prompt
waiting for input) a thread repeatedly calls update() on the rover object (see Appendix A.7).
This sends a request to the rover hardware to fetch data on all sensors, ensuring the data objects
are up to date. The handleUDP function is also called, which writes the rover data to the UDP
monitor (the code for handleUDP is given in full in Appendix B.1).

2This is also a line of valid Forth, an early robot control language which was a major inspiration.

16 of ??



Chapter 2 Technology and Engineering

This ensures both that Angort command queries always have up-to-date data, and that the
monitor program’s data is kept up-to-date, when the system is idle. This is very important when
remotely controlling the rover.

However, this automatic system is disabled during script execution, so the running script must
periodically perform the sequence

update handleudp

This is typically done in every cycle, but takes a finite amount of time (∼ 0.3s) because of the
amount of data which needs to be transferred over the relatively slow serial line between the PC
to the rover hardware, and between the master Arduino and the motor drives slaves over I2C.

2.7 Experiment code

The rover scripting system has a file which is loaded automatically before any other script, called
script.ang. This contains both remote control elements and elements common to all experi-
ments. The source code for this file is given in full in Appendix D.1.

Some important words (Angort functions) for managing experiments are defined in this file:
expStart and expUpdate. These are worth describing in some detail, from the point of view
of both their functionality and familiarisation with the language, and this is done in Appendix D.2.
In summary, however:

• go is a UDP property — syntactically identical to a global variable, it can also be set by a
UDP packet from the monitor system. The EXP GO switch on the monitor sets this value,
starting the experiment.

• expStart zeroes all motor positions and speeds, resets the odometry, and waits for the go
property sent from the monitor to become true.

• expUpdate updates the rover data (which can take some time), polls for incoming UDP
data, and sends UDP data to the monitor. It then returns true if the experiment has been
halted, by checking the value of go.

2.8 The rolling experiment code

These two words are used to build the simple rolling experiment code, used to evaluate plain
rolling locomotion across the surface. This is very brief:

:rollexp |speed:| # one parameter: speed, no locals.

reset calib # reset the rover and send calibration data
expStart # wait for the experiment to start

# once started, set the desired speed

?speed setdriveall

# and loop, updating and handling UDP, until go becomes
# false.

17 of ??



Chapter 2 Technology and Engineering

{
expUpdate ifleave

}
"Stopping.".

0 setdriveall # stop all drive motors
0 setliftall # centre all lift motors (just in case)
0 setsteerall # centre all steer motors (just in case)

;

The rover is first calibrated with reset calib (to set up the internal parameters) and the
setdriveall word (defined in script.ang) sets the motors to the commanded speed, read
from the parameter.

There follows the main experiment loop. Because driving requires no more commands to be
sent to the rover, this simply calls expUpdate and leaves the loop if it returns true. Finally, a
message is printed and all the motors are set to known positions.

2.9 Simulator

During gait development, it was found that bad gait code would often cause the rover to behave
erratically and possibly dangerously. In addition, determining how the legs and wheels were
behaving was very difficult. Therefore, the simulation built into the PC library was improved,
and a new visual simulator using the same UDP data as the monitoring program was written.

2.9.1 Internal rover library simulator

Similar problems occurred during development of the rover, so a very crude simulation was built
into the PC library last year. This is enabled by instantiating the library with an optional argument,
which is done by calling the rover scripting application with the -s command line option. In
simulation mode, the library will not attempt to communicate with the hardware.

The simulation is very basic — all motors move to their commanded speeds and positions
with lag, using the simple exponential moving average: if the desired position is d and the actual
position is a, then

at ← kat−1 + (1− k)dt−1

where k is the smoothing constant. Originally, k was the same for all motors, but this proved
deceptive — desynchronisation of the alternate gait was not seen in simulation because of this.
Therefore a modification was made, and k is now very slightly different for each motor. A crude
simulation of current was also used in endocrine switching tests, where current is estimated as a
linear function of the motor speed (for drive only).

2.9.2 Graphical simulator

It was still extremely difficult to debug gaits, because the there was no visual output from the sim-
ulator. Therefore, for this project, a few hours were spent writing a 3D simulation of the rover in
Python and OpenGL. This receives the same UDP packets as the monitor system (see Section 2.3)
and draws a small rover on the screen. In addition, it relays the same information to another port

18 of ??



Chapter 2 Technology and Engineering

so that the monitor can still run. This system proved invaluable during development, both for de-
bugging and safety reasons. Source code is in the electronic submission, in the project/draw
directory.

A screenshot is shown in Figure 2.6.

Figure 2.6: A screenshot of the graphical rover simulator.

2.10 Walking gait construction

This section describes how the walking gaits were constructed, the simple rolling “gait” already
having been discussed in Section 2.8.

As has been mentioned in Section 1.1.4, little work has been done on walking gaits in rovers
like ExoMars, which is required by its suspension to keep all wheels on the ground. Walking
usually involves lifting some legs, moving them forward, then putting them down again, which
ExoMars cannot do.

One possible approach is “inching” — repeatedly lengthening and shortening the wheelbase
by rolling the back and front wheels forwards, as referred to in the aforementioned section. This
achieved a remarkable improvement in tractive force, indicated by a large reduction in slip for the
same amount of backward force applied by a drawbar [?]. The first gait developed for this project
is “lurching” — a version of inching for a six-wheeled rover.

The other gait developed is the “alternating” gait, which is inspired by the “alternating tripod”
used by some insects (and many legged robots).

19 of ??



Chapter 2 Technology and Engineering

2.10.1 Basic motions — “roll” and “push”

Both the lurching and alternating gaits are made up of two basic motions: rolling and pushing,
shown in Figure 2.7.

wheel starts in back position

wheel is pushed forwards by lift
motor, assisted by slight drive 
motor rolling, so the wheel does
not slip on the surface.

wheel starts in forwards position

wheel is pushed backwards by
lift motor, while the drive motor
is braked - this will push the rover
forwards.

"Push" motion"Roll" motion

Figure 2.7: The two basic motions of which the lurch and alternating gaits are comprised.

• Rolling consists of moving the leg forwards while rolling the wheel along the ground, so
that the wheel rolls along the surface without slipping.

This is achieved by setting the control cap of the lift motor to higher than usual3, so that it
will respond to an error with more torque, while setting the gains of the drive motor to very
low. The result is that the drive motor provides just enough torque to keep the wheel rolling
smoothly along the ground, while the lift motor actually moves the wheel forwards.

• Pushing simply consists of swinging a leg from a forward position, where the wheel is
ahead of its normal position, to a backward position. It is the pushing action which exerts a
force against the surface, moving the rover forwards.

It is achieved by simply commanding the lift motor to move to the given position with the
control system’s parameters set normally.

2.10.2 The “lurching” gait

This is the simplest gait to understand, and is shown in Figure 2.8. A video of this gait is also
available4, see Table E.1. This gait begins by pushing all the wheels into a backward position,
so that the rover itself is slung forwards. Then each pair of wheels, starting at the front, rolls
forwards. To complete the gait cycle, all the wheels are then pushed backwards. It is this last
motion that gives the gait the characteristic “lurch.”

Because all the wheels push together the action is a simple rotation of the rover around the
axis joining the wheel pairs, and none of the wheels actually change their positions. Instead, the
rover body moves forwards.

3All motors are PID controlled, but the P and D gains of the lift and steer motors are currently zero, so motors are
controlled by I-gain only. This integral term has two extra parameters: decay and cap, which determine the geometric
decay and maximum magnitude of the error.

4https://www.youtube.com/watch?v=ufw0CnLncjY

20 of ??



Chapter 2 Technology and Engineering

All wheels push back,
rotating the rover forwards

Front pair roll forwards,
rover remains stationary

Middle pair roll forwards,
rover remains stationary

Back pair roll forwards,
rover remains stationary All wheels push back,

rotating the rover forwards

Figure 2.8: The lurching gait

2.10.3 Alternating gait

This is a rather more complex gait which is based on the commonly-used “alternating tripod” [?,?],
originally inspired by the gait of cockroaches (although cockroaches often use a more stable gait
in which four legs are on the ground at one time [?]).

In the alternating tripod, the legs form two triangles — left-front and back with right-middle,
and right-front and back with left-middle. One triangle is always on the ground providing support,
while the other is being lifted and moved forwards. Thus, the animal or robot is always on a stable
base. The action is shown in Figure 2.9.

Lift triangle 1 and swing
forwards

Lift triangle 2, lower triangle 1,
and push forwards

Lift triangle 2 and swing
forwards

Lift triangle 1, lower triangle 2,
and push forwards

Figure 2.9: The alternating tripod gait used by some insects and many hexapod robots. Dark
grey indicates that a leg is lifted and not in contact with the surface.

2.10.3.1 The rolling/pushing implementation

It is not possible to implement this gait directly on the Concept-D chassis because the suspension
guarantees that all wheels are in contact with the ground, and the wheels cannot be lifted with-

21 of ??



Chapter 2 Technology and Engineering

out moving along the surface. However, it is possible to approximate it using the two motions
introduced above:

• First action: triangle 1 rolls forwards, while triangle 2 pushes backwards.

• Second action: triangle 2 rolls forwards, while triangle 1 pushes backwards.

This is shown in Figure 2.10. One complexity introduced is that the legs rolling forward must

Triangle 1 rolls back,
triangle 2 pushes forward

Triangle 2 rolls back,
triangle 1 pushes forward

Start of gait: triangle 2 rolls back,
triangle 1 rolls forward

Figure 2.10: The alternating gait

move faster than the legs pushing backwards — those latter legs are pushing the body of the rover
forwards, and the rolling legs must therefore move fast enough to move ahead of the rover body,
and not merely keep up with it. A video of this gait is available5 — see Table E.1.

2.10.4 Initial development

The simplest method for generating a gait was initially thought to be a table of desired positions
at given times within a gait cycle. However, a movement may take different times to complete
under different conditions. Therefore each step needs to wait for the previous step to continue —
effectively turning the system into a finite state automaton.

An attempt was made to write this in C++, but rapidly abandoned as it was realised that both
implementation and testing would be much more straightforward in Angort, by implementing each
state as a hash containing entry, exit and update anonymous functions.

Although implementing the lurch gait was straightforward, attempts made to generate an al-
ternating gait (see below) using a single state machine became extremely complex. It was rapidly
realised that each wheel needed its own, independent state machine — and this was recognised as
being a pre-existing paradigm in robotics: the Brooks subsumption architecture [?].

2.10.5 The subsumption architecture

This is a relatively early technique in reactive robotics, but one well-suited to the problem. This
architecture describes a robotic system as a set of behaviours, each instantiated by a small network
of finite state machines (augmented with timers and some local storage).

5https://www.youtube.com/watch?v=BjRkYZ7-_gE

22 of ??



Chapter 2 Technology and Engineering

The developer constructs each behaviour and tests it thoroughly before adding more layers of
machines whose outputs can override, or “subsume,” the outputs in more “primitive” layers.

This methodology has proven useful in gait generation [?], and has the important advantage of
producing extensible systems: once the gait system has been constructed, modifying its behaviour
with an AES should be a simple matter of adding another layer. In addition, it is also a biologically
inspired system which provides a way of reconciling the continuously-valued AES with a system
using discrete states, in an entirely biologically inspired way.

It is key to the architecture that an output may sometimes “subsume” another. For example,
consider the very simple system in Figure 2.11. Here, if machine 2 is producing a nil output,

1

2

3s

1

2

3s

machine 2 produces nil, 
machine 1's output passed through.

machine 2 produces output, 
it subsumes machine 1's output
and is passed through.

Figure 2.11: Example of subsumption

machine 1’s output is passed to the input of machine 3. However, if machine 2 does start to
produce an output, then it will subsume that of machine 1, replacing it.

This is the mechanism which is used to add layers of functionality to a subsumption archi-
tecture, by adding new subsystems which subsume behaviour which has already been built and
tested.

2.10.5.1 Possible alternative approaches

There are many alternatives — possibly an even better technique would have been to construct
a neural network walker implementing a set of CPGs, modulated by an AES. However, the time
taken to build such a system would be prohibitive for a project of this scale.

2.10.6 Implementing subsumption in Angort

Angort has first-order functions, so writing data structures containing elements of code is straight-
forward. This proved invaluable for the implementation of subsumption. The core of the subsump-
tion architecture is in the file experiments/sub.ang, and is shown in full in Appendix D.2.3.
Each augmented finite state machine is implemented as an Angort hash table, keyed on sym-
bols (single-word strings, actually stored as integers internally for speed). Note that the file
experiments/test.ang contains a set of unit tests for the subsumption system.

The items which must be present in a machine hash are:

23 of ??



Chapter 2 Technology and Engineering

• ‘name6 — the name of the machine;

• ‘inputs — a hash containing the initial values of the machine’s inputs, keyed by their
names (also symbols);

• ‘outputs — a hash containing the initial values of the machine’s outputs;

• ‘states — a hash containing the state functions keyed by the symbols ‘entry , ‘exit
and ‘update.

Code for an example machine is shown in Appendix D.2.4. Typically, machines are written as
functions to generate a machine of the required type (by stacking and returning the appropriately
structured hash). These functions often take parameters such as wheel numbers.

Once a set of functions to create the required machine has been written, they must be linked
together. This “plumbing” is done by a function to run all machines, then copy the appropriate
outputs to the appropriate inputs of other machines. For a very basic 2-machine system this could
be as simple as:

:run
updateallmachines # update all machines registered with initmachine
‘op1 ?machine1 readout # read machine1’s output 1
‘in ?machine2 writein # and write that value to machine2’s input

;

but in a real system will be much more complex. Subsumption is done using the subsume
function: the example in Figure 2.11 could be written as:

‘out ?machine1 readout # stack machine 1’s output
‘out ?machine2 readout # stack machine 2’s output
subsume # machine 2 will subsume machine 1 if non-nil
‘in ?machine3 writein # and write to machine 3

This provides the ability to write complex gait systems, and then build on them with an AES or
some other higher-level behaviour at a later date.

2.10.7 The lurching gait implementation

The architecture for the lurching gait is shown in Figure 2.12. This represents only one side of the
rover; each side is independent and both are identical. Each side has the following machines:

• A sensor machine (labelled IN in the figure) which supplies actual drive speed and lift
positions.

• An output machine (labelled OUT) which is supplied with required drive and lift values,
and a configuration symbol. This can be either ‘roll or ‘std. If the former is specified,
the motor control parameters are set for the rolling action, and in the case latter they are set
to the standard values for pushing (see Section 2.10.1). Nil values will cause no commands
to be sent to the motors, leaving the state unchanged.

• Two machines called isback and isfwdwhich returns boolean values, indicating whether
the associated leg is fully back or fully forwards.

6A symbol is written in Angort preceded by a back-tick.

24 of ??



Chapter 2 Technology and Engineering

roller

isback isfwd

s

roller

isfwd

s

roller

isback isfwd

s

lurcher

IN IN IN

OUT OUT OUT

GO STOPGO STOPGO STOP

GO

STOP wheels
1 and 2

wheels
3 and 4

wheels
5 and 6

TRIGTRIG

DRIVE, LIFT, CALIB DRIVE, LIFT, CALIB DRIVE, LIFT, CALIB

DRIVE, LIFT, CALIB

Figure 2.12: The subsumption architecture for the lurching gait (one side shown).

• A roller machine, which has two inputs:‘go and ‘stop, and three outputs for drive
speed, leg position and calibration setting (see the output machine above). An addition,
there is a boolean output called ‘trigger.

On receiving a non-zero ‘go signal, this will output control values for the “roll forward”
motion. This will continue until the ‘stop input is true, whereupon it will set its ‘trigger
output to true, wait for a short period, and return to its initial state (resetting the trigger).

Finally, there is a lurcher machine on each side which has two inputs and the three outputs for
connection to an output machine, as with roller. When the ‘go input becomes true, this will
output the “push backwards” motion until ‘stop becomes true.

Given the connections in Figure 2.12, this will cause the following sequence of events on each
side (assuming the rover starts with all legs in the back position — see below):

• isback triggers the roller machines on wheels 1 and 2 (front wheels) to roll forwards;

• when this is complete, the front rollers stop and trigger wheels 3 and 4 (middle) to roll
forwards;

• when this is complete, the middle rollers stop and trigger wheels 5 and 6 (rear) to roll
forwards;

• when this is complete, the rear rollers stop and trigger the lurchers on each side;

• the lurchers subsume the roller signals causing all the wheels to push back, rotating the rover
forwards.

It is interesting to note that control is decentralised, and each side’s gait cycle is independent. This
can be useful if one side becomes “bogged down” in soil: the other side can continue to move,
eventually lifting the stuck side out.

Note that the sequence must be started by all wheels being moved to the back position — this
is done by the experiment code:

25 of ??



Chapter 2 Technology and Engineering

:tst
build # build all the machines
expStart # start experiment

BACKANGLE setliftall # set the leg positions to back

# main loop
{

run # run the "plumbing" and update the machines
expUpdate ifleave

}
;

The full code for the lurch gait experiment is in Appendix D.2.5.

2.10.8 The alternating gait implementation

2.10.8.1 Attempts at decentralised control

Initial attempts to build this gait considered each wheel (front, middle and back) as a separate unit.
All wheels would be initialised to one of the two alternating positions. Then, each wheel would
push back if it found itself forwards, and roll forwards if it was in the back position. This is shown
in figure 2.13. This led to severe synchronisation problems — a push action would start while the

Figure 2.13: A single wheel’s architecture in an early, non-working alternating gait.

roll on the far side was still static, because it takes time for the rolling action to build up speed.
Therefore, an attempt was made to wait for the rolling to have fully started on the opposite wheel
before the lurching began. This was done using a simple machine to detect a relatively high actual
speed in the drive wheel, and is shown in Figure 2.14.

This appeared to work well in the graphical simulator (see Section 2.9), but failed dismally
on the real rover: the pairs of wheels desynchronised rapidly, because the wheels move at slightly
different speeds over the surface. Worse, if resistance caused a wheel to turn while in the pushing
(lurching) action, it would trigger the lurch behaviour in its opposite number. This is clearly
shown in Figure 2.15, which plots the erratic lift position of wheel 1 during this gait, along with
the state numbers for the rolling and lurching machines for that wheel. In this run, lurching is
being re-triggered in wheel 1 during its roll phase by slippage in the opposite wheel.

26 of ??



Chapter 2 Technology and Engineering

Figure 2.14: A single wheel’s architecture in an early, non-working alternating gait with an
attempt at synchronising the push to the opposing wheel’s roll.

2.10.8.2 A more centralised solution

The solution required an architecture in which the two alternating tripods were synchronised with
each other throughout the gait. This was done by only permitting a change in motion when both
triangles are in the correct positions. The architecture for a single wheel within this system is
shown in Figure 2.16. This uses similar machines to the lurching gait, configured in a different
way: each wheel has a lurcher and a roller, but the roll forward is triggered when all wheels in the
same triangle are fully back, and all wheels in the opposing triangle are fully forwards. Similarly,
the lurch phase is triggered when all wheels in this triangle are fully forwards, and all wheels in
the opposing triangle are fully back.

There are two differences in the roller machine:

• it is now configured to roll much faster, to be able to move the wheels in front of the rover
while the rover is being pushed forwards;

• there is no longer a trigger output.

Again, the gait must be triggered by moving the wheels to an initial pose, so the experiment does
this before the main loop starts. The full code is in Appendix D.2.6.

2.11 Artificial neuroendocrine system

In the next chapter, it will be seen that switching between a rolling speed of 500 and the lurch gait
might provide benefits — roll-500 is more efficient than lurch on the flat, but lurch becomes more

27 of ??



Chapter 2 Technology and Engineering

0 20 40 60 80 100

−
20

−
10

0
10

20

Time (s)

W
he

el
 1

 li
ft 

an
gl

e 
(d

eg
re

es
)

lift angle
roll state
lift state

Figure 2.15: A plot of the lift position of wheel 1 during the second failed alternating gait, along
with the state numbers for the rolling and lurching machines (high means that machine is active).

efficient on the slope. As mentioned above in Section 1.2.2, exteroceptive sensors which rely on
the rover’s location are not suitable in our setup, so we must rely on an interoceptive input to the
AES. Current was chosen, based on the analysis in Section 4.6.

2.11.1 Design of the AES framework

The fundamental unit of the AES as implemented in this project is the hormone , which encap-
sulates the hormone level itself and the input and output perceptrons. In each hormone:

• A sensory perceptron detects stimuli. The output of this perceptron is multiplied by a “re-
lease rate” constant associated with the hormone.

• A limiting function is then imposed, which multiplies the release rate by 0.95− h where h
is the current hormone level. This ensures that the hormone’s level saturates at 0.95.

• The value obtained is added to the hormone level. The hormone level is set to geometrically
decay at a given rate.

• The hormone level is then sent through another perceptron to produce the output value.

In practice, both input and output perceptrons are bare activation functions: since there is only
a single input no summation is required. This is shown in Figure 2.17. Each hormone has the
following parameters:

• input sigmoid centre and width,

28 of ??



Chapter 2 Technology and Engineering

DRIVE, LIFT, CALIB

IN

OUT

isback isfwd

lurcher
GO STOP

roller
GO STOP

s
DRIVE,
LIFT,
CALIB

AND

isfwd for all wheels in this 
triangle (including this)

isback for all wheels in the 
opposing triangle

AND

isback for all wheels in this 
triangle (including this)

isfwd for all wheels in the 
opposing triangle

Figure 2.16: Subsumption architecture for a single wheel inside the alternating gait.

input activation
function

hormoneinput

output activation
function

x

release rate
constant

output

limiting
function

x
level

decay

Figure 2.17: The architecture of a single hormone in the AES

• release rate,

• decay constant,

• output sigmoid centre and width.

Each sigmoid is defined by its centre c and width w, where c refers to the value for which the
sigmoid output is 0.5 and w is the width of the region where the output is close to neither 1 nor 0.
The empirical function for the sigmoid is then

σ(x,w, c) =
1

1− (e0.1w(x−c) + 1)

This gives a transitional region where σ(−w/2, w, 0) = 0.007 and σ(w/2, w, 0) = 0.993.

A sigmoid for w = 1, c = 0.5 is shown in Figure 2.18. The source code for the AES frame-
work in Angort is in Appendix D.2.7.

29 of ??



Chapter 2 Technology and Engineering

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

si
gm

oi
d 

fo
r 

w
=

1,
 c

=
0.

5

Figure 2.18: A graph showing the sigmoid function with centre and width, with a centre of 0.5
and a width of 1.

2.11.2 Implementation and results

Two implementations of the system were constructed, one with a single hormone, and one using a
two hormone cascade.

In the single hormone system, the hormone was fed by the current. The width and centre of
the input sigmoid function were set by close inspection of the current levels in the results of slope
runs for the 500-roll and lurching gaits, such that the sigmoid was near 0 at the current level where
500-roll was most efficient, and near 1 where the lurching more most efficient. The output sigmoid
was set to be extremely narrow, effectively making the output binary, with the centre set to 0.4.
The result is that a hormone level of 0.4 should make the rover roll, while a higher hormone level
should make it lurch.

To achieve this using the subsumption architecture, two extra machines were added which
subsume the outputs of all the wheels:

• The hormoneroller is only active when the hormone level is low. If so, it waits for all
wheels to be forwards (i.e. for all rolls to have finished) and then starts to output plain rolling
data and a centred lift position. It will not output any drive to the motors until the wheels are
all in the centre position, to avoid current surges. If the hormone level becomes high again,
it will stop outputting (or rather, start outputting nil once more). (Note that this refers to
the final version, earlier versions switched immediately into rolling when the hormone level
became low — see Section 2.11.2.2 below.)

• The kicker is used to initiate the lurching gait. If the wheels are centred, it sends signals
to move them all to the back position. Because the kicker is itself subsumed by the roller,
this will have no effect if the rover is rolling. If the rover stops, however, it will force the
wheels into the back position where the lurcher will once again begin its cycle.

The architecture is shown in Figure 2.19, with the parts added to the basic lurcher shown in

30 of ??



Chapter 2 Technology and Engineering

red. Note that only one side of the rover is shown, but there is only one kicker and one
hormoneroller across the entire rover.

roller

isback isfwd

s

roller

isfwd

s

roller

isback isfwd

s

lurcher

IN IN IN

OUT OUT OUT

GO STOPGO STOPGO STOP

GO

STOP wheels
1 and 2

wheels
3 and 4

wheels
5 and 6

TRIGTRIG

DRIVE, LIFT, CALIB DRIVE, LIFT, CALIB DRIVE, LIFT, CALIB

DRIVE, LIFT, CALIB

kicker

s s s

s s ss

hormone
roller

s s ss

Figure 2.19: The endocrine gait switcher, switching between lurching and rolling, shown as an
additional layer built on top of lurching.

The actual endocrine code is run as part of the main loop, which makes the appropriate calls to
updateHormone. The hormones are global variables which are accessed inside hormoneroller.
For a small system like this, the lack of encapsulation is acceptable. The entire endocrine controller
code is included as Appendix D.2.8.

2.11.2.1 Hormone cascade system

The system oscillated a great deal with with a single hormone, due to the large variation in current
readings. A hormone cascade was developed, in which the first hormone smoothed the current by
using a very wide sigmoid, a slow decay and low release rate. The output function of this “input
hormone” was not used: instead, the “switching hormone” was fed directly by the input hormone’s
level. This “hormone cascade” is shown in Figure 2.207, and the actual parameters are shown in
Table 2.1.

This resulted in considerably smoother performance, but still with some oscillation as shown
in Figure 2.21. This experiment also has a video8: see Table E.1.

The behaviour has several stages, shown on the plot by numbers:

1. the input hormone (in blue) is smoothing the input current (in black), because it is set to an
almost linear sigmoid with a low release rate and a very slow decay. The input hormone

7It is very common in biology for a hormone to stimulate receptors which lead to (or inhibit) the secretion of other
hormones in this way.

8https://www.youtube.com/watch?v=KS-EX95luHs

31 of ??



Chapter 2 Technology and Engineering

switching hormone

input x x

x outputx

input hormone

Figure 2.20: A 2-hormone cascade, where the input of the second hormone is fed directly from
the level (not the output) of the first. Compare with Figure 2.17.

Parameter Input hormone value switching hormone value
Input sigmoid c 200 0.1
Input sigmoid w 800 0.01
Release rate 0.001 0.1
Decay constant 0.994 0.9
Output sigmoid c unused 0.4
Output sigmoid w unused 0.001

Table 2.1: Parameters for the 2-hormone cascade switching gait system. Note the wide input
sigmoid, slow release and slow decay for the input smoothing hormone, the narrow input sigmoid
and faster rates for the switching hormone, and the near-binary output at a level of 0.4.

begins to build up.

2. The switching hormone (in red) begins to be released as the value of the input hormone
enters the significantly non-zero part of its input sigmoid, roughly between the two dotted
blue lines on the plot (this hormone’s scale has been vertically exaggerated).

3. The switching hormone reaches its threshold (actually a very narrow sigmoid, indicated by
the red dotted line), and the rover begins to lurch.

4. The current begins to fall, so less input hormone is released.

5. After about a minute, the input hormone has fallen sufficiently that it no longer “tops up”
the switching hormone, which begins to fall rapidly.

6. The input hormone crosses its threshold the other way, the rover begins to roll. This is where
the problems begin.

7. The current immediately spikes, causing the input hormone to begin to rise again.

8. This causes the switching hormone to rise, and the rover returns to lurching.

32 of ??



Chapter 2 Technology and Engineering

9. The current immediately falls, as does the input hormone, and the switching hormone fol-
lows, switching back to roll.

10. Which immediately causes another current spike, and the cycle continues.

33 of ??



Chapter 2 Technology and Engineering

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Current (and hormone levels) against time

Time (s)

C
ur
re
nt

(a
rb
itr
ar
y
un

its
)

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

ho
rm

on
e
le
ve
l

current
input hormone x3
input hormone sigmoid range
switching hormone
switching threshold

1

2

3

4

5

6

7

8

9

10

Figure 2.21: Two hormone cascade with simple hormone roller (no waiting), showing oscillation
at end of lurch phase. This is from the data file aes/exp4. The numbers refer to the enumerated
stages in the text on page 31.

34 of ??



Chapter 2 Technology and Engineering

2.11.2.2 Resolving the current surges

These problems occur because this early version of hormoneroller simply switched the gait
from rolling to lurching by immediately commanding the legs to the centre position and starting
to drive. This caused a large drive current, as the drive wheels would try to go from standing to
full speed. At the same time, the lift motors would draw very large currents as they would try to
push in opposite directions to all get to the centre position.

This was resolved by adding the extra logic in hormoneroller described above, to ensure
that the wheels were all at the same angle before rolling restarted and that the drive motors did not
draw current until the lift motors were stopped. Once this was added the system worked well, as
demonstrated in Figure 2.22 (also available as an on-line video9, see Table E.1).

In this plot:

1. The current rises very rapidly, causing the input hormone to rise10,

2. which in turn causes the switching hormone to be released,

3. and soon the rover switches to lurching.

4. The current drops to a lower level, but not enough to lower the input hormone to levels
where the switching hormone begins to fall. Once the rover is on the flat, the current falls
further, as does the input hormone, and then the switching hormone.

5. Now, when the switching hormone drops below threshold and rolling starts again, there is no
current spike — just a small plateau, enough to cause a small amount of switching hormone
to build up, but not sufficiently to cross threshold again.

6. The current continues to fall now the rover is on the flat, and the roll continues.

Unfortunately, there was insufficient time to perform further experiments or analysis on the
switching gait.

9https://www.youtube.com/watch?v=7vspI6JLdMA
10The hormone starts high because this run follows on from another recorded in the same Angort session — the

script in its current form does not recreate the hormones for each run. This is a bug, but has little effect on the outcome
beyond causing the lurch to occur a little earlier.

35 of ??



Chapter 2 Technology and Engineering

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Current (and hormone levels) against time

Time (s)

C
ur
re
nt

(a
rb
itr
ar
y
un

its
)

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

ho
rm

on
e
le
ve
l

current
input hormone x3
input hormone sigmoid range
switching hormone
switching threshold

1

2

1

3

4

5

6

Figure 2.22: Two hormone cascade with final hormone roller, showing successful transitions and
no current spike on return to rolling. This is aes/exp8. Numbers refer to stages on page 35.

36 of ??



Chapter 3 Experimental Methods

Chapter 3

Experimental Methods

This section will discuss the experimental methods used to answer the research questions. It will
not cover details of the technologies used — these are covered in Chapter 2 (which includes both
technologies developed for the experiments and pre-existing systems).

3.1 Overview

There are several components to the experimental methodology:

• the environment in which the experiments take place;

• how the surface was prepared;

• the IT setup used (this is covered in Chapter 2);

• how the data from the monitoring system was collated with the motion capture data;

• how and why the data was cleaned up;

• which experiments were performed.

Analyses and results of the experiments can be found in the next chapter.

3.2 The environment and surface

All experiments took place in Aberystwyth’s Planetary Analogue Terrain laboratory (PATLab),
on a surface of Mars Soil Simulant-D from DLR Germany, which is geophysically analogous
to Martian regolith (soil). This is similar to talcum powder in consistency, and has a particular
tendency to cause wheel slip and sinkage when not packed down.

Much work has been done on analysing such surfaces for wheeled rovers, based on MG
Bekker’s terramechanics [?, ?], although there has been relatively little research done on legged
and hybrid models in such conditions. Hidalgo et al. have performed some preliminary studies,
developing a detailed kinematic model with slip for a four-wheeled rover [?], but this has only
been done in simulation. They also state that

37 of ??



Chapter 3 Experimental Methods

“it is not the purpose of this work to accurately model surface conditions, [therefore]
the wheel-terrain interaction is based on simple models.”

The “Mars yard” in the PATLab has a usable area of approximately 5m by 3m, with one end
being made up of an slope with another flat area on top. This slope is not packed regolith: there
is a layer of polythene sheeting covering polystyrene blocks about 10cm below the surface. This
caused problems in some of the runs on a loose slope when the rover wheels wore through to the
sheeting.

Figure 2.5 shows a rough diagram of the yard, with the slope represented by steps. In real-
ity, the slope has a roughly sigmoid profile with a maximum inclination of approximately 20◦,
although this varied over time due to the movement of the simulant. The precise shape of this
profile and how it changed is explored in Section 4.1. A photo of the part of the yard is shown in
Figure 3.1, but the field of view is limited. This shows an uphill view of the slope, and underesti-
mates its steepness.

Figure 3.1: A photo of approximately half of the Mars yard, looking up the slope.

3.3 The experimental IT setup

This is described fully in Chapter 2 (see Figure 2.1), but in overview:

• Experiments are run on the rover’s computer, to which a laptop is remotely connected via
an SSH shell session.

• The rover sends the rover’s internal sensor data (odometry, currents etc.) to the laptop,
which is also running a monitoring program which captures the data to a file.

• At the same time, the Vicon motion capture system captures the position and orientation to
a separate file on another system (because it runs on its own private network).

• Synchronisation of the two processes is done by button press.

• The two resulting data files, one from the monitor and one from the motion capture system,
are then collated by a Python script into a single file.

• This file is examined for problems, and cleaned up.

38 of ??



Chapter 3 Experimental Methods

3.4 Method for all experiments

Experiments were performed referring to a checklist, which is given in Appendix G. In summary:

• write, test (using the simulator) and transfer the script to the rover;

• ensure the surface is appropriately prepared — that the surface is packed or loose, and that
the slope has been repaired from any slipping which may have occurred;

• start the rover scripting system with the script;

• use remote control commands to move the rover to the correct starting position (marked by
a tape marker for the slope, such that the rover runs for approximately 1m before starting to
climb; or as far left as possible for flat experiments);

• start the monitor and run the experiment script;

• ensure data is being collected both by the monitor and Vicon;

• start logging and then start the experiment and Vicon capture at the same time;

• stop the experiment;

• retrieve and collate the data.

Each experiment was performed at least five times.

3.4.1 Surface preparation

Surface preparation was performed by raking the soil with a steel rake if a loose surface was
required, or packing it down using a pressure of approximately 500Pa1. Unfortunately, rollers
were not available to pack the surface properly, and no way of measuring the degree of packing
was available. This led to problems with consistency of the surface state, affecting the repeatability
of experiments.

Additionally, each experiment on the slope packed some simulant under the wheels, while
moving more simulant downhill. Attempts were made to ameliorate this by rebuilding the slope
after each run, with the result that the slope became less packed. For later packed runs, a fresh part
of the slope was used, but this had a lower maximum inclination. The first experiment, for roll at
500, had a notably steeper profile. This is described more fully in Section 4.1.

3.5 Merging and cleaning up the data

As described above, the experimental procedure produces two data files: one containing data cap-
tured from the rover’s sensors, and one containing rover position and orientation data from the
motion capture system. These must be merged into a single file, which is done using a Python
script called collateViconAndRoverCSV (collate Vicon and rover data into a Comma Sep-
arated Values file).

1the pressure applied by a man standing on a wooden rectangle

39 of ??



Chapter 3 Experimental Methods

This is a complex operation because the files will have started at different times, and have very
different formats. The Vicon capture file starts when the “Capture” button in the Vicon iQ interface
is pressed, and consists of a short header followed by comma-separated values consisting of frame
number, orientation Euler angles, and position coordinates (relative to an arbitrary but constant
point); whereas the rover capture file consists of key-value pairs, with data omitted when a value
has not change since the last packet was transmitted. An example can be seen in Appendix B.1.

Synchronisation is possible because the Vicon capture is started at the same time as the EXP
GO switch is toggled in the monitor, when the go variable becomes 1 in the rover capture data.

The collate code takes both files, producing a comma-separated value for each full update
cycle in the rover file, merged with the Vicon data at that point. The algorithm is presented in
Appendix C with some explanatory notes.

3.5.1 Cleaning up the data

Data collected from the Vicon system frequently contained errors, which manifested as disconti-
nuities in position or orientation. This typically happened at the far end of a run, when the camera
data became ambiguous. An example of this can be seen in Figure 3.2, where the distance travelled
(from

√
x2 + y2 + z2 in the collated data) becomes nonsensical after about 350s.

0 100 200 300 400

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time (s)

D
is

ta
nc

e 
(m

)

Figure 3.2: Example of motion capture error.

Such errors were detected visually by plotting the distance and inclination (rotation around
y) for all runs. In the case of end-of-data errors such as that above, all the data for the after
corresponding times in the rover data capture (not the Vicon data) was elided, and the data re-
collated. This caused all data after the given time to be removed, because (given the collation
algorithm) no data could be found with which to collate the erroneous Vicon data.

In a few cases this required a re-run because so much data was lost (alternating gait runs on
the slope proved very tough for this).

Occasionally, an error (typically a rotation) would manifest as brief jump in orientation to

40 of ??



Chapter 3 Experimental Methods

another pose. This was dealt with by removing the incorrect data from the Vicon stream. This
would cause a small discontinuity, but it was smoothed by the splines used to condition the data
(see Chapter 4).

3.6 Experiments performed

The experiments were intended to answer two questions originally given in Section 1.2.4:

• What is a good metric?

• Is there a gait which works which is more efficient than plain rolling when used on the
slope?

To answer these questions, the behaviours of the selected gaits both on the flat and on the slope
were recorded. Additionally, the condition of the surface (packed or loose) may have an effect,
so all experiments were performed for each of these conditions. This gives the 16 experiments
shown in Table 3.1. The number in the rolling experiments refers to the commanded rover speed
in arbitrary units. 500 is approximately 6mm/s.

Gait Type Surface
roll at 500 flat loose
roll at 1000 flat loose
lurch flat loose
alternating flat loose
roll at 500 slope loose
roll at 1000 slope loose
lurch slope loose
alternating slope loose
roll at 500 flat packed
roll at 1000 flat packed
lurch flat packed
alternating flat packed
roll at 500 slope packed
roll at 1000 slope packed
lurch slope packed
alternating slope packed

Table 3.1: The 16 experiments which were performed (not including neuroendocrine tests).

3.7 Neuroendocrine experiments

Because of a lack of time, little formal experimentation was done on the neuroendocrine controller
beyond that of tuning it and demonstrating that it worked. This is described fully in Section 2.11.

41 of ??



Chapter 4 Results and Conclusions

Chapter 4

Results and Conclusions

This chapter analyses the results of the experiments listed in the previous section. It deals with:

• the profile of the slope;

• verifying that the rover moves differently on the slope and the flat;

• finding, testing and comparing metrics;

• comparing the various gaits using these metrics;

• finding a metric and gaits which are suitable for building an AES-based switching gait.

The analysis was done using the R programming language [?]. Initially, Python with the NumPy
and SciPy libraries was used, but R was found to be better integrated (being designed for the
analysis of vectorised data from the ground up), better supported and to have a wider range of
better-documented packages. There was a steep initial learning curve, however. All the R scripts
written are included in the electronic submission in the project/data directory.

4.1 Profile

The first use made of the data was to determine the profile of the slope. This was done by plotting
y against x in the Vicon’s coordinate system for every run. The results for both loose and packed
experiments are shown in Figures 4.1 and 4.2. It can be seen that:

• The shape of the slope was slightly different for each experiment, because the slope changed
over the course of the study and there were no facilities to reshape it beyond manually
moving soil from one part of the yard to the other. It is also possible the rover occasionally
deviated course slightly, either onto a less sloped part of the environment or to traverse the
slope at an oblique angle, giving a lower apparent slope.

• It was not possible to run all experiments on the entire slope on the loose surface — the
alternating gait and 500 roll in particular were unable to proceed after a certain point, getting
stuck in the soil somewhere between 17◦ and 20◦.

42 of ??



Chapter 4 Results and Conclusions

2000 2500 3000 3500 4000 4500 5000

50
0

60
0

70
0

80
0

X (track) against Z (height) in Vicon coordinate system for loose surface

X

Z

alt−slope−loose
1000−slope−loose
500−slope−loose
lurch−slope−loose

2000 2500 3000 3500 4000 4500 5000

0
5

10
15

20
25

30

X (track) against RY (inclination) in Vicon coordinate system for loose surface

X

R
Y

alt−slope−loose
1000−slope−loose
500−slope−loose
lurch−slope−loose

Figure 4.1: Slope profiles as Z (height) against X (track) for all runs (loose). Generated by the
plotProfile.r script.

• The inclination of the packed slope was more variable than that of the loose, most notably
for the roll 500 experiments which faced inclines of over 20◦. This is because the packed
surface gradually became less sloped, and it was extremely difficult to reform and repack it
into the same profile. It would have been better to run all the packed experiments before all
the loose experiments, but the problems with repacking the surface were not foreseen.

• The inclination data is very noisy for the walking gaits, because the walking actions modify
the inclination of the rover.

This variability in the slope should be largely dealt with by analysing the metrics against
inclination, so it should not effect the validity of the findings. However, some experiments were
not run on the full range of inclinations — for example, roll 1000 was not run with an incline of
much greater than 15◦ on a packed surface.

43 of ??



Chapter 4 Results and Conclusions

2000 2500 3000 3500 4000 4500 5000

50
0

60
0

70
0

80
0

X (track) against Z (height) in Vicon coordinate system for packed surface

X

Z

alt−slope−packed
1000−slope−packed
500−slope−packed
lurch−slope−packed

2000 2500 3000 3500 4000 4500 5000

0
5

10
15

20
25

30

X (track) against RY (inclination) in Vicon coordinate system for packed surface

X

R
Y

alt−slope−packed
1000−slope−packed
500−slope−packed
lurch−slope−packed

Figure 4.2: Slope profiles as Z (height) against X (track) for all runs (packed). Generated by the
plotProfile.r script.

44 of ??



Chapter 4 Results and Conclusions

4.2 Velocities

To plot the velocities, the distance values from the origin were calculated for each run as
√
x2 + y2

(the Vicon’s vertical axis being z). These were then approximated by a polynomial smoothing
spline of order 5, with a low smoothing parameter [?]. This allowed the derivative of the distance
(i.e. the velocity) to be determined. The results for all runs on the both packed and loose surfaces
are shown in Figures 4.3 and 4.4.

0 20 40 60 80 100

0
20

40
60

80

time (s)

ve
lo

ci
ty

 (
m

m
/s

)

alt−packed
1000−packed
500−packed
lurch−packed

Figure 4.3: Velocities of all experiments on the flat packed surface, approximated by the deriva-
tive of a polynomial smoothing spline applied to the distances. Generated using the plotAllVe-
lAgainstTime.r script.

0 20 40 60 80 100 120 140

0
20

40
60

80

time (s)

ve
lo

ci
ty

 (
m

m
/s

)

alt−loose
1000−loose
500−loose
lurch−loose

Figure 4.4: Velocities of all experiments on the flat loose surface, approximated by the derivative
of a polynomial smoothing spline applied to the distances. Generated using the plotAllVelAgain-
stTime.r script.

45 of ??



Chapter 4 Results and Conclusions

It can be seen that

• the velocities of the rolling gaits are fairly constant, as should be expected;

• the velocities of the two walking gaits oscillate as expected (particularly in the lurching gait,
given its nature);

• as do the circumference velocities of the wheels, given the oscillatory nature of th gaits. of
the gaits.

Some smoothing may therefore be required on the underlying data to calculate the metrics.

4.3 Experiments on the flat - finding a metric

4.3.1 Calculating the slip

The initial hypothesis is:

Some metric based on how much the wheels slip on the surface is a suitable metric
for efficiency.

This is based on the notion that any energy expended driving the wheels is wasted if it is not
moving the wheels forwards. Slip is a common metric in the analysis of rover motion [?, ?, ?, ?].
Some analyses of the data from the flat experiments were made to test slip-based metrics.

There were several slip metrics available. The first is the simple slip ratio, calculated as the
ratio of the mean of circumferential velocities of the wheels vci , i ∈ [1, 6], and the rover’s velocity
vr as measured by the Vicon:

ssimple =
v̄c
vr

This metric has a problem: an immobile rover with wheels turning has an infinite slip. Moreland
et al. [?] defines the slip ratio in a similar way, but by referring to the rover velocity alone:

smoreland =
current rover speed

baseline flat rover speed

This metric deserves further study, but was not used here — it was felt more useful to use a metric
which did not rely on a fixed measurement of an ideal baseline speed, and which used at least one
interoceptive sensor.

Yoshida and Hamano [?] propose an alternative slip ratio metric for each wheel1:

si =

{
(vci − vr)/vr (vci < vr)

(vci − vr)/vci (vci ≥ vr)

where vr is the velocity of the rover, and vci is the circumferential velocity of wheel i. This metric
was modified to act over the whole rover:

S =

{
(v̄c − vr)/vr (v̄c < vr)

(v̄c − vr)/v̄c (v̄c ≥ vr)

46 of ??



Chapter 4 Results and Conclusions

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

rover velocity (mm/s)

S
lip

 m
et

ric
 w

he
n 

ci
rc

um
. v

el
oc

ity
=

50
0 

m
m

/s
ec

Yoshida slip ratio
Simple slip ratio
Line of no slip

Figure 4.5: A comparison of Yoshida’s slip ratio [?] with the simple slip ratio, by fixing the
average wheel velocity at 500 mm/s and varying the rover velocity between 0 and 1000 mm/s.
Generated using the slipRatioComparison.r script.

This is compared with the simple slip ratio in Figure 4.5.

The simple slip ratio is highly non-linear where the rover velocity is slower than the wheel
velocity — i.e. the rover is moving slower than it should be, which is the usual case in the current
study. The Yoshida slip ratio becomes linear at this point, making it more tractable to analysis and
comparison. Therefore, we will use the Yoshida slip ratio instead of the simple slip ratio.

One issue remains: calculating the circumferential velocity. Work towards this was done
during the initial work on the rover, where a conversion factor from odometry ticks to millimetres
was estimated, based on the measured circumference of the wheel and the number of encoder ticks
in a complete revolution.

4.3.2 Measuring slip on the flat

If the Yoshida slip ratio is calculated for all the runs on the flat over time the plot in Figure 4.6 is
obtained. With no smoothing, it is clear that the slip value varies too much to extract any useful
information. In the case of the walking gaits, this is because of the different slip amounts during
the gait cycle. For example, during the “rolling” phases of the lurch gait, the rover is not moving
but the wheels are showing odometry. In the “push” or “lurch” phase the rover moves, but the
wheels do not show odometry.

1Ding et al. [?] use a similar measure, but assume that the the wheel velocity is always greater than the rover velocity.

47 of ??



Chapter 4 Results and Conclusions

0 50 100 150 200 250

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Slip against time (flat,packed)
Smoothing=0.00

time (s)

sl
ip

lurch−packed
500−packed
alt−packed
1000−packed

Figure 4.6: Slip over time for all runs of all gaits on the flat on a packed surface, showing extreme
slip variation when no smoothing is applied, generated by the plotAllSlipAgainstTime.r script.

Perhaps a more useful view of this data is a histogram, as shown in Figure 4.7.

48 of ??



Chapter 4 Results and Conclusions

Slip (Yoshida) for 500−flat−packed
mean=−0.086656, sd=0.295922

Smoothing factor=0.00

Slip

D
en

si
ty

−2.5 −1.5 −0.5 0.5

0.
0

0.
4

0.
8

1.
2

Slip (Yoshida) for 1000−flat−packed
mean=−0.064107, sd=0.209225

Smoothing factor=0.00

Slip

D
en

si
ty

−0.8 −0.4 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

Slip (Yoshida) for alt−flat−packed
mean=−0.040156, sd=0.328235

Smoothing factor=0.00

Slip

D
en

si
ty

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

Slip (Yoshida) for lurch−flat−packed
mean=−0.157708, sd=0.627195

Smoothing factor=0.00

Slip

D
en

si
ty

−1.0 −0.5 0.0 0.5

0.
0

0.
4

0.
8

1.
2

Figure 4.7: Histograms showing the distributions of different slip values during packed runs on
the flat, for all experiments, generated by the getBaseSlip.r script.

49 of ??



Chapter 4 Results and Conclusions

This shows some interesting features more clearly:

• The two rolling gaits both show normally-distributed slips, as is to be expected given the
complex nature of the wheels’ interactions with the soil and the inherent oscillations in the
control system (see Figure A.1).

• The lurching gait shows two distinct peaks — in the larger peak, the rover is slipping back-
wards a very large amount, approaching -1 (not moving at all, see Figure 4.5). This corre-
sponds to the “rolling” phase, when the wheels are rolling forwards in pairs while the rover
remains stationary. In the smaller peak, the rover is moving faster than the wheels are rotat-
ing, corresponding to the “lurching” phase. The true slip ratio over time may be a weighted
mean of these values.

• The alternating gait is a more complex case, given the nature of the gait and how it was
implemented, but the fundamental problem is still the same — the slip varies wildly over
the gait cycle, and the true slip is some mean of these values.

It can be seen that in order to measure the effect of the incline on the slip ratio, the underlying
data must be smoothed — it is the slip as a whole which is interesting, not its value in different
parts of the gait cycle. In the above results, the odometry and distance data are approximated
by polynomial splines (in order that they be differentiable). Increasing the smoothing factor to a
much higher value should achieve this.

Figure 4.8 shows the effect on the slip of a large smoothing value imposed on the splines which
approximate circumferential distance and rover distance. If histograms are plotted from this data,

0 50 100 150 200 250

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Slip against time (flat,packed)
Smoothing=100000.00

time (s)

sl
ip

lurch−packed
500−packed
alt−packed
1000−packed

Figure 4.8: Slip over time for all runs of all gaits on the flat on a packed surface as in Figure 4.6,
but with a much higher smoothing factor on the polynomial splines for the distances.

the distributions in figure 4.9 are obtained.

50 of ??



Chapter 4 Results and Conclusions

Slip (Yoshida) for 500−flat−packed
mean=−0.054633, sd=0.017151
Smoothing factor=100000.00

Slip

D
en

si
ty

−0.08 −0.06 −0.04 −0.02

0
5

10
15

20
25

30

Slip (Yoshida) for 1000−flat−packed
mean=−0.046376, sd=0.009157
Smoothing factor=100000.00

Slip

D
en

si
ty

−0.060 −0.050 −0.040 −0.030

0
20

40
60

80
12

0

Slip (Yoshida) for alt−flat−packed
mean=−0.015770, sd=0.023541
Smoothing factor=100000.00

Slip

D
en

si
ty

−0.04 −0.02 0.00 0.02

0
5

10
15

20
25

Slip (Yoshida) for lurch−flat−packed
mean=−0.005054, sd=0.134551
Smoothing factor=100000.00

Slip

D
en

si
ty

−0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4

Figure 4.9: Histograms showing the distributions of different slip values during packed runs on
the flat as in Figure 4.7, but with much larger smoothing values.

The normal distribution appears to have been lost, but the variation is considerably lower. This
data is presented as a box plot in Figure 4.10.

There are some interesting features:

• The standard deviation of the slip is still high on the walking gaits, even when heavily
smoothed, particularly on the loose. There is still a very large variation with considerable
overlap between the experiments.

• Additionally, negative slip is present. This normally means that the rover is moving faster
than the wheel odometry — this is unlikely for smoothed data, particularly in the rolling
gaits. It is probable that the measurement of the factor which converts encoder ticks to
odometry is incorrect, relying as it does on parameters which are difficult to measure (en-

51 of ??



Chapter 4 Results and Conclusions

500−flat 1000−flat alt−flat lurch−flat

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Slip distribution for flat packed, smoothing=100000

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●

500−flat 1000−flat alt−flat lurch−flat

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Slip distribution for flat loose, smoothing=100000

Figure 4.10: Box plots showing distributions of slips for flat runs, with a high smoothing factor.

coder ticks per revolution, for example). It should therefore be borne in mind that a zero
Yoshida slip may not equate to zero slip in the system.

This may have significant impact on the metric. If the true “zero slip” point is close to
zero, the magnitude of the Yoshida slip may be higher when there is no slip than when there
is slip. However, this should only occur at very small slips of the order of those seen in
experiments on the flat, and may not have an effect on the slope. Unfortunately, time did
not permit a more thorough investigation of this problem.

4.3.2.1 Correlation of Yoshida slip for different experiments across runs

For the Yoshida slip to be a useful metric, it should be consistent — that is, if a gait is better than
another gait it should always be better than that gait. Given the variance of the metric, this is
unlikely, but it should be tested.

To do this, a correlation matrix based on Spearman’s rank coefficient was used. Four random
samples of the slip were taken from each of the flat runs (which should ideally have constant slip)
for all the experiments, leading to a total of 20 samples per experiment. These were arranged into
20 data rows, each with four slip values — one for each experiment. For each possible combination
of rows, the slips were ranked, and the two rankings correlated. Ideally, they should all agree with
each other, and the resulting matrix should be filled with 1.

Correlation matrices for 20 variables are difficult to visualise, so correlograms (or corrgrams)
were used. This technique, devised by Friendly [?], shows the matrix visually with a pie chart at
each intersection showing the correlation — full blue for 1 (maximum positive correlation) and full
red for -1 (maximum negative correlation) with an empty pie for no correlation. The correlations
and plots were generated using the corrgram R package [?].

The results are shown in Figure 4.11. They clearly show that the Yoshida slip across the packed
experiments is quite inconsistent, which is to be expected given the closeness of the medians in

52 of ??



Chapter 4 Results and Conclusions

var 1

var 2

var 3

var 4

var 5

var 6

var 7

var 8

var 9

var 10

var 11

var 12

var 13

var 14

var 15

var 16

var 17

var 18

var 19

var 20

(a) Correlation matrix for packed

var 1

var 2

var 3

var 4

var 5

var 6

var 7

var 8

var 9

var 10

var 11

var 12

var 13

var 14

var 15

var 16

var 17

var 18

var 19

var 20

(b) Correlation matrix for loose

Figure 4.11: Correlation matrices for 20 random samples from each experiment, ranked by
Yoshida slip. Generated by the rankSlipFlat.r script.

Figure 4.10. The loose experiments are a little better, but still show a good deal of disagreement
in the ranking with many combinations correlating only to ρ = 0.6.

53 of ??



Chapter 4 Results and Conclusions

4.3.3 Slip-based metrics: a conclusion

While slip provides us with a measure of the energy used in turning the wheels which is not used
in moving the rover forwards (i.e. is wasted), it has several problems:

• Slip is a metric with an exteroceptive component — in order to calculate the rover velocity,
one must first accurately measure its position.

• The direct slip ratio v̄c
vr

shows highly non-linear behaviour the velocity is low.

• The Yoshida slip ratio corrects for this, but is neither consistent nor sensitive enough to
distinguish between the different gaits on the flat.

• Finally, the rover motion in walking gaits is dependent not only on the drive wheels, but
also on the rotation of the lift motors. It is not clear whether the slip takes this into account
correctly.

Therefore slip may not be a suitable metric.

4.3.4 Current-based metrics

A more direct metric could involve measuring the amount of energy the rover is using. The rover,
as noted in Appendix A.5, has current sensors in each of the motor driver chips. Because of the
pulsed nature of the current actually delivered to the motors, this reading must be smoothed. This
is done internally over short timescales within the rover firmware, as discussed in the appendix
referenced above. Using current has the advantage of taking into account all the motors, both
drive and lift.

Current itself cannot be used as a metric for efficiency — if it were, the rover would be at its
most efficient when switched off. Efficiency implies striking a balance between work done and
power consumed. The rover is required to travel as far as possible (in our simple model) for the
least amount of power.

Therefore, it may be appropriate to use a simple ratio of current and velocity. A rover which
draws current but does not move is infinitely inefficient, whereas a rover which moves while draw-
ing no current will produce zero. This matches the ordering of the Yoshida slip values investigated
so far — high values are bad, low values are good.

Under this metric, the velocity (if low) is much more significant that the current. This is
appropriate, because whether the rover is moving is far more important than how much current it
draws — if it cannot move, it cannot improve its situation.

4.3.5 Current/velocity on the flat

A raw plot of current/velocity on the packed flat is shown in Figure 4.12. It is clear once again that
the velocity, which is highly variable because of the walking gait cycles, needs to be smoothed.
Once this was done using the same technique and parameter as with the Yoshida slip, the ratio in
Figure 4.13 resulted.

54 of ??



Chapter 4 Results and Conclusions

0 50 100 150 200 250

−
40

00
0

20
00

Current/velocity against time (flat,packed)
Smoothing=0.00

time (s)

cu
rr

en
t/v

el
oc

ity
 (

ar
bi

tr
ar

y 
un

its
)

lurch−packed
500−packed
alt−packed
1000−packed

Figure 4.12: Unsmoothed current/velocity for packed flat runs. Note the y axis range — the
spikes are very large.

0 50 100 150 200 250

0
10

20
30

40
50

60

Current/velocity against time (flat,packed)
Smoothing=100000.00

time (s)

cu
rr

en
t/v

el
oc

ity
 (

ar
bi

tr
ar

y 
un

its
)

lurch−packed
500−packed
alt−packed
1000−packed

Figure 4.13: smoothed current/velocity for packed flat runs.

There is still a fair amount of variation, because the smoothing on the current (in firmware) is
considerably less than that imposed on the velocity. However, clear differences between each gait
are now visible. A boxplot for both packed and loose runs on the flat is shown in Figure 4.14.

Although the lurching gait shows some high outliers (corresponding to the peaks in Fig-
ure 4.13), there is much less variation and clear separation between the gaits. The source of
these peaks in lurching is shown in Figure 4.15: they occur when the rover is rolling the wheels
forwards and not actually moving — the velocity drops down to near zero, resulting in a very
high current/velocity ratio. This is ameliorated by the smoothing (shown in green). Without the
smoothing, the division by values close to zero results in the very high values seen in Figure 4.12.

There are several other interesting features in the box plot:

• The rankings of the various gaits are very different from those seen tentatively with the
Yoshida slip: under that metric, the alternating gait did badly — unequivocally so on the
loose surface. With the current/velocity metric, it is second only to roll-1000.

• Rolling at 1000 slips more than rolling at the lower speed (at least on the packed surface;
the slip correlations are too weak for conclusions to be drawn on the loose), but appears to
draw considerably less current. In fact, rolling slowly appears to be extremely inefficient,
second only to lurching. We will discuss this further below.

55 of ??



Chapter 4 Results and Conclusions

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

500−flat 1000−flat alt−flat lurch−flat

10
20

30
40

50
60

Cur/vel distribution for flat packed, smoothing=100000

●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

500−flat 1000−flat alt−flat lurch−flat

20
30

40
50

Cur/vel distribution for flat loose, smoothing=100000

Figure 4.14: Box plots showing distributions of current/smoothed velocity for flat runs. Gener-
ated by the boxPlotCurVelFlat.r script.

0 50 100 150 200 250

0
10

20
30

40
50

60

distance (mm)

cu
rr

en
t/v

el
oc

ity
 (

ar
bi

tr
ar

y 
un

its
)

current/velocity
velocity (p=100)
velocity (p=100000)

Figure 4.15: Current/velocity and smoothed/unsmoothed velocities for a single lurching run on
the flat, demonstrating the peaks in current/velocity against low velocity.

• Lurching does not perform well on the flat — this may be because the lift motors have a
very high current draw when used alone. In the alternating gait, the motion of the legs is
always assisted by some rolling, either from the same wheel (rolling) or from the wheels in
the opposing tripod (pushing).

4.3.5.1 Poor performance of slow rolling

It is notable that rolling at a speed of 500 performs so badly. This is an extremely slow speed,
roughly 6mm/s. At these speeds, the motor may be quite close to its stall speed — this can be
seen from the plot in Figure A.1 in the appendices: the motor is oscillating a great deal around the
speed requested. Such a speed may draw significantly greater current per unit rotation than higher
speeds.

Unfortunately, these extremely slow speeds are often those at which planetary rovers are re-

56 of ??



Chapter 4 Results and Conclusions

quired to move, both for control reasons and to avoid mechanical shock — particularly on difficult
terrain [?].

4.3.5.2 Correlation of current/velocity for different experiments across runs

Using the same procedure as in Section 4.3.2.1, the rankings of the gaits were correlated across
random samples in different runs. The correlograms are shown in Figure 4.16. Clearly, this metric

var 1

var 2

var 3

var 4

var 5

var 6

var 7

var 8

var 9

var 10

var 11

var 12

var 13

var 14

var 15

var 16

var 17

var 18

var 19

var 20

(a) Correlation matrix for packed

var 1

var 2

var 3

var 4

var 5

var 6

var 7

var 8

var 9

var 10

var 11

var 12

var 13

var 14

var 15

var 16

var 17

var 18

var 19

var 20

(b) Correlation matrix for loose

Figure 4.16: Correlation matrices for 20 random samples from each experiment, ranked by
current/velocity. Generated by the rankCurrentVelFlat.r script.

is strongly consistent across all the runs, and thus makes a good candidate.

4.3.6 Current-based metrics: a conclusion

The most obvious current-based metric, the current/velocity, turns out to be a good candidate for
an efficiency metric. It is consistent, directly measures the power expended per unit of work,
and is dependent upon all the motors. The slip, in contrast, is an approximate measure of wasted
energy, and may not deal with walking gaits correctly. Current/velocity is, therefore, the metric
which shall be most used in studying the slope. However, the Yoshida slip metric is still of interest
— as shall be seen, it can be used to gain insight into the nature of the problems experienced by
particular gaits.

4.4 Experiments on the slope

The plots in Figures 4.17 and 4.18 show the current/velocity plotted against x (in Vicon space).
Some interesting features:

57 of ??



Chapter 4 Results and Conclusions

2500 3000 3500 4000 4500 5000

0
50

10
0

15
0

20
0

Current/velocity against distance (slope,packed)
Smoothing=100000.00

X (mm)

cu
rr

en
t/v

el
oc

ity
 (

ar
bi

tr
ar

y 
un

its
)

lurch−packed
500−packed
alt−packed
1000−packed

Figure 4.17: Current/velocity against x for packed runs on the slope.

2500 3000 3500 4000

0
10

0
20

0
30

0
40

0

Current/velocity against distance (slope,loose)
Smoothing=100000.00

X (mm)

cu
rr

en
t/v

el
oc

ity
 (

ar
bi

tr
ar

y 
un

its
)

lurch−loose
500−loose
alt−loose
1000−loose

Figure 4.18: Current/velocity against x for loose runs on the slope.

• Roll-500 performs poorly on both surface types;

• Roll-1000 performs best, but there are two runs on the loose slope where it draws more
current;

• Alternating performs very badly indeed on a loose surface, but better on the flat than all but
roll-1000;

• Lurching also performs badly on a loose surface (although better than alternating), and is
inefficient on the flat.

4.4.1 Packed slope experiments

A better analysis can be made by plotting the metric against the inclination (rotation around the
Vicon y axis). For the packed surfaces, this gives us Figure 4.19. Each individual curve here is a
single run, ordered by time, and a small amount of smoothing has been applied to the current to
make the plots legible. Note that the graphs are logarithmic on the y axis. It can be seen that:

• Current/velocity is roughly exponential against inclination, hence the near linearity on a log
plot.

58 of ??



Chapter 4 Results and Conclusions

• Lurching, alternating and roll-1000 behave consistently on the packed slope, with alternat-
ing performing slightly better at higher inclinations, although the data set for roll-1000 is
limited, as mentioned in Section 4.1. It seems that current draw for roll-1000 is still rising
exponentially at the higher inclinations for at least some of the runs, while other runs are
better-behaved. This may be predictive of the failure modes seen in roll-500 (see below),
which may occur in roll-1000 at higher inclinations.

• Rolling at 500 gets into difficulties at high but decreasing inclinations, where the rover has
just crested the hill. This will be referred to as the crest effect, and will be analysed later in
Section 4.5.1 — it is much more significant on loose surfaces.

The same transformation is applied to the Yoshida slip data in Figure 4.20. There are some inter-
esting comparisons to be made with current/velocity:

• The Yoshida slip is often considerably lower on the upper flat, after the slope — often
becoming negative. This may be an artifact of the miscalibrated zero slip (see Section 4.3.2),
but it is also present (to a small degree) in the current/velocity data. Alternatively, it may
correspond to a difference in packing between the two flat sections.

• Roll-500 shows the crest effect under this metric too, indicating that the high corresponding
current/velocity is likely to be due to slip causing low velocities. Figure 4.21 shows slip,
current/velocity and current for all wheels in a single run, and shows that while all wheels
experience high slip on cresting the hill, wheels 3 and 5 (middle and back left) show current
surges indicating an uneven load, and that wheel 3 may have stalled. This wheel recently
had its motor replaced due to encoder failure, which involved disassembly and reassembly
of the gearing. This may be affecting its performance: its current is consistently higher than
all the others, indicating a possible gearing problem.

4.4.1.1 Conclusions

On a packed slope, rolling quickly is the best gait; although the walking gaits may be useful at
higher inclinations: the general trend of roll-1000 indicates that it may begin to fail at slightly
higher inclinations than those recorded. Rolling at 500 performs badly, probably because the
motors are running very close to their stall speeds — particularly on wheel 3, which is known to
draw high currents and may have gearing problems.

The walking gaits perform similarly to each other, with the current draw likely to be higher
because of the use of the lift motors. The alternating gait performs differently on the top flat than
on the bottom, possibly indicating a sensitivity to surface effects.

59 of ??



Chapter 4 Results and Conclusions

5 10 15 20

10
20

50
10

0
50

0

Current/Vel against incline for 500−slope−packed

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)

●
●

●●●

2 4 6 8 10 12 14

10
20

50
10

0
50

0

Current/Vel against incline for 1000−slope−packed

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)
●

●●
●●

4 6 8 10 12 14 16

10
20

50
10

0
50

0

Current/Vel against incline for alt−slope−packed

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)

●●●●●

4 6 8 10 12 14 16

10
20

50
10

0
50

0

Current/Vel against incline for lurch−slope−packed

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)

●

●●●
● ●

Figure 4.19: Current/velocity against incline for the packed surface. Individual runs are shown
in dark colours. The first point in time is marked by a circle. This is logarithmic in current/ve-
locity. Generated using the currentVelAgainstIncline.r script.

60 of ??



Chapter 4 Results and Conclusions

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for 500−slope−packed

Inclination (degrees)

Yo
sh

id
a 

sl
ip

● ●●●
●

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for 1000−slope−packed

Inclination (degrees)

Yo
sh

id
a 

sl
ip

●●●
●●

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for alt−slope−packed

Inclination (degrees)

Yo
sh

id
a 

sl
ip

●
●
●
●●

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for lurch−slope−packed

Inclination (degrees)

Yo
sh

id
a 

sl
ip

●
●●●

●
●

Figure 4.20: Yoshida slip against incline on the packed surface.

61 of ??



Chapter 4 Results and Conclusions

5 10 15 20

Inclination (degrees)

−
0.

6
−

0.
2

0.
2

0.
6

Yo
sh

id
a 

sl
ip

0
10

20
30

40
50

cu
rr

en
t/v

el
oc

ity

30
40

50
60

70
80

90

cu
rr

en
t

1 2 3 4 5 6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.21: Yoshida slip and current for all wheels in a single, packed run of roll-500.

62 of ??



Chapter 4 Results and Conclusions

4.4.2 Loose slope experiments

Figure 4.22 shows current/velocity against incline on a loose surface. We can make the following

5 10 15 20

10
20

50
10

0
50

0

Current/Vel against incline for 500−slope−loose

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)

●

●

●●
● ●

5 10 15 20

10
20

50
10

0
50

0

Current/Vel against incline for 1000−slope−loose

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)

●
●

●●●
●

5 10 15 20

10
20

50
10

0
50

0

Current/Vel against incline for alt−slope−loose

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)

●●●
●
●

5 10 15 20

10
20

50
10

0
50

0

Current/Vel against incline for lurch−slope−loose

Inclination (degrees)

C
ur

re
nt

/V
el

 (
ar

bi
tr

ar
y 

un
its

)

●

●

●

●
●

●

Figure 4.22: Current/velocity against incline for the loose surface. See Figure 4.19 for legend.

observations:

• There is much greater variation between runs.

• At low inclinations, the performance is roughly comparable to packed surfaces, perhaps
slightly better. This may be because the surface is so loose that it either packs easily under
the wheels or forms a “bow wave” in front consisting of loose material which is easily
pushed aside. This can be seen in a video2: the bow wave is pushed to either side of the
wheel.

2https://www.youtube.com/watch?v=oCkwf8nakkc

63 of ??



Chapter 4 Results and Conclusions

• The “crest effect” is much stronger here — all runs in alternating and all but one in roll-500
had to be aborted because the rover became stuck shortly after cresting the hill.

• At higher inclinations, roll-500 and alternating perform adequately until a given point,
where the current/velocity suddenly increases. This can also be seen in the Yoshida slip
plot shown in Figure 4.23. This happens at different points in each run, above a particular
threshold inclination. Roll at 1000 is less prone to this effect, but two of the runs show it at
an earlier threshold.

Note that is is not the same as the crest effect — in the crest effect, the metrics rise as
the inclination decreases after its peak. This is seen most clearly in the plot for roll-1000.
However, the threshold effect involves the metrics rising sharply while the inclination is still
increasing, as seen in roll-500.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for 500−slope−loose

Inclination (degrees)

Yo
sh

id
a 

sl
ip

●

●

●●

●
●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for 1000−slope−loose

Inclination (degrees)

Yo
sh

id
a 

sl
ip

●●●

●
●

●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for alt−slope−loose

Inclination (degrees)

Yo
sh

id
a 

sl
ip

●
●

●

●

●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slip against incline for lurch−slope−loose

Inclination (degrees)

Yo
sh

id
a 

sl
ip

●●
●●

●

●

Figure 4.23: Yoshida slip against incline on a loose surface.

64 of ??



Chapter 4 Results and Conclusions

4.4.2.1 Causes of sudden increase in current/velocity on the loose for roll-500

An initial hypothesis is that this is due to stalling, as in the previous poor performance at roll-500.
However, Figure 4.25a demonstrates that this is not the sole cause — the current/velocity increases
sharply, but the Yoshida slip is also increasing rapidly.

It is currently hypothesised that this is due to stick-slip behaviour: at higher inclinations, grav-
ity acts on the surface as the wheels rotate, causing a shearing force to be exerted on the loose
regolith. Below a certain threshold, the soil remains a single mass. Above this threshold, the soil
separates into layers which slip against each other, with the boundary layer typically being within
the transition zone between loose and packed regolith. This is borne out by the fact that the run
had to be aborted: once the surface starts to slip, it will remain fluid and the rover will be unable
to progress. This is also shown in a video3.

Figure 4.24 shows the forces acting on the loose regolith: the weight of the wheel (and rover)
pushes down, as does the weight of the regolith itself. On a slope, these forces will shear the soil
because they each have a component parallel to the boundary between loose and packed layers.
Finally, the wheel itself applies a strong shearing force.

wheel
weight

regolith
weight

loose
 re

golith

pack
ed re

golith

wheel
shear
force

Figure 4.24: The forces acting on the boundary between packed and loose regolith on the slope
with a moving rover.

However, shearing is not the only effect — or even a major effect in all runs, as can be seen
from another roll-500 run in Figure 4.25b. Here, the poor behaviour is associated with current
surges, similar to those seen in Figure 4.21. This run did not have to be aborted, and the current
was decreasing at the end.

It is possible that stalling and stick/slip behaviour are working together to different extents in
each run: repeated stalls of the motors, plus the oscillatory nature of the motor control (exacerbated
by the stalls) seen in Figure A.1 will apply frequent high shearing forces to the regolith, causing
more slip. The next “stick” phase, as the layers bind again, will cause the motors to stall once
more. This is consistent with the oscillatory currents seen in both figures.

3https://www.youtube.com/watch?v=dajwkfjjbF8

65 of ??



Chapter 4 Results and Conclusions

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Run in which slip-stick occurs

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Run in which stall may occur

Figure 4.25: Slip, current and current/velocity for two runs of roll-500 on a loose slope. Gener-
ated using plotRun.r.

66 of ??



Chapter 4 Results and Conclusions

4.4.2.2 Causes of sudden increase in current/velocity on the loose for alternating

Similar threshold behaviour occurs in the alternating gait, at roughly the same inclination. An
initial hypothesis is that this is also due to a mixture of stall and stick/slip, but the data shows that
this is always due to stick/slip or similar behaviour. Examples of this are shown in Figure 4.26.
Neither run shows the sudden increase in current commensurate with a stall condition, although

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.26: Slip, current and current/velocity for two runs of alternating gait on a loose slope.

one of the runs had to eventually be aborted because the rover’s wheels had worn down to the
plastic sheeting under the regolith.

An examination of the video evidence 4 shows the cause: as well as slippage on the rolling
wheels moving forward, the pushing wheels are not moving the rover forwards, they are merely

4http://youtu.be/V4u1E2g6orE

67 of ??



Chapter 4 Results and Conclusions

pushing soil from underneath the rover behind it. This eventually digs the rover into the regolith,
until the wheels cannot roll their way out. It is likely that the “push” action, combined with gravity,
causes too strong a shear on the regolith for it to maintain cohesion.

4.4.2.3 Behaviour of lurching gait

The runs for the lurching gait vary a great deal, but most runs appear to show a slightly higher
transition point from efficient to inefficient behaviour — around 18◦ of inclination, as opposed to
16◦ for roll-500 and alternating. We will see that only roll-1000 performs better. In addition, in
about half of the runs the “crest” effect (high inefficiency at relatively low inclines on cresting the
hill) appears to be lower or almost non-existent. Even in the runs which exhibit a crest effect, the
rover recovers rapidly compared with other gaits. The possible cause of the variation between runs
will be discussed in Section 4.5.1.

Figure 4.27 shows two runs. In Figure 4.27a, the crest effect is still very much in evidence, but
recovery is rapid. In Figure 4.27b there is no crest effect and the rover is is efficient throughout,
on both metrics.

4.4.2.4 Behaviour of roll-1000

Figure 4.28 shows two runs of roll-1000. The left-hand figure shows a run in which the gait
behaved well, with the current/velocity always low. The right-hand figure shows a worse run. All
other runs fall somewhere between these two extremes.

Note that since all these individual run plots use a linear current/velocity scale, we can see that
roll-1000 does behave much better than roll-500 — this can be obscured by the logarithmic axis
in Figure 4.22.

It’s clear that the current usage is higher, as we would expect — nearly as high as the putative
stall currents in Figures 4.21 and 4.25b. However, the current/velocity is still low, so the rover is
still moving (current/velocity places a premium on the rover moving, as stated in Section 4.3.4).

Current usage varies a great deal across the wheels, with wheels 3 and 5 notably higher:
wheel 3 is the wheel which has been reassembled as noted earlier, and wheel 5 is a rear wheel.
Interestingly, wheel 6 (the other rear wheel) shows a low metric — one rear wheel is drawing
far more current than the other, although both are slipping equally. Looking at other experiments
(Figures 4.26 and 4.25) shows that wheel 5 has a tendency to draw more current at higher inclines
(i.e. under load) than all other wheels except 3. Perhaps this wheel also has a mechanical problem.

There is considerable crest effect on all runs which reached a sufficient inclination to trigger
it, and this is a potential problem. The crest effect and its causes are dealt with in Section 4.5.1.
In general, however, it is clear that a faster roll is more efficient than all other gaits on a constant
incline.

68 of ??



Chapter 4 Results and Conclusions

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Run 5, an poor run with a significant crest effect,
although recovery is quicker than other gaits

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Run 1, an efficient run with no crest effect

Figure 4.27: Slip, current and current/velocity for two runs of lurch on a loose slope.

69 of ??



Chapter 4 Results and Conclusions

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Run with no crest effect due to low maximum in-
cline.

0 5 10 15 20

Inclination (degrees)

−
0.

4
0.

0
0.

4
0.

8

Yo
sh

id
a 

sl
ip

0
20

40
60

80
10

0
12

0

cu
rr

en
t/v

el
oc

ity

0
20

40
60

80
10

0
12

0

cu
rr

en
t

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Run where crest effect occurs.

Figure 4.28: Slip, current and current/velocity for two runs of roll-1000 on a loose slope.

70 of ??



Chapter 4 Results and Conclusions

4.5 Comparison of gaits

Comparing the gaits is difficult statistically, because each experiment contains some runs which
behave differently from others. A simple comparison is to calculate the mean of each metric
for each run, giving a simple measure of how efficient the run was, and then rank the gaits by the
maxima and minima of those means. Here, the mean can be thought of as an integral of the metric,
corrected for different run durations. This will give us a comparison of how well the gaits do at
their best and at their worst, and gives Table 4.1 for current/velocity, and Table 4.2 for Yoshida
slip.

minima maxima
1000 21.316 93.803
lurch 53.156 123.050

500 63.077 210.167
alt 213.629 324.168

Table 4.1: Minima and maxima of current/velocity means of all runs of all experiments. Gener-
ated by summarise.r.

minima maxima
1000 0.108 0.429
lurch 0.213 0.478

500 0.263 0.565
alt 0.705 0.771

Table 4.2: Minima and maxima of Yoshida slip means of all runs of all experiments. Generated
by summarise.r.

We can see that the ordering is the same for both metrics, sorted by either maximum or min-
imum. Fast rolling is best, followed by lurching, then slow rolling and alternating. This analysis
only considers the situation over the slope as a whole, however — some gaits deal with changes
in the inclination (the crest effect) better than others.

4.5.1 Crest effect

The “crest effect” is the observation that as the inclination of the rover begins to fall after cresting
the hill, the metrics are at their worst. This can clearly be seen in roll-1000, whereas the poor
performance in roll-500 is due to the rising inclination reaching a threshold.

The pose of the rover, and the forces acting on the rear wheel (and also all the other wheels) in
this situation are shown in Figure 4.29. As well as the weight of the rover pushing the wheels into
the surface, the rear wheels are being pulled into the surface by the forward motion of the rover.
This will serve to increase the effect of the shear force acting on the surface under the wheel,
increasing the likelihood that the wheel will slip. This effect is much more notable on a loose
surface, as can be seen by comparing Figures 4.19 and 4.22, because shearing forces only cause
regolith to slip on such surfaces.

Moreland states that a static wheel creates a “unified deep soil mass” beneath it which acts as
a solid base, preventing slip [?]. If this is the case, then any gait which can keep the rear wheels

71 of ??



Chapter 4 Results and Conclusions

force due to forward
motion

rover
weight

wheel shear

Figure 4.29: The pose of the rover when cresting the slope, showing that the rear wheels carry
much of the weight (incline of slope is exaggerated).

static should crest well.

The lurching gait appears to show this behaviour for most of the runs, but this varies. There
are likely to be only one or two gait cycles involved in cresting a hill, and given the dynamics
of stick/slip behaviour the soil will either slip or not — there is no “partial slippage” — with the
probability dependent on several factors, such as the precise packing and depth profile of the point
under the rear wheels, and whether those wheels are static at the critical point where the cresting
effect is strongest.

This leads to some lurch runs having almost no crest effect, while others show it strongly.
However, even in these runs the rover soon returns to the “pushing” phase of the gait (see Sec-
tion 2.10.2) and regains its solid base, allowing it to proceed where other gaits might remain in
difficulty. This explains both the variation and the quick recovery of this gait.

Rolling gaits, however, both crest poorly. Roll-500 is already in trouble before it reaches the
crest, because the soil is already starting to stick/slip at those high inclinations, possibly exacer-
bated by the oscillatory movement of the wheels and repeated stalls. Roll-1000 also shows high
slip at the crest where sufficiently high inclinations were achieved. This is because the wheels
are always moving. Alternating performs badly because the gait causes the rover to rotate slightly
around the vertical axis for every movement, so a steady base is never formed; and because of the
digging action mentioned in Section 4.4.2.2.

4.5.2 Conclusion of slope analysis

We can see that on any constant incline, rolling as fast as possible is best. However, rolling will
suffer from crest effect on reaching the top of the hill. Lurching, while not efficient most of the
time, may do better on the crest because at least two pairs of wheels are static at all times, providing
the solid mass mentioned in [?].

It is possible that improvements to the lurching gait — perhaps using direct current control
rather than PID for the drive motors to reduce oscillation — may increase its performance, allow-
ing the wheels to roll smoothly across the surface without oscillation causing shearing.

The most important finding is that the pose of the rover, and its relationship to the surface —
particularly how this relates to the suspension and forces acting on the wheels — is as important
as the inclination and condition of the surface.

72 of ??



Chapter 4 Results and Conclusions

4.6 Preparing for a neuroendocrine system

To create an AES, we need to find two gaits to switch between and an interoceptive metric to use
as input.

The gaits selected were the lurching gait, which behaves well on the crest of a hill; and roll-
500, which performs badly, but runs at the very slow speeds likely to be required by a real rover
on difficult terrain. Another factor is that roll-1000 performs sufficiently well to get to the top of
the hill without requiring lurching, so an AES is not required — so for demonstration purposes we
need to use the slower gait.

We cannot use current/velocity as a metric within the algorithm because velocity is extero-
ceptive — there is no access to it while the rover is running because of the system architecture.
Therefore, we must find a proxy: an interoceptive metric which is strongly correlated to curren-
t/velocity.

An obvious candidate is the current. To test this, the data points in all runs were ranked
by both current/velocity and current, and correlated using Spearman’s rank coefficient, with the
results shown in Table 4.3. A strong correlation is shown for both roll-500, and a fair correlation

500 1000 alt lurch
1 0.816 0.985 -0.180 -0.483
2 1.000 1.000 -0.775 0.747
3 1.000 1.000 -0.316 0.623
4 0.970 1.000 0.924 0.888
5 0.999 0.891 -0.348 0.915

Table 4.3: Spearman’s ρ for current/velocity and current, for all data points in all runs on the
loose slope.

for lurch (except on run 1). The strong correlation in roll-500 should allow for a good transition to
the lurch mode. The poorer correlation for lurch mode should be relatively unimportant, but may
in retrospect have caused some of the oscillations seen in the runs. It is fortuitous that lurching
was chosen: the correlation for the alternating gait is much worse.

This selection of metric and gait worked well when the AES was built and briefly tested —
see Section 2.11.2.

4.7 Conclusions

With the current gaits, the answers to the research questions are:

Question 1: Is there a metric based on interoceptive sensor data which is a sensi-
ble measure of efficiency, is sufficiently accurate, and is practical on our ExoMars
Concept-E chassis-based prototype rover? Yes and no. The current works fairly
well — provided we’re not using the alternating gait! However, some oscillation (see
Section 2.11.2) may be caused by the poor current-current/velocity correlation in the
lurching gait. In reality, current/velocity would be far better, but would require fairly
accurate external velocity measurement (though not as accurate as slip would require).
Perhaps optic flow could be used, or some more complete visual localisation.

73 of ??



Chapter 4 Results and Conclusions

Question 2: Is there a locomotion technique (or “gait”) for the our rover, involving
both the drive and walking motors, which is more efficient (under some metric) than
plain rolling when used on an incline, on both packed and loose soil? Not with the
current gaits on this rover, where rolling fast appears to do best. It’s possible that
it fails at higher inclinations, or that lurching can be improved to a point where it
competes (using direct current control motors to avoid oscillations).

Question 3: If so, is it possible to design an artificial endocrine or neuroendocrine
system, controlling a subsumption architecture, which will switch between locomotion
techniques automatically as the given metric demands? Yes, if a better gait can be
found, or a steeper slope upon which rolling may fail is used. For demonstration
purposes, rolling slowly was used instead to show the system would work.

The behaviour of the rover on the surface was found to be far more complex than anticipated. In
particular, two important effects were noted on the slope:

• Threshold effect: certain gaits tolerate the slope well up to a threshold, when the surface
starts to slip because of shear forces from the rover’s weight and wheels.

• Crest effect: the rover is less efficient when the inclination is falling at the top of the slope,
when it is cresting the hill.

While some attempts have been made to analyse this behaviour, much more work needs to be done
using physics models of the soil.

74 of ??



Chapter 5 Critical Evaluation

Chapter 5

Critical Evaluation

This was an extremely tough project, with many challenges in engineering, experimentation, and
data analysis. I’m pleased with how it went, but there’s a great deal I would do differently if I had
the chance.

5.1 Initial change of direction

My initial project was an attempt to built a genetic algorithm to construct artificial neuroendocrine
systems — Mark and I rapidly realised this was far too ambitious1. A chance conversation with
Dave Barnes led to a change of direction to the current project.

However, about two weeks were spent on this initial idea, including getting a good way into
an ODE simulation of the rover. I suspect blundering straight into this was probably a bad idea,
but I had to start somewhere.

5.2 Preliminary research

I’d already worked with artificial endocrine systems, but hadn’t built one from scratch, so I had an
idea of the literature in that field before I started. Rover gaits were harder to research — there was
a great deal of work on wheeled robots, and on legged robots, but relatively little on hybrids. I was
lucky to find Moreland’s paper [?] which gave me my first idea for a workable gait, and Yoshida’s
work [?] helped me with a workable and enlightening metric.

However, the gait analysis would have benefitted more from some proper mechanics. Unfor-
tunately, it was very difficult to find a way into this field (“terramechanics”) — the maths was far
beyond me. I was only able to describe what was going on in each gait, and guess at the reason,
without being able to analyse it properly. This was disappointing.

Another blind alley was the Libkoki work — I suspected the Vicon was going to be unavail-
able, so worked on an alternative for a few days. My time could have been better spent.

1It’s now the subject of my PhD research!

75 of ??



Chapter 5 Critical Evaluation

5.3 Approach

I believe my overall approach was sound: my primary research question (“can I build an AES
switching rover?”) led naturally into the other two questions (“can I identify a metric?” and “are
there suitable gaits for switching?”).

That naturally led to a series of experiments — I’m glad I ran some preliminary tests, which
at least told me that the packed and loose slopes might be different. I had no idea how different
they were until after the experiments had been finalised, and the depth of the differences wasn’t
revealed until the analysis. The experiments provided me with enough data to test my metrics, and
then to analyse the gaits.

By far the largest part of the work was the analysis of the gaits — building the gaits was
straightforward, as was the AES, but analysing the complex behaviour took a great deal of work.
This could have benefitted from more soil mechanics theory, and certainly from more control in
the experiments (see below).

The final part of the process should have been analysing the completed AES, but unfortunately
I ran out of time.

5.4 Technology

Although I kept worrying that it was foolish, I’m glad I used my own language Angort to run
the experiments. Several times I started work on implementations of gaits and the AES in C++,
and each time the code became very messy and I switched back. I’m a very experienced C++
programmer, and it just isn’t suited to that kind of coding.

Angort already existed, and was already linked to the rover, so it was a natural choice. Since I
originally wrote it as a control language, it has gained a great deal of power — I’ve worked on it
a lot over the couple of years as a pet project. I was very surprised to find just how expressive and
powerful it was in a real project.

My only concern is that using a novel language limits the comprehensibility of my code. To
that end, I’ve added a partial description of the language as an appendix and made sure everything
is commented (although it could be commented even more).

The Vicon motion capture system was very difficult to use, with a complex and unreliable
Windows program to capture the data. It took quite some time to get to grips with. Most of
my problems involved having to re-run an experiment because Vicon had crashed or was giving
spurious results.

5.5 Experimentation

I’m fairly happy with the experimental protocol, and the use of the monitor to keep an eye on
the rover. Probably about 20 hours of experiments were done, not including the preparation and
analysis time, which probably doubles this. Having a checklist helped avoid re-runs and permitted
some multitasking.

However, repeatability was a big problem. I should have been more careful to ensure the rover

76 of ??



Chapter 5 Critical Evaluation

was always started at the same point (in the y axis as well as x in Vicon space), and that the
condition of the soil was always the same. The latter proved extremely difficult — rollers would
have helped immensely.

The entire project would have benefited from better control over the environment, with prop-
erly measured and calibrated slopes and soil profiles. I imagine this would be extremely hard
to achieve. Also, I should have tried once more to get a definitive value for the encoder ticks /
circumferential velocity ratio; but by the time I realised it was a problem, it was too late.

5.6 Analysis

One problem with this project is that despite the title, it’s mostly about analysing gaits and their
failure modes. The AES part was actually completed in about a week at the end of the experimental
time allocated, and it shows. More time would have permitted an analysis of the AES performance.

The data has been smoothed a great deal, which always looses some information. A sepa-
rate analysis of what goes on inside a gait cycle would have been useful, using data which isn’t
smoothed, but that would have been a huge piece of work.

The analysis of the gaits is fair, but there’s not enough mathematical rigour. I’d like have
discussed the “crest” and “threshold” effects in more detail, but time and space were limited.
However, the effects are interesting, and come nicely out of the metrics. I’m pleased with my
qualitative analysis of them.

Statistics could have been used to provide more quantitative data, but given the distribution of
the data on the slope, non-parametric statistics had to be used. I’m happy with using Spearman’s
ρ to test the metrics, and also to correlate the current/velocity with current; but surely more could
have been done. My statistics knowledge is near nil (but increasing) so it was hard to know exactly
what.

5.7 Achievements and aims

This project has achieved its aim: we have an AES-controlled switching gait, and a demonstration
that it works. We also have a useful pair of metrics, which have been used to analyse four gaits in
some depth — in fact, this took up most of the project.

However, given that the answer to “is there a gait which is more efficient on the slope than
plain rolling?” is actually “no” (roll-1000 is always best) the AES feels like a bit of a cheat: I had
to use roll-500 to get it to work. I’m not happy with that, even though it proves the concept.

The alternative would have been to try to improve the lurching gait so that it slipped less. I’m
convinced this is possible, but it would require modifying and re-flashing the firmware on the rover
to permit direct current control. There was no time, and it could have failed.

77 of ??



Appendices

78 of ??



Appendix A The Blodwen rover

Appendix A

The Blodwen rover

In this section, some of the subsystems of the ExoMars rover prototype introduced in section 2.2
are described in more detail. These are specific to our prototype, not to the final ExoMars rover.

A.1 Introduction

As supplied, the rover had no control systems whatsoever. Control was achieved by manually
powering the motors via a tethered switch box. As part of industrial year work, the author designed
and built a complex microcontroller-based control system.

A.2 Motors and gearing, and PID control problems

Concept-E uses three motors on each wheel. These are small Maxon motors, drawing approxi-
mately 0.5A at full load, and are very highly geared. This, combined with the friable simulated
regolith, which changes the force reacting against the motor drastically under different conditions,
made tuning the motors very challenging. There are still a number of problems — the actual drive
motor speed oscillates rapidly around the required speed, and both steer and lift motors overshoot
markedly. This can clearly be seen in Figure A.1.

It is likely that the current simple PID control is insufficient, and improvements such as feed-
forward, gain scheduling or cascaded control should be considered for future work.

These problems impact considerably on the experiments — walking requires changing the
speeds and positions of the motors reasonably accurately and quickly, and in practice this was
very difficult. It is likely that the walking gaits analysed would be far more efficient with improved
motor control.

A.3 Control

The rover originally had no onboard electronics, being controlled simply by manual switches on
a tethered remote control unit. A control system was built by the author during his industrial

79 of ??



Appendix A The Blodwen rover

0 5 10 15 20

0
20

0
40

0
60

0
80

0
12

00

Time (s)

S
pe

ed
 (

ar
bi

tr
ar

y 
un

its
)

actual
required

Figure A.1: Actual drive motor speed for wheel 1 on packed soil, commanded to a speed of 500
arbitrary units, demonstrating the typical extreme oscillations.

year, based around a three-layer architecture: a set of nine microcontroller/motor driver boards1

communicating over an I2C bus to an Arduino Uno master, which communicates over USB with
a C++ library on the onboard PC. This is described fully in the relevant appendix. For ease of
control, a simple interface was written to to connect this library to the Angort scripting/control
language. This language surprisingly proved very powerful for experimentation.

A.4 On-board equipment and power

The rover is powered by a 8800mAh lithium polymer battery — it has room for two, but it was
considered more efficient to use only one, while the other recharged. On board, there are two Fit
PC low power computers (only one of which is in use) and a wireless router. These typically draw
1.5A when the rover is not moving. With drive and lift motors actuated, this can reach up to 4.5A.

A.5 Current measurement

Conveniently, each L293D motor driver chip is equipped with current sense lines. These are
connected to analogue inputs on the microcontroller, providing us with a current measurement.
Unfortunately the PWM control applied to the motors, and the innate oscillation of the motor
due to the tuning problems, meant this measurement oscillated wildly. Therefore, the firmware

1Sparkfun ROB-09571 units, consisting of an L293D dual H-bridge motor driver and an ATMega328P microcon-
troller

80 of ??



Appendix A The Blodwen rover

imposes a large amount of smoothing on the measurement:

It = kit + (1− k)It−1

k =

{
0.1 if di

dt > 0

0.01 if di
dt ≤ 0

where It is the output measurement at time t, it is the input measurement at that time, and k is the
smoothing constant. This is the exponential moving average [?], because it is is an average of all
previous values, weighted by factors which decrease exponentially with distance in time.

It should be noted that k is different if the input measurement is increasing or decreasing. Thus,
the hysteresis on increasing current is much smaller than that on decreasing current. This allows
rapid upward changes to be quickly spotted, so overcurrent can be avoided, while continuing to
smooth the output.

A.6 Other sensors

Other sensors aboard the rover are:

• temperature sensors on each of the motor driver chips, measuring the temperature associ-
ated with powering pairs of motors;

• suspension module potentiometers measuring the angles of the suspension joints.

Further experiments could make use of the chassis potentiometers, perhaps to monitor when the
rover is starting or finishing an incline, and could be used in an interoceptive metric for control.
However, none of these sensors are used in the current study.

A.7 Software

As mentioned above, the rover is controlled by a set of microcontrollers (one for each pair of
motors), all of which are sent commands via a single master Arduino Uno, which in turn receives
commands from the PC via USB, configured as a simple serial device. All the microcontrollers
have custom software written in C++, documented in more detail in [?].

The PC to master commands, in their raw form, consist of requests to read or write “registers”
— variables stored in the microcontrollers. For example, the following command writes four
values to four different registers:

PC to master: 0d 32 04 00 ff 01 ff 02 01 00 03 02 00
Response: 00

• 0d 32: 13 bytes, command 2 (write) for slave 3

• 04: contains 4 writes

• 00 ff: write ff to register 0

• 01 ff: write ff to register 1

81 of ??



Appendix A The Blodwen rover

• 02 01 00 : write 0001 to register 2
• 03 02 00 : write 0002 to register 3

(Response is just zero to acknowledge).

This system is clearly very complex, so a C++ library was written to encapsulate the commands.

This system uses a top-level Rover class, which is instantiated as a singleton. This can then
be used to gain access to objects in the Motor class hierarchy to control the motors, which can in
turn be requested for data objects. Calling update() on the Rover singleton will cause request
to read all sensors to be sent, updating these data objects.

A brief example:
int main(int argc,char *argv[]){

Rover r;

try {
// set up the rover given the comms port and the baud rate.
r.init("/dev/ttyACM0",115200);

// send default calibration
r.calibrate();

// some parameter data we’re going to change (for illustration)
MotorParams params = {

0.004,0,0, //PID
0,0, //integral cap and decay
300, //overcurrent threshold

};

// change parameters on the drive motors
// and set a speed for them

for(int i=1;i<=6;i++) { // motors are 1 to 6 as in the documentation
Motor *m = r.getDrive(i); // get each drive motor

// get a pointer to its parameters
MotorParams *p = m->getParams();

// copy some other data into them

*p = params;

// and send the changes
m->sendParams();

// and set a speed
m->setRequired(1000);

}

for(;;){
usleep(10000); // wait 1/100 s
r.update(); // update the rover

// get drive motor 1 data
DriveMotorData *d = r.getDriveData(1);
printf("%f\n",d->actual); // print actual speed

}

} catch(SlaveException e) {

// slave exceptions are thrown by protocol and comms errors
printf("Error in rover communication: %s\n",e.msg);
return 0;

}
}

82 of ??



Appendix B Information on the rover monitor system

Appendix B

Information on the rover monitor
system

See Section 2.3 for general information about the monitoring system.

B.1 Incoming data protocol

The monitor reads a UDP port, which is fed variable data as lines of text in key-value form by the
remote system. Not every line contains all the possible variables; if no data is received for a given
variable, its value is assumed not to have changed. This helps minimize bandwidth. All lines must
contain a variable called “time”, however, which is typically the UNIX timestamp. Here are some
example lines, captured from this project’s experiments:

time=1393848445.992669 go=1.00
time=1393848445.992846 ptime=146.352093
time=1393848445.992959 actual1=0.00 req1=-2200.00 current1=0.00 lift1=-1.114 steer1=-0.036 liftcurrent1=17.00 odo1=0
time=1393848445.993090 actual2=0.00 req2=-2200.00 current2=0.00 lift2=-0.700 steer2=-1.068 liftcurrent2=8.00 odo2=0
time=1393848445.993221 actual3=0.00 req3=0.00 current3=0.00 lift3=-0.946 steer3=0.927 liftcurrent3=3.00 odo3=0
time=1393848445.993342 actual4=0.00 req4=0.00 current4=0.00 lift4=0.134 steer4=0.061 liftcurrent4=0.00 odo4=0
time=1393848445.993464 actual5=0.00 req5=0.00 current5=0.00 lift5=-0.476 steer5=0.671 liftcurrent5=1.00 odo5=0
time=1393848445.993598 actual6=0.00 req6=0.00 current6=0.00 lift6=0.427 steer6=0.366 liftcurrent6=15.00 odo6=0
time=1393848445.993717 temp1=6.500443
time=1393848445.993815 temp2=8.500015
time=1393848445.993914 temp3=9.999695
time=1393848445.994012 temp4=7.000336
time=1393848445.994109 temp5=8.000122
time=1393848445.994205 temp6=8.500015
time=1393848445.994299 temp7=8.000122
time=1393848445.994396 temp8=8.500015
time=1393848445.994490 temp9=7.500229
time=1393848446.270672 go=1.00
time=1393848446.270839 ptime=146.630085

Inside the rover’s Angort application a simple function called udpwrite() allows any part of the
code to write data to the monitor, automatically preceded by a timestamp. For example, the code
in the rover which produces most of the data above is the following, which is called periodically
by the application in idle mode, and by the Angort handleudp command when in a script:

/// send a standard block of UDP data, and
/// process any incoming messages

void handleUDP() {

udpServer.poll(); // check for incoming

83 of ??



Appendix B Information on the rover monitor system

/// send the special properties, whose
/// values came from the monitor in
/// the first place, for confirmation.

extern void sendUDPProperties();
sendUDPProperties();

// get elapsed time since program stat

struct timespec t;
clock_gettime(CLOCK_MONOTONIC,&t);
double diff=time_diff(progstart,t);

// send this time as "ptime"

udpwrite("ptime=%f",diff);

// now send all sensor data

for(int w=1;w<=6;w++){
DriveMotorData *d = r->getDriveData(w);
DriveMotor *dm = r->getDrive(w);
SteerMotorData *s = r->getSteerData(w);
LiftMotorData *l = r->getLiftData(w);

udpwrite("actual%d=%f req%d=%f current%d=%f lift%d=%f steer%d=%f\
liftcurrent%d=%f odo%d=%d",

w,d->actual,
w,dm->getRequired(),
w,d->current,
w,l->actual,
w,s->actual,
w,l->current,
w,d->odometer
);

}

// also send temperature data

MasterData *m = r->getMasterData();

for(int i=1;i<10;i++){
udpwrite("temp%d=%f",i,m->temps[i] - m->temps[0]);

}

In addition, extra variables can be output at any time through the scripting system; the “go” vari-
able, for example, reflects whether the rover believes it is currently running an experiment — this
is an example of a feedback variable (see below).

B.2 Annotated example monitor configuration file

This is a sample of a very simple monitor script, showing some of the available widgets. Other
useful widgets include a compass and a map (which can control a powerful waypoint management
system), which were used in robotic boat control. A full description of the syntax of monitor
configuration files can be found at [?].

#monitor

# the above line sets up syntax highlighting and indenting in
# my editor, MicroEmacs.

# first comes a list of data variables the system expects in the

84 of ??



Appendix B Information on the rover monitor system

# packets being sent from the remote system.

var {

# Currently only float values are supported - we can emulate
# others with these.

# "a" is a variable with range -1 to 1. We\u2019ll store 100 values
# for it in a cyclic buffer, so we can graph 100 values back.

float a 100 range -1 to 1

# Similarly, "b" is a 100-long buffer which takes values from -1
# to 1.

float b 100 range -1 to 1
}

# now a list of windows and the widgets in them. A common configuration
# is multiple fullscreen windows, switched between using key presses.

window size 800,800
{

# this frame is at 0,0 (top left) and made up of 8x4 squares

frame 0,0,8,4 {

# at top left in this frame, a gauge for variable "a". The
# range is obtained from the variable.

gauge 0,0 { var a }

# to the right of it, a gauge for variable b.
gauge 1,0 { var b }

# and to the right of that, a gauge for the expression "a+b". When
# we use an expression as a data source we must specify
# a range.

gauge 2,0 { expr "a+b" range -2 to 2}

# below all these, a graph which is 8x2 so it fills the row

graph 0,2,8,2 {
time 30
var a { col red width 2}
var b { col yellow width 2}

}
}

}

This graphs two variables a and b in the bottom part, and in the top part shows gauges of the
current values and their sum. The running monitor with this configuration is shown in Figure B.1.

85 of ??



Appendix B Information on the rover monitor system

Figure B.1: Example of a simple monitor configuration.

86 of ??



Appendix B Information on the rover monitor system

B.3 The rover monitor configuration file

This listing shows the monitor configuration file for the experiments in the current study. See
Figure 2.3 for a screenshot of this configuration.

#monitor

# This is a configuration file for the (originally) minty2 monitor program.
# It sets up monitoring for the rover

# variables are considered invalid if no data has been received for
# 10 seconds, and any widgets involving those variables will show the "no data" state

.

validtime 10

#
# A list of the variables expected from the rover, how many
# values should be stored in the associated buffer, and the
# range of the values. The only type currently supported is
# floating point.
#

var {
# how long the scripting system has been running

float ptime 10 range 0 to 100000

# actual drive motor speeds

float actual1 10000 range -2500 to 2500
float actual2 10000 range -2500 to 2500
float actual3 10000 range -2500 to 2500
float actual4 10000 range -2500 to 2500
float actual5 10000 range -2500 to 2500
float actual6 10000 range -2500 to 2500

# required drive motor speeds

float req1 10000 range -2500 to 2500
float req2 10000 range -2500 to 2500
float req3 10000 range -2500 to 2500
float req4 10000 range -2500 to 2500
float req5 10000 range -2500 to 2500
float req6 10000 range -2500 to 2500

# actual lift motor positions

float lift1 10000 range -45 to 45
float lift2 10000 range -45 to 45
float lift3 10000 range -45 to 45
float lift4 10000 range -45 to 45
float lift5 10000 range -45 to 45
float lift6 10000 range -45 to 45

# actual steer motor positions

float steer1 10000 range -60 to 60
float steer2 10000 range -60 to 60
float steer3 10000 range -60 to 60
float steer4 10000 range -60 to 60
float steer5 10000 range -60 to 60
float steer6 10000 range -60 to 60

# drive motor currents

87 of ??



Appendix B Information on the rover monitor system

float current1 10000 range 0 to 100
float current2 10000 range 0 to 100
float current3 10000 range 0 to 100
float current4 10000 range 0 to 100
float current5 10000 range 0 to 100
float current6 10000 range 0 to 100

# lift motor currents

float liftcurrent1 10000 range 0 to 100
float liftcurrent2 10000 range 0 to 100
float liftcurrent3 10000 range 0 to 100
float liftcurrent4 10000 range 0 to 100
float liftcurrent5 10000 range 0 to 100
float liftcurrent6 10000 range 0 to 100

# wheel odometry in encoder ticks/256

float odo1 10000 range 0 to 1000
float odo2 10000 range 0 to 1000
float odo3 10000 range 0 to 1000
float odo4 10000 range 0 to 1000
float odo5 10000 range 0 to 1000
float odo6 10000 range 0 to 1000

# driver chip temperatures. Chip to motor mappings are:
# 1 = drive/steer for wheel 1
# 2 = drive/steer for wheel 2
# 3 = lift/lift for wheels 1 and 2
# 4 = drive/steer for wheel 3
# 5 = drive/steer for wheel 4
# 6 = lift/lift for wheels 3 and 4
# 7 = drive/steer for wheel 5
# 8 = drive/steer for wheel 6
# 9 = lift/lift for wheels 5 and 6

float temp1 10000 range 2 to 30
float temp2 10000 range 2 to 30
float temp3 10000 range 2 to 30
float temp4 10000 range 2 to 30
float temp5 10000 range 2 to 30
float temp6 10000 range 2 to 30
float temp7 10000 range 2 to 30
float temp8 10000 range 2 to 30
float temp9 10000 range 2 to 30

# confirmation of "go" switch, relays the rover’s copy
# of "go" which is a variable sent from the laptop.

float go 10 range 0 to 2

# confirmation of the "scf" value setting, also sent from
# outside. It’s used in hormone switching simulation tests
# to modify the drive speed -> current increase mapping.
# It stands for "Simulation Current Factor."

float scf 10 range 0 to 20

# level of the primary "switching" hormone

float hlevel 10000 range 0 to 1

# output of the switching hormone’s output neuron;
# above a certain level gait switch occurs

float hout 10000 range 0 to 1

# level of the input hormone, which is released by the current

88 of ??



Appendix B Information on the rover monitor system

# and serves to smooth it. This in turn releases the switching
# hormone.

float hlevel2 10000 range 0 to 1
}

#
# There now follow widget definitions.
#

window
{ frame 0,0 borderless {

frame 0,0 {

# gauges showing required and actual drive speeds

gauge 0,0 { var req1 }
gauge 1,0 { var req3 }
gauge 2,0 { var req5 }
gauge 0,1 { var req2 }
gauge 1,1 { var req4 }
gauge 2,1 { var req6 }

gauge 0,2 { var actual1 }
gauge 1,2 { var actual3 }
gauge 2,2 { var actual5 }
gauge 0,3 { var actual2 }
gauge 1,3 { var actual4 }
gauge 2,3 { var actual6 }

}
frame 1,0 {

# gauge currents

gauge 0,0 { var current1 }
gauge 1,0 { var current3 }
gauge 2,0 { var current5 }
gauge 0,1 { var current2 }
gauge 1,1 { var current4 }
gauge 2,1 { var current6 }
gauge 0,3 { var liftcurrent1 }
gauge 1,3 { var liftcurrent3 }
gauge 2,3 { var liftcurrent5 }
gauge 0,4 { var liftcurrent2 }
gauge 1,4 { var liftcurrent4 }
gauge 2,4 { var liftcurrent6 }

}

frame 2,0 {

# actual lift motor positions

gauge 0,0 { var lift1 }
gauge 1,0 { var lift3 }
gauge 2,0 { var lift5 }
gauge 0,1 { var lift2 }
gauge 1,1 { var lift4 }
gauge 2,1 { var lift6 }

# three momentary buttons, which each perform
# "special" actions in the monitor rather than
# sending messages to the rover. These start
# and stop the logging system, and quit the
# monitor

momentary 0,2 { title "startlog"

89 of ??



Appendix B Information on the rover monitor system

special "startlog"
key "s"
size 80,80}

momentary 1,2 { title "stoplog"
special "stoplog"
key "k"
size 80,80}

momentary 2,2 { title "quit"
special "quit"
key "q"
size 80,80}

# a gauge which shows the average temperature -
# the range must be set explicitly because the
# monitor currently cannot infer it.

gauge 3,0 {
expr "(temp1+temp2+temp3+temp4+temp5+temp6)/6.0"
range 0 to 30
title "AVG TEMP"

}

# a number display showing the average wheel odometry

number 3,1 {
expr "(odo1+odo2+odo3+odo4+odo5+odo6)/6.0"
# range irrelevant to number widgets, but must
# be supplied because of the syntax.
range 0 to 1
title "AVG ODO"

}

# this switch toggles the "go" value, and sends the
# new value to the rover. The switch also shows
# whether the switch setting agrees with the value
# of the "go" variable being sent from the rover.

switch 3,2 {
out go
var go
title "EXP GO"
immediate
key "g"

}

# the SCF slider, which sends "scf" to the rover
# and confirms it with "scf" being received from the rover.

slider 4,0,1,3 {
title "SCF"
out scf
var scf
vertical immediate
initial 0.07
range 0.02 to 0.2

}
}

# the bottom half of the window

frame 0,1,3,1 {

# a graph showing total drive and lift currents
# and hormone levels

graph 0,0,5,1 {

90 of ??



Appendix B Information on the rover monitor system

time 100
expr "(current1+current2+current3+current4+current5+current6)/6.0"

range 0 to 100 {col red width 3}
var hlevel2 {col green width 3}
var hlevel {col white width 3}
expr "(liftcurrent1+liftcurrent2+liftcurrent3+liftcurrent4+

liftcurrent5+liftcurrent6)/6.0" range 0 to 100 {col blue width 3}

var lift1 {col blue width 1}
var lift2 {col blue width 1}
var lift3 {col red width 1}
var lift4 {col red width 1}
var lift5 {col yellow width 1}
var lift6 {col yellow width 1}

}

# gauge showing switching hormone level

gauge 5,0 { var hlevel }

# gauge showing total current

gauge 6,0 {
expr "current1+current2+current3+current4+current5+current6+

liftcurrent1+liftcurrent2+liftcurrent3+liftcurrent4+liftcurrent5+
liftcurrent6" range 0 to 1000

title "current"
}

# gauge showing input hormone level

gauge 7,0 { var hlevel2 }

# a status indicator which is black if
# the switching hormone output is low,
# and green if it is high. Intermediate values
# are blue.

status 8,0 {
size 1,1
floatrange {

pos 0,0
title "HACT"
var hout
bands
<0.1 black
<0.7 blue
else green

}
}

}
}

}

91 of ??



Appendix C The collation algorithm

Appendix C

The collation algorithm

This appendix describes the algorithm used by the collateViconAndRoverCSV Python script to
merge the data from the rover capture file with the Vicon motion capture data.

It produces a file containing a line of comma separated values for each unique value of ptime
in the rover capture data (i.e. each rover update), with the Vicon position and orientation data at
that time added in, both absolute in the Vicon coordinate system, and relative to the start position
of the rover.

• Read all the Vicon data into a list consisting of time, position and rotation. The list is ordered
by time, and the time is in seconds since the start of the file (obtained from the frame number
and known frame rate.)

• First pass: read the entire rover file, generating a list of keys, and a hash of keys and their
values, set to the first values. Ignore any lines for which go is false.

• Add the Vicon data keys to the list of keys, and set their first values. Add both an (x, y, z)
triplet for the relative position from the start of the run and a (viconx , vicony , viconz ) triplet
for absolute positions relative to the Vicon’s origin.

• Output a header consisting of a comma separated list of keys.

• Create an index for the “current Vicon datum” — set this to zero

• Second pass: for each line in the rover data file,

– Set the current time to the time value of the line minus the time’s first value (time is
a UNIX timestamp; this will set it to start from zero at the start of the experiment).

– Set all other values in the hash to the values received for each key in the line.
– While the current time is greater than or equal to1 that of the current Vicon datum,

set the values for the Vicon elements in the hash to those of the current Vicon datum,
calculating the relative positions (x, y, z) by subtracting the position of the first entry;
and increment the current Vicon datum index.
This will run through all the Vicon entries before the current time and set the position
and rotation values in the collated data hash to each entry. There is a significant amount
of unnecessary assignment for simplicity’s sake, but the algorithm still runs quickly.

1Floating point values being what they are, “equal to” never happens.

92 of ??



Appendix C The collation algorithm

– If go in the hash is true (i.e. an experiment is running), and some Vicon data has been
set, and ptime has changed since the last output, output all the values as a CSV line
with the same ordering as the header. (The purpose of this last condition is to ensure
that duplicate data are not output unnecessarily — ptime is guaranteed to change
once per experiment tick.)

The result of this algorithm is to output a single line of data for each complete experiment tick,
containing all the variables, with the correct rover position at that time.

93 of ??



Appendix D Angort code listings

Appendix D

Angort code listings

This appendix contains the listings of some key Angort scripts used in the experiments. The files
can be found in experiments.

D.1 script.ang

This is the “default” script — it is loaded automatically by the rover scripting environment, before
any files specified on the command line. It contains both remote control function definitions and
useful functions common to all experiments.

# Angort script file for basic rover experiments.

# define a constant range, for the wheel numbers, over which we
# can iterate. These are wheels 1-6, and we say 1-7 because the
# actual interval is [1,7).

1 7 range const wheels

# Disable leg interference checking - normally if the legs
# get too close the rover will go into an exception state.
# In certain gaits (such as alternating), this is required behaviour.

0 setlegchecks

###################################################################
##
## Remote control code
##
## Note that the first part of the word’s actual definition,
## which is in the form :"...." is the help text for the word.
## Where the word is simple, any comments are omitted in favour
## of this help text.
##
###################################################################

:setsteerall
:"(pos --) set the steer position on all wheels"
wheels each {dup i!steer}drop;

:a :"(pos --) shorthand for setsteerall, useful in remote control"
setsteerall;

:setliftall

94 of ??



Appendix D Angort code listings

:"(pos --) set the lift position on all wheels"
wheels each {dup i!lift}drop;

:setdriveall
:"(pos --) set the required drive speed on all wheels"
wheels each {dup i!drive}drop;

:d :"(pos --) shorthand for setsteerall, useful in remote control"
setdriveall;

:turn |t:|
:"(angle --) turn the front wheels one way and the back wheels the opposite way"
?t dup 1!steer 2!steer
?t neg dup 5!steer 6!steer
0 0 3!steer 4!steer

;

:t :"(angle --) shorthand for turn" turn;

###################################################################
##
## Configuration words, for when the rover configuration (such
## as control parameters for the motors) needs to be changed.
##
###################################################################

:setiall |gain,cap,decay:|
:"set the integral gain, cap and decay on all drive motors"
wheels each {

?gain i digain
?cap i dicap
?decay i didecay

}
;

:setpall
:"(pgain --) set the proportional gain on all drive motors"
wheels each { dup i dpgain}drop;

:setdall
:"(dgain --) set the differential gain on all drive motors"
wheels each { dup i ddgain}drop;

:setpid |p,i,d:|
:"(pgain igain dgain --) set PID gains, also sets Icap and Idecay to fixed values

"
?p setpall
?i 200 1 setiall
?d setdall

;

:zerolift
:"zero all lift motor gains"
wheels each {0 i ligain};

:zerosteer
:"zero all steer motor gains"
wheels each {0 i sigain};

###################################################################
##
## UDP properties - values which are modified by packets sent
## from the monitoring system, but look like global variables
## to Angort scripts.
##
## Note that this occurs only when the interpreter is idle,

95 of ??



Appendix D Angort code listings

## or when handleudp is called.
##
###################################################################

# This is set when the user flips the EXP GO switch on the monitor,
# thus starting the experiment.

"go" addudpvar

# this is used only by the simulator - it’s a factor which multiplies
# the simulated current generated by drive motors.

"scf" addudpvar

###################################################################
##
## These two words set up configurations (PID gains and other
## control system properties) used by all gaits.
##
###################################################################

#
# "Rolling calibration" is used in a walking gait when a wheel
# needs to be rolled forwards. We set the wheel’s drive gain to
# very low, so the driving wheel is almost uncontrolled and unbraked,
# but a small amount of torque is still provided.
# We set the lift I-gain also quite low, but increase the decay
# constant and the cap - this increases the torque provided
# by the lift motor.
#
# This causes the lift motor to push the wheel to
# the desired position, while the drive motor rolls freely and
# provides a little help. The aim is for the leg to move to the
# required position while the drive wheel rolls smoothly along the
# surface.
#

:rollcalib |w:|
:"(wheel--) calibrate a given wheel for rolling"
0.007 ?w dpgain
0 10 0 12 0.95 500 255 1 ?w setliftparams

;

# "Standard calibration" is used when a wheel is pushed or in
# normal rolling - it’s the same as produced by the "calib" word,
# the default settings for the rover software.

:stdcalib |w:|
:"(wheel--) calibrate a given wheel with standard gains"
0.01 ?w dpgain
0 5 0 50 0.9 500 255 1 ?w setliftparams

;

###################################################################
##
## Experiment helper functions used to manage the experiments
## themselves, primarily concerned with handling the "go" UDP
## property.
##
###################################################################

# This word centres all the lift and steer motors (waiting
# 2 seconds for this to be reflected in the actual positions),
# resets all odometry, and then enters a loop waiting for "go"
# to become true.

96 of ??



Appendix D Angort code listings

:expStart
:"( -- ) experiment start code. Resets and waits for ’go’"

"Ready to run, press EXP GO on the monitor".
# zero all positions and wait
wheels each {0 i!lift 0 i!steer} 2 delay
# reset odometry
wheels each {i resetodo}
# loop waiting for "go" - note the update and handleudp.
{

0.1 delay
update handleudp
?go ifleave

}
"Starting..." .

;

# this is called periodically inside the experiment.
# It updates the system, sends/receives UDP, and then
# return true if the experiment should leave. Typically
# an experiment will have a loop consisting of
# { ...do stuff... expUpdate ifleave}

:expUpdate
:"(-- leave) experiment update code. Updates and returns true if containing loop

should exit"
0.1 delay update handleudp ?go not;

D.2 Experiment setup words, and an introduction to Angort

D.2.1 The expStart word

This word is used to reset the rover and wait for the “go” variable sent by the monitor to become
non-zero1. In full, it reads as follows:

:expStart
:"( -- ) experiment start code. Resets and waits for ’go’"

"Ready to run, press EXP GO on the monitor".
# zero all positions and wait
wheels each {0 i!lift 0 i!steer} 2 delay
# reset odometry
wheels each {i resetodo}
# loop waiting for "go" - note the update and handleudp.
{

0.1 delay
update handleudp
?go ifleave

}
"Starting..." .

;

The first line begins the definition of the word, with no parameters or local variables. The second
line defines a help text — if the user types

"expStart" help

1Booleans in Angort are integers where zero is false and non-zero is true, as in C.

97 of ??



Appendix D Angort code listings

they will be shown that string. The next line prints the string in quotes (the word “.” converts the
value on top of the stack into a string and prints it with a newline following).

The next line is an iterator loop, which is written less tersely as
wheels each {

0 i!lift
0 i!steer

}
2 delay

The wheels word will stack the constant of that name, which is a range value covering the
integers from 1 to 6: the wheel numbers2. The compound word each { introduces an iterator
loop, which iterates over the range or collection on top of the stack. It is terminated with }.

Within the loop, the sequence 0 i will stack the number 0 and the current value of the iterator
(i.e. the wheel number). The word !lift is a “property write” — lift is defined as a property,
something which looks like a global variable to Angort, but has C++ get and set methods. The
exclamation mark means “set”, so the set method will run. This will first pop the wheel number,
then the value, and set the required position of that lift motor to that position.

The next line does a similar thing with the steer motor, so the entire loop contents will set all
the wheels’ lift and steer motors to zero. The final line will just delay for two seconds, while the
wheels recentre.

The line

wheels each {i resetodo}

will reset the odometry counter on each wheel, so we can measure the rover’s odometry from zero.

The final loop:

{
0.1 delay
update handleudp
?go ifleave

}

is not an iterator loop — it is an standard infinite loop, delimited by { } without the each. Such
loops run forever unless terminated by leave or the conditional ifleave, which jumps out of
the loop at the point at which it executes. In this case, the loop pauses for 0.1s, updates the rover
data, retrieves and sends UDP data, and then the words

?go ifleave

will exit the loop if go is true. The question mark indicates a get operation, and go is a UDP
property — a value which is essentially a global variable but can also be set by handleudp
receiving a packet from the monitor program, containing a new value. The final line simply prints
a message to the console, and the trailing semicolon completes the word definition.

2Wheel numbers are in the range 1 to 6 (rather than 0 to 5) because that is how they are labelled in the documentation
which was supplied with the rover.

98 of ??



Appendix D Angort code listings

D.2.2 The expUpdate word

This word is much simpler:
:expUpdate

:"(-- leave) experiment update code. Updates and returns true if containing loop
should exit"

0.1 delay update handleudp ?go not;

This code is straightforward: delay for 0.1 seconds, then update, then send/receive UDP data.
Finally, retrieve the go value and negate it, leaving the value on the stack for the calling code to
examine (since any containing loop should exit when go is false).

This is indicated in the stack picture in the help text: “(– leave)” shows the state of the stack
before and after the word’s execution, separated by the double dash. In this case, there is nothing
on the stack required by the word on entry, but a value called “leave” is added on exit.

99 of ??



Appendix D Angort code listings

D.2.3 sub.ang

This file contains the core of the subsumption architecture as used by the lurching and alternating
gait.

#
# The core of the subsumption architecture.
#
# The design of the system is in the report proper,
# but it is based around "machines", each of which contains
# a number of states, and is implemented as a hash.
#
# States contain the state functions ‘entry, ‘exit and ‘update
# (in a hash of those symbols to anonymous functions).
#
# Machines also contain hashes of input and output values,
# the current state, and the time spent in the current state.
# They may also store any other value they like in their hash.
#
# Most of the functions is here are very short, and their
# help text describes them, so they are not commented.
#
# Note the frequent use of the "symbol shortcut get"
# syntactic sugar to get a value keyed by a symbol from a hash.
# Instead of
#
# ‘mysymbol ?somehash get
#
# it’s possible to type
#
# ?somehash?‘mysymbol

# This is used at the start of building a new architecture
# to clear the list of machines

:newmachines
:"(--) clear the machine list for new machines"
# "..better than those on Richese"
[] !Machines

;

# Slightly ugly convention - the "This" global is the current
# state machine, which is initially nil (or "none" in Angort)

none !This

# this returns the value of This, asserting that it is not nil.

:this
:"(-- current machine) get the current machine"
?This dup isnone not "This is none" assert

;

# A useful routine to show the states, inputs and outputs
# of a machine. Printing in Angort can be ugly, but "p" outputs
# the value on the stack without a trailing newline, and "." outputs
# it with one. Note heavy use of shortcut symbol get, and the nested
# hashes.

:dumpmachine |m:|
:"(m --) dump a machine to console"
"Machine " p ?m?‘name p ", State: " p ?m?‘state .
" Inputs:".
?m?‘inputs each {

" " p i p ": " p i ?m?‘inputs get .
}
" Outputs:".

100 of ??



Appendix D Angort code listings

?m?‘outputs each {
" " p i p ": " p i ?m?‘outputs get .

}
;

:curstate
:"(-- s) get current state of machine"
this?‘state # current state key
this?‘states # state hash
get;

# run one of the named functions within the current machine:
# exit, entry or update.

:runstatefn |f:|
:"(f --) run function f in current machine"
?f curstate get
call;

:statetime
:"(-- t) get time since state start time"
time this?‘statestarttime - ;

:resetstatetime
:"(--) reset the state start time of this machine"
time this!‘statestarttime ;

# all machines have a arbitrarily large set of timers, which
# is cleared on every state transition, as well as the main "statetime"
# timer - these are typically used by "ifsettledgo".

:resettimer |tid:|
:"(tid -- ) reset a timer inside the machine, cleared on transition"
time ?tid this?‘timers set

;

:gettimer |tid:|
:"(tid -- timer) get a timer inside the machine, cleared on transition"
?tid this?‘timers in not if

?tid resettimer
then
time ?tid this?‘timers get -

;

:cleartimers
:"(--) clear all timers in the machine, called on transition"
[%] this!‘timers

;

:nnn |s:|
:"(s -- s) deal with none, replacing with string ’none’"
?s isnone if "none" else ?s then

;

# for sending state data over UDP (as was done in debugging)
# we need to associate symbols (i.e. statenames) with numbers.
# This is done using the SymN hash.

[%] !SymN # symbol ID number keyed on hash
0 !SymnCt # symbol ID number counter
:symn |s:|

:"(s -- n) replace a symbol with a number, unique to that symbol"
?s ?SymN in not if

# if there isn’t a number for this symbol, make one
# from the counter and increment said counter.
?SymnCt ?s ?SymN set
?SymnCt 1+ !SymnCt

101 of ??



Appendix D Angort code listings

then
# return the symbol’s number
?s ?SymN get

;

:gostate |s:|
:"(s m --) Tell machine m to transition to state s"

# uncomment this line to see state changes on console
# "transitioning " p this?‘name p " to state " p ?s.

# write the state change to UDP (using symn above)
this?‘name "=" + ?s symn + udpwrite

# check the state exists
?s this?‘states in
"state \"" ?s nnn "\" not in machine \"" this?‘name nnn "\""+ + + + assert

# run the exit function of the current state (if there is one)
this?‘state isnone not if

‘exit runstatefn
then

# set the new state
?s this!‘state
# set the "statestarttime" to now
resetstatetime
# clear all auxiliary timers
cleartimers
# run the entry function of the new state if there is one
this?‘state isnone not if

‘entry runstatefn
then

;

:initmachine |m,s:|
:"(machine initstate -- machine) initialise a machine, called at end of

definition"
?m?‘name isnone if

?m each {i.}
0 "machine has no name" assert

then

?m!This # set This
?s gostate # goto the initial state s
?m ?Machines push # add machine to the global list
?m # return the machine

;

:ifsettledgo |c,s,tid:|
:"(c s timerid --) if cond is true and has been true for a bit, go to new state"
# this will reset the timer if the condition is false, but if the condition
# is true will check that the timer was reset sufficiently long ago, and if
# so, will transition to a new state. If the timer is not present, it is created.

?c if
?tid gettimer SETTLETIME > if

?s gostate
then

else
?tid resettimer

then
;

:updatemachine |m:|
:"(m -- ) set the given machine to this, and then run its update"

102 of ??



Appendix D Angort code listings

?m!This
‘update runstatefn

;

:updateallmachines
:"(--) update all machines in the global list"
?Machines each {i updatemachine}

;

# words to read and write data inside a machine’s update function

:input |i:|
:"(i --) read input named i in the current machine"
?i this?‘inputs in
"input \"" ?i nnn "\" not in machine \"" this?‘name nnn "\""+ + + + assert
?i this?‘inputs get

;

:output |v,o:|
:"(v o --) set output named o to v in the current machine"
?o this?‘outputs in
"output \"" ?o nnn "\" not in machine \"" this?‘name nnn "\""+ + + + assert
?v ?o this?‘outputs set

;

# words to route data between machines

:readout |o,m:|
:"(o m -- v) read a value from an output of a machine"
?o ?m?‘outputs in
"output \"" ?o nnn "\" not in machine \"" this?‘name nnn "\""+ + + + assert
?o ?m?‘outputs get

;

:writein |v,i,m:|
:"(v i m --) write a value to the input of a machine"
?i ?m?‘inputs in
"input \"" ?i nnn "\" not in machine \"" this?‘name nnn "\""+ + + + assert
?v ?i ?m?‘inputs set

;

# routing shortcuts
:directnamed |o,i,n:|

:"(outmach inmach names --) connect named outputs to inputs with same name on
another machine"

?n each {
i ?o readout i ?i writein

}
;

:directall |o,i:|
:"(outmach inmach --) connect all inputs of a machine to outputs in another, if

they exist"
?i?‘inputs each {

i ?o?‘outputs in if
i ?o readout i ?i writein

then
}

;

# handle named calibration presets
[%
‘std (stdcalib),
‘roll (rollcalib)

103 of ??



Appendix D Angort code listings

] const CALIBRATIONS

:recalibrate |c,w:|
?c isnone not if

?c CALIBRATIONS in if
?w ?c CALIBRATIONS get call

then
then

;

:subsume |a,b:|
:"(a b -- out) if b is not none, b; else a"
?b isnone if ?a else ?b then

;

:inhibit |a,b:|
:"(a b -- out) if b is true, none; else a"
?b if none else ?a then

;

104 of ??



Appendix D Angort code listings

D.2.4 An example subsumption machine (or behaviour)

This example shows a very simple machine, one of the elements which make up a subsumption
architecture.

A hash is created and put on the stack in Angort with the following syntax:

[% key value, key value, ..., key value]

and an anonymous function is simply a fragment of Angort code in brackets — when compiled,
this is replaced with a word to stack a reference to the code in the brackets, which can then be
called with the call word.

Once created, initmachine must be called on the hash and the symbol for the initial state,
returning the new initialised machine.

Here is an example machine, or rather code to generate and return an example machine:
:mkmymachine

[% # begin defining the hash

‘name "mymachine",

# the machine has two inputs, both of which are initially nil
‘inputs [% ‘input1 none, ‘input2 none]

# it has no outputs - perhaps it controls the rover directly
‘outputs [%]

# it has one variable set to 4.0 initially
‘myvariable 4.0,

# this is the hash containing the states

‘states [%

# the initial and only state, which switches the drive motors on
# if either input is not nil.

‘init [%
‘entry (), ‘exit (), # the entry and exit functions do nothing
‘update ( # runs every tick

# Note that in Angort, "if(COND){CODE}else{CODE}"
# becomes "COND if CODE else CODE then"

‘input1 input isnone
‘input2 input isnone and if

# both inputs are nil, set the drives to zero
0 setdriveall

else
# otherwise turn the drives on
1000 setdriveall

then
)

] # end of init state hash
] # end of states hash

] # end of machine hash

# pass the hash we just made and the initial state’s symbol
# into initmachine

‘init initmachine
;

105 of ??



Appendix D Angort code listings

D.2.5 The lurch experiment

This is the Angort code for the lurch experiment, which is started with the tst word.
#
# Lurch gait experiment
#

# include the subsumption architecture, and the standard input/output
# machines

include "sub.ang"
include "machines.ang"

-20 const FRONTANGLE # forward wheel position in degrees
20 const BACKANGLE # backward wheel position
0.2 const SETTLETIME # time for debouncing position checks
-2200 const DRIVESPEED # how fast the wheel is commanded to roll

# how close a lift angle must be to the target to be considered
# to have achieved it

8 const LIFTEPSILON

:nonefilter |a,deflt:|
:"(a default --) if a is none, replace with a default"
?a isnone if ?deflt else ?a then

;

:withinliftepsilon |a,b:|
:"(a b--bool) are quantities a and b within LIFTEPSILON of each other,

disregarding NONE?"
?a isnone ?b isnone or if

0
else

?a ?b - abs LIFTEPSILON <
then

;

# this machine outputs true if the input indicates that the wheel is fully back
:mkisbackward [%

‘name ‘isback,
‘inputs [% ‘lactual none ],
‘outputs [% ‘out 0 ],
‘states [%

‘init [%
‘entry (), ‘exit (),
‘update (

‘lactual input BACKANGLE withinliftepsilon
‘out output

)
]

]
]
‘init initmachine

;

# this machine outputs true if the input indicates that the wheel is fully forwards
:mkisforward [%

‘name ‘isfwd,
‘inputs [% ‘lactual none ],
‘outputs [% ‘out 0 ],
‘states [%

‘init [%
‘entry (), ‘exit (),
‘update (

‘lactual input FRONTANGLE withinliftepsilon

106 of ??



Appendix D Angort code listings

‘out output
)
]

]
]
‘init initmachine

;

# this machine has three states:
# init: no output. On receipt of "go", go to roll
# roll; outputs to make the wheel roll forwards. On "stop", go to finished
# finished: turn off drive motor, output "trigger", and after a short interval return

to init.

:mkrollfwd [%
‘name ‘roller,
‘inputs [% ‘go 0, ‘stop 0 ],
‘outputs [% ‘drive none,‘lift none,‘calib none, ‘trigger none ] ,
‘states [%

‘init [%
‘entry (), ‘exit (),
‘update (

‘go input
‘roll 0 ifsettledgo
# default outputs
none ‘trigger output
none ‘drive output
none ‘lift output
none ‘calib output

)
],

‘roll [%
‘entry (), ‘exit (),
‘update (

‘stop input
‘finished 0 ifsettledgo
# rolling outputs
none ‘trigger output
DRIVESPEED ‘drive output
FRONTANGLE ‘lift output
‘roll ‘calib output

)
],

‘finished [%
‘entry (), ‘exit (),
‘update (

1 ‘trigger output
0 ‘drive output
statetime 0.2 > if

‘init gostate
then

)
]

]
]
‘init initmachine

;

#
# On "go", output lurch (zero drive, all lift motors to back position).
# On "stop", go back to outputting nothing.
#

:mklurchback [%
‘name ‘lurcher,
‘inputs [% ‘go 0, ‘stop 0 ],
‘outputs [% ‘drive none,‘lift none,‘calib none ] ,

107 of ??



Appendix D Angort code listings

‘states [%
‘init [%

‘entry (), ‘exit (),
‘update (

‘go input
‘lurch 0 ifsettledgo
# default outputs
none ‘drive output
none ‘lift output
none ‘calib output

)
],

‘lurch [%
‘entry (), ‘exit (),
‘update (

‘stop input
‘init 0 ifsettledgo
# rolling outputs
0 ‘drive output
BACKANGLE ‘lift output
‘std ‘calib output

)
]

]
]
‘init initmachine

;

#
# Build the architecture for the lurching system
#
:build

newmachines # clear the machine list

# create the per-wheel machines, adding them to a list of
# hashes, keyed by symbols for the type of machine they are

[] wheels each {
[%
‘sensor i mkwheelsensor,
‘isfwd mkisforward,
# mkbackward is redundant in the case of wheels 3,4
# but it’s retained here for simplicity
‘isback mkisbackward,
‘roller mkrollfwd,
‘output i mkwheeloutput
], # "," will add to the list

}

# store the list
!WheelList

# and the two lurchers (we do each side separately)
mklurchback !LurchEven
mklurchback !LurchOdd

;

#
# Helper functions for accessing machines inside the wheel list
#

:getwh |w:|
:"(w -- )get a wheel’s machine hash in the canonical on-board numbering scheme"
?w 1- ?WheelList get

;

:rd |w,o,m:|
:"(w o m -- v) get the output of a given machine in the given wheel"

108 of ??



Appendix D Angort code listings

?o ?m ?w getwh get readout
;

:wr |v,w,i,m:|
:"(v w i m --) write the input of a given machine in the given wheel"
?v
?i ?m ?w getwh get writein

;

#
# Run a single iteration of the architecture
#
:run

updateallmachines
# here we do the routing and subsumption/inhibition

# first, read the inputs into the isfwd and isback machines
?WheelList each {

i?‘sensor dup i?‘isfwd directall i?‘isback directall
}

# The front wheels start rolling forwards when they are fully backwards.
# The other wheels wait for "trigger" from the wheel in front, which
# happens (briefly) when they complete their rolls.

1 ‘out ‘isback rd 1 ‘go ‘roller wr
1 ‘trigger ‘roller rd 3 ‘go ‘roller wr
3 ‘trigger ‘roller rd 5 ‘go ‘roller wr

2 ‘out ‘isback rd 2 ‘go ‘roller wr
2 ‘trigger ‘roller rd 4 ‘go ‘roller wr
4 ‘trigger ‘roller rd 6 ‘go ‘roller wr

# and any rolling is stopped when the wheel is fully forward
?WheelList each {

‘out i?‘isfwd readout ‘stop i?‘roller writein
}

# when the back wheel on each side is in the forward position, start a lurch on
that side

5 ‘out ‘isfwd rd ‘go ?LurchOdd writein
6 ‘out ‘isfwd rd ‘go ?LurchEven writein
# we stop all the lurching when the back wheels are in place
5 ‘out ‘isback rd ‘stop ?LurchOdd writein
6 ‘out ‘isback rd ‘stop ?LurchEven writein

# connect to the lurchers to the output via a subsumption action; actually three
of them.

# More than that, because it’s duplicated for each side.

[1,3,5] each {
i ‘drive ‘roller rd ‘drive ?LurchOdd readout subsume i ‘drive ‘output wr
i ‘lift ‘roller rd ‘lift ?LurchOdd readout subsume i ‘lift ‘output wr
i ‘calib ‘roller rd ‘calib ?LurchOdd readout subsume i ‘calib ‘output wr

}
[2,4,6] each {

i ‘drive ‘roller rd ‘drive ?LurchEven readout subsume i ‘drive ‘output
wr

i ‘lift ‘roller rd ‘lift ?LurchEven readout subsume i ‘lift ‘output
wr

i ‘calib ‘roller rd ‘calib ?LurchEven readout subsume i ‘calib ‘output
wr

}
;

109 of ??



Appendix D Angort code listings

:tst
:"(--) run the experiment")
build # build machines
expStart # start experiment
run run # a couple of dummy runs to clear the decks
BACKANGLE setliftall # set all wheels to back
{

run #run the machines and the plumbing
expUpdate ifleave

}
"Stopping.".

# recalibrate normally and reset everything
calib
0 setdriveall
0 setliftall

;

110 of ??



Appendix D Angort code listings

D.2.6 The alternating experiment

This is the Angort code for the alternating gait experiment, which is started with the tst word.
Note the use of the reduce function and lists inside the code for triggering lurchers and rollers:

1 # - seed the reduce with 1 (true)
i gettri # - get a list of all the wheels in this triangle
( # - start anonymous function compilation: input is a

# boolean and the wheel number
1- # - subtract 1: wheel numbers start from 1, angort lists from 0
[2,1,4,3,6,5] # - stack a list of the opposite wheels for each wheel 1-6
get # - get the opposite wheel number
‘out ‘isfwd rd # - get whether the opposite wheel is forward
and # - AND this with whatever the boolean passed in was

) # - end anonymous function and stack it
reduce # - starting with 1, call the anonymous function repeatedly

# with each wheel in the triangle, storing the result in
# an accumulator. As "reduce" in many languages, or "foldl"
# in Haskell.

The result is whether all the wheels in the opposite triangle are forwards.
#
# Alternating gait experiment
#

# include the subsumption architecture, and the standard input/output
# machines

include "sub.ang"
include "machines.ang"

# set the constants
-20 const FRONTANGLE # forward wheel position in degrees
20 const BACKANGLE # backward wheel position
0.2 const SETTLETIME # time for debouncing position checks
-3200 const DRIVESPEED # how fast the wheel is commanded to roll - FAST

# how close a lift angle must be to the target to be considered
# to have achieved it

8 const LIFTEPSILON

:nonefilter |a,deflt:|
:"(a default --) if a is none, replace with a default"
?a isnone if ?deflt else ?a then

;

:withinliftepsilon |a,b:|
:"(a b--bool) are quantities a and b within LIFTEPSILON of each other,

disregarding NONE?"
?a isnone ?b isnone or if

0
else

?a ?b - abs LIFTEPSILON <
then

;

# this machine outputs true if the input indicates that the wheel is fully back
:mkisbackward |w:| [%

‘name "isback" ?w +,
‘inputs [% ‘lactual none ],
‘outputs [% ‘out 0 ],
‘states [%

‘init [%
‘entry (), ‘exit (),

111 of ??


