
ABERYSTWYTH UNIVERSITY
DOCTORATE OF PHILOSOPHY

G4313: COMPUTER SCIENCE

Neuromodulatory supervised learning

James Finnis (jcf12@aber.ac.uk)

7th February 2020

Supervisors

Dr. Frédéric Labrosse

Dr. Christine Zarges

Examiners

Prof. Susan Stepney

University of York

Dr. Patrícia Amâncio Vargas

Heriot-Watt University

This thesis is submitted in candidature for a Doctorate of Philosophy

in Computer Science (G4313)

Final Copy

Declarations

Candidate Name: James Finnis
Word count of thesis: 88069

This work has not previously been accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

Signature: Date:

James Finnis

Statement 1

This thesis is the result of my own investigations, except where otherwise stated,

and has not been altered by correction or editing services.

Sources are acknowledged by endnotes giving explicit references. A full biblio-

graphy is appended.

Signature: Date:

James Finnis

Statement 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signature: Date:

James Finnis

Abstract
Biological nervous systems exist in an environment inwhich chemicals—neuromod-

ulators — modify their function, notably the strengths of the neuron connections.

This allows global modulation of the entire network by a parameter which, in arti-

ficial neuroendocrine systems, is typically an artificial “hormone” decoupled from

the network itself. Such systems have shown promise in implementing adaptive

behaviour, particularly homeostasis. However, current implementations typically

have their parameters set by hand, use pre-trained networks modulating only the

output layer, or use complex and limited learning rules or evolutionary algorithms.

The network described in this thesis is a simplified Neal/Timmis artificial neuro-

endocrine systemwith a single hidden layer, named UESMANN1. It is trained using

a modified back-propagation of errors, with two sets of examples: one for each

extremum of the modulator. Thus it uses a supervised learning algorithm.

Thework is divided into four parts, each consisting of a number of chapters. Part I

(p. 3) consists of an introduction and outline of the thesis including the motivation

behind it and a methodology, and an extensive literature review with a particular

focus on sub-symbolic biologically-inspired adaptive systems.

This is followed by Part II (p. 61), which introduces and describes the UESMANN

network and performs an Monte Carlo analysis of random UESMANN nodes and

networks performing pairings of boolean functions. This shows that a subset of

boolean pairings is possible in a single node, but that all possible pairings of bin-

ary boolean functions can be performed with two hidden nodes: the same as the

minimum required for a single boolean in a standard multi-layer perceptron. The

modified back-propagation algorithm is then developed and tested on the boolean

pairings with good results, with the resulting networks analysed in depth.

Part III (p. 163) shows that the network is capable of learning to transition between

two line recognition functions (vertical and horizontal) and to transition between

nominal and alternate labellings of the MNIST handwriting recognition database,

with comparable performance with two other modulatory paradigms.

In Part IV (p. 229) the network performed comparably with other techniques

in a robot homeostasis task both in simulation and reality, showing particularly

interesting transitional behaviour.

Thefinal part, PartV (p. 319), is a conclusion to the thesis as awholewith reference

to the initial hypothesis and research questions, and describes further work which

should be undertaken.

1Uniformly Excitatory Switching Modulatory Artificial Neural Network — the acronym is pro-

nounced “WES-mun”

Contents

List of Figures i

List of Tables vii

List of Algorithms x

Glossary xiii

Acronyms xix

Symbols xxi
Boolean functions . xxi

Function transitions . xxi

Common parameters and metrics . xxi

I Introduction and Literature Review 1

1 Introduction 3
1.1 Outline of the thesis . 5

1.2 Prior publications . 6

1.3 Motivation . 7

1.4 Hypothesis and research questions . 9

1.5 Methodology . 9

2 Bio-inspired intelligent behaviour 13
2.1 “Intelligent behaviour” and adaptivity 13

2.1.1 Symbolic and sub-symbolic solutions 14

2.1.1.1 Symbolic reasoning 14

2.1.1.2 Sub-symbolic AI . 15

2.1.1.3 Behaviour-based robotics 16

2.2 Action selection . 18

2.2.1 Hierarchical action selection . 19

CONTENTS

2.2.2 “Reactive planning” action selection 20

2.2.3 Hybrid architectures . 20

2.2.4 Neurological action selection 21

2.2.5 Summary . 21

2.3 Artificial neural networks . 22

2.3.1 The biological nervous system 22

2.3.2 McCulloch and Pitts . 24

2.3.3 Hebbian learning and STDP . 25

2.3.4 The perceptron . 26

2.3.5 ADALINE and MADALINE . 27

2.3.6 Back-propagation of errors . 28

2.3.6.1 Adaptive resonance theory 30

2.3.7 Recurrent networks . 31

2.3.7.1 Hopfield networks and Boltzmann machines 31

2.3.7.2 Back-propagation through time 31

2.3.7.3 Real Time Recurrent Learning 32

2.3.7.4 Jordan and Elman networks: supervised learning of

temporal patterns . 32

2.3.7.5 Self-organising (Kohonen) maps 33

2.3.7.6 Reservoir computing techniques 33

2.3.8 Deep learning . 34

2.3.9 Evolutionary approaches . 36

2.3.9.1 Evolutionary robotics and the CTRNN 37

2.3.9.2 Neuroevolution throughaugmenting topologies (NEAT) 39

2.3.10 GasNets and their relatives . 39

2.4 The “reality gap” . 41

2.5 Artificial endocrine systems . 42

2.5.1 Mathematical models of biological endocrine systems 43

2.5.2 Reactive and hybrid endocrine controllers 43

2.5.3 Connectionist, “neuroendocrine” controllers 44

2.5.4 Hormones and emotions . 44

2.5.5 Neuromodulators and hormones 46

2.5.6 The Neal/Timmis artificial endocrine system 47

2.5.6.1 Neuromodulatory model 47

2.5.6.2 Release model . 48

2.5.6.3 Endocrine homeostasis in power management 49

2.5.6.4 The Timmis-Neal-Thorniley adaptive AES 50

CONTENTS

2.5.6.5 The neuroendocrine hexapod 51

2.5.6.6 Multi robot systems 52

2.5.7 Other systems . 52

2.5.7.1 SYMBRION and REPLICATOR 52

2.5.7.2 Artificial Hormone Network 53

2.5.7.3 Digital hormone model 54

2.6 Artificial immune systems . 54

2.7 Summary . 56

II The UESMANN Network 59

3 Introducing UESMANN 61
3.1 Can UESMANN represent all boolean pairings? 62

3.1.1 Monte Carlo simulations of single nodes performing boolean

functions . 63

3.1.2 Single-node UESMANN as a system of inequalities 67

3.1.3 Single-node UESMANN: a geometrical interpretation 75

3.1.4 Networks with a single hidden layer of two nodes 77

3.2 Other forms of modulation . 82

4 Training UESMANN using back-propagation 87
4.1 Back-propagation of errors . 88

4.1.1 Batching or stochastic training? 88

4.1.2 Hyperparameters . 90

4.1.3 Early stopping and restarting 90

4.1.4 Problems with sigmoid activation functions 91

4.1.5 Alternative activation functions 92

4.1.6 Other enhancements to back-propagation 92

4.2 Back-propagation updates in UESMANN 93

4.2.1 The UESMANN equations . 95

4.2.2 Stochastic gradient descent in UESMANN 96

4.2.3 Cross-validation . 97

4.3 UESMANN on the boolean pairings 99

4.3.1 Convergence in a single node 102

4.3.1.1 Method . 103

4.3.1.2 Results for x . 104

4.3.1.3 Training a UESMANN node for x → x ∨ y 106

4.3.1.4 An impossible pairing: x ∨ y → x 111

CONTENTS

4.3.1.5 Summary . 112

4.3.2 Convergence in networks with hidden nodes 113

4.3.3 Performance studies of individual networks 116

4.4 Summary . 119

4.5 The nature of 2-2-1 boolean UESMANN networks 121

4.5.1 Alternative modulatory methods 122

4.5.2 Expected cluster symmetry . 123

4.5.3 Clustering method . 126

4.5.4 Clustering solutions for x ⊕ y using plain back-propagation . 127

4.5.5 Pairings tested . 128

4.5.6 Analysis of x ⊕ y → x ∧ y (XOR to AND) 129

4.5.6.1 Comparison of convergence of different techniques

for x ⊕ y → x ∧ y . 129

4.5.6.2 The relationship betweenUESMANNandplain back-

propagation solutions 131

4.5.6.3 Solution clusters for x ⊕ y → x ∧ y 134

4.5.6.4 Transitional behaviour of x ⊕ y → x ∧ y 138

4.5.7 Analysis of x ∧ y → ¬(x ∨ y) (AND to NOR) 143

4.5.7.1 Comparison of convergence of different techniques

for x ∧ y → ¬(x ∨ y) 143

4.5.7.2 Solution clusters for x ∧ y → ¬(x ∨ y) 146

4.5.7.3 Transitional behaviour for x ∧ y → ¬(x ∨ y) 153

4.5.7.4 Why is this pairing so difficult to train? 154

4.6 Summary of boolean UESMANN networks 157

III UESMANN in Classification 161

5 Introduction and methodology 163
5.1 Methodology . 164

6 UESMANN in line recognition 169
6.1 Image generation . 169

6.2 Network training . 170

6.3 Convergence behaviour . 170

6.3.1 Control convergence behaviour 171

6.3.1.1 Convergence periodicity 171

6.3.1.2 Smoothed results . 173

6.3.2 Output blending convergence behaviour 174

CONTENTS

6.3.3 h-as-input convergence behaviour 176

6.3.4 UESMANN convergence behaviour 177

6.4 Performance of the different networks at η � 0.05 179

6.5 Analysis of network function . 184

6.5.1 Output blending . 185

6.5.2 h-as-input . 185

6.5.3 UESMANN . 187

6.5.3.1 Modulator low . 190

6.5.3.2 Modulator high . 190

6.5.3.3 The possibility of a UESMANN output node shifting

between perceptrons 191

6.5.4 Network function on solid colour images in networks with few

nodes . 192

6.6 Transition behaviour . 192

6.7 Summary . 195

7 UESMANN in handwriting recognition 197
7.1 Training . 198

7.2 Convergence behaviour . 199

7.2.1 Control convergence behaviour 199

7.2.2 Output blending convergence behaviour 200

7.2.3 h-as-input convergence behaviour 203

7.2.4 UESMANN convergence behaviour 204

7.3 Performance of the different networks at η � 0.05 204

7.3.1 Generating a metric . 204

7.3.2 ROC curves . 207

7.3.3 Performance overview . 207

7.3.4 Some example UESMANN confusion matrices 210

7.3.4.1 Five hidden nodes: a poor result 210

7.3.4.2 40 hidden nodes: a better performance 213

7.3.4.3 600 nodes: the best UESMANN performance 216

7.3.4.4 700 hidden nodes: a bimodal performance at h � 0 . 218

7.3.4.5 Summary . 218

7.3.5 Transition behaviour . 220

7.4 Conclusion . 224

CONTENTS

IV UESMANN in a Homeostatic Control Problem 227

8 Introduction 229
8.1 Methodology . 231

8.1.1 The robot . 233

8.1.2 Metrics . 236

8.1.2.1 Distance variation metric 236

8.1.2.2 Edge-weighted distance traversed metric 237

8.1.2.3 Survival time metric 238

8.1.2.4 The combined metric 238

8.1.3 Generating examples and training 239

8.1.4 The experiments . 239

9 Training and the simple simulator 241
9.1 The simple simulator . 241

9.1.1 Kinematics . 241

9.1.2 Sonar . 242

9.1.3 Light sensor . 242

9.1.4 Power . 243

9.2 Training . 244

9.2.1 The rule-based controllers . 245

9.2.2 The training arena . 246

9.2.3 Generating training examples 247

9.2.4 Training and network hyperparameters 248

9.3 Convergence behaviour . 249

9.3.1 Plain back-propagation . 250

9.3.2 Output blending . 251

9.3.3 h-as-input . 252

9.3.4 UESMANN . 253

9.3.5 Discussion . 254

9.4 Simple simulator experiments . 254

9.4.1 Control experiments: exploration and phototaxis only 255

9.4.2 Modulatory network results . 257

9.4.2.1 Comparison using the combined metric 257

9.4.2.2 Output blending results 257

9.4.2.3 h-as-input results . 259

9.4.2.4 UESMANN results . 263

9.4.3 Discussion . 266

CONTENTS

9.4.3.1 Discrepancybetween transitions atdifferent light levels

(UESMANN and h-as-input) 268

9.4.3.2 Performance effect of charge at transition 270

9.4.3.3 Overall nature of the transitions 270

10 Robot and Gazebo experiments 273
10.1 The robot and the arena . 273

10.1.1 System architecture . 274

10.1.2 Light sensor . 275

10.1.2.1 Light sensor components on the robot 275

10.1.2.2 Light sensor components on the host 276

10.1.2.3 Gazebo simulated light sensor 277

10.1.2.4 Simulated power input from light 279

10.1.3 Sonar sensors . 280

10.1.4 Actuators . 280

10.1.5 Localisation . 281

10.2 Experiments . 281

10.2.1 Methodology . 282

10.2.2 Output blending . 282

10.2.2.1 Runs at kpower � 0.0025 283

10.2.2.2 Runs at kpower � 0.003 285

10.2.2.3 Anomalous stopping behaviour 286

10.2.2.4 Why does the robot turn the wrong way? 287

10.2.2.5 Why are the courses straight? 287

10.2.2.6 Summary . 289

10.2.3 h-as-input, best network . 290

10.2.3.1 Runs at kpower � 0.0025 291

10.2.3.2 Runs at kpower � 0.003 292

10.2.3.3 Collisions . 293

10.2.3.4 Behaviour changes . 294

10.2.3.5 Summary . 295

10.2.4 h-as-input, second-best network 295

10.2.4.1 Summary . 297

10.2.5 UESMANN . 299

10.2.5.1 Runs at kpower � 0.0025 299

10.2.5.2 Runs at kpower � 0.003 301

10.2.5.3 Behaviour changes . 302

10.2.5.4 Summary . 303

CONTENTS

11 Conclusions 307
11.1 Quantitative differences . 307

11.2 Qualitative differences . 308

11.3 Limitations in the training data? . 311

11.4 Emergent behaviour . 313

11.5 Issues with multiple training sets . 313

V Conclusion 317

12 Discussion 319
12.1 A global, uniform neuromodulator . 319

12.2 Simplicity . 322

12.3 Is it useful? . 323

12.4 What can it tell us about biology? . 325

12.5 Future work . 327

12.5.1 Classification and boolean functions 327

12.5.1.1 Is there a preference for h � 0? 327

12.5.1.2 How few hidden nodes for line classification? 327

12.5.1.3 Why are vertical lines harder to recognise? 328

12.5.1.4 Training more functions at more modulator values . 328

12.5.1.5 Whydoes h-as-input outperformoutput blending some-

times? . 328

12.5.2 Control . 328

12.5.2.1 Is UESMANN on the edge of chaos? 329

12.5.3 Enhancements . 329

12.5.4 Alternative modulation schemes 330

12.6 More modulators? . 330

12.6.1 Reinforcement learning . 330

12.6.2 Recurrent networks . 331

12.6.3 Alternative activation functions and deep learning 331

A The robot system architecture 333
A.1 Safety on the robot . 334

B The robot tracking system 335
B.1 Calibration . 338

Bibliography 339

List of Figures

2.1 Structure of a neuron . 23

2.2 Neuronal responses to excitatory stimulus 24

2.3 Multilayer perceptron with one hidden layer 30

2.4 An Elman network . 33

2.5 The Neal/Timmis AES . 48

2.6 The NTS hormone release model . 49

2.7 The Henley and Barnes hexapod controller 51

3.1 The Neal/Timmis AES of Sauzé and Neal [242], compared with the

UESMANNsystem. In the formerfigure only twoweights are shown

for simplicity. In both figures, a circle with a thin border represents

an input, a circle with a thick border represents a node, a solid edge

represents a weight, and ⊗ represents multiplication. Dotted edges

represent the influence of the modulator/hormone. 62

3.2 lo g10 of counts of pairings of binary boolean functions in random

single UESMANN nodes . 64

3.3 The separating planes of inequalities for a UESMANN node 71

3.4 Plots of function pairing by weight/bias ratio for negative, zero and

positive biases. 74

3.5 Possible UESMANN pairings in a single node 75

3.6 Output of a single UESMANN node: x ∧ y → x ∨ y 76

3.7 Examples of prohibited boolean pairings of a UESMANN node

shown geometrically. 77

3.8 A 2-2-1 UESMANN network . 78

3.9 The cumulative probabilities for each boolean pairing in a 2-2-1 UES-

MANN network . 79

3.10 Proportions of pairings of binary boolean functions performed by

random UESMANN 2-2-1 networks 80

3.11 Frequencies of counts of different functions in random 2-2-1 UES-

MANN networks . 81

3.12 Logistic sigmoid
1+h
1+ex for h � 0 and h � 1. 83

i

ii

3.13 lo g10 of the proportion of pairings of binary boolean functions in

random weight/bias modulation networks 83

3.14 lo g10 of the proportion of pairings of binary boolean functions in

random bias modulation networks 84

3.15 Kernel density estimates for pairings in different network types . . 85

4.1 Neural network labelling conventions 93

4.2 Representation of slices through error/weight space for two functions 94

4.3 Proportion of correct boolean pairings for UESMANN 2-2-1 100

4.4 Proportion of successful convergences against Monte Carlo network

counts . 101

4.5 Paths of 36 nodes during training for boolean x 105

4.6 Convergence paths for plain back-propagation for x 106

4.7 Histogram of bias distribution for single nodes trained using Al-

gorithm 1 for x → x ∨ y . 107

4.8 Error surfaces for x and x ∨ y . 107

4.9 Paths of 36 nodes during training for x → x ∨ y 108

4.10 Convergence and parameter plots for nodes 1 and 5 of x → x ∨ y . 109

4.11 Convergence and parameter plots for node 25 of x → x ∨ y 110

4.12 log
10

of MSE against iteration for three nodes 111

4.13 Paths of 36 nodes during training for x ∨ y → x 112

4.14 MSEagainst log 10ofpair-presentations for threeUESMANNboolean

pairings . 114

4.15 Proportion of correct x ∧ y → ¬(x ∨ y) networks 116

4.16 MSE of three boolean pairings against pair-presentation 117

4.17 Weights and biases of some networks during UESMANN training . 119

4.18 Labelling of weights and biases in networks 124

4.19 Hidden node swap transformation of a network N 124

4.20 Input swap transformation of a network N 125

4.21 Input and hidden node swap transformation of a network N 126

4.22 Hierarchical clustering of 500 networks successfully trained to per-

form x ⊕ y . 128

4.23 Relationships between clusters in x ⊕ y 129

4.24 Proportion of correct networks x ⊕ y → x ∧ y for different network

types . 130

4.25 Convergence behaviour of x ⊕ y → x ∧ y 132

4.26 Clustering of solutions for x∧ y compared with UESMANN clusters

for x ⊕ y → x ∧ y . 133

iii

4.27 Clustering of solutions for x ⊕ y comparedwith UESMANN clusters

for x ⊕ y → x ∧ y . 133

4.28 Successful runs against η for x ⊕ y → x ∧ y 134

4.29 Hierarchical clustering of 500 networks successfully trained to per-

form x ⊕ y → x ∧ y . 135

4.30 Two successful x ⊕ y → x ∧ y UESMANN networks 136

4.31 Outputs of nodes for UESMANN x ⊕ y → x ∧ y given inputs . . . 137

4.32 Function transition for networks of different types trained for x⊕y →
x ∧ y . 139

4.33 Transitions for x ⊕ y → x ∧ y weight blending networks 140

4.34 Transitions for x⊕ y → x∧y output blending and h-as-input networks 142

4.35 Transitions for UESMANN network performing x ⊕ y → x ∧ y . . . 143

4.36 Proportion of correct networks for x ∧ y → ¬(x ∨ y) 144

4.37 Convergence behaviour for x ∧ y → ¬(x ∨ y) 145

4.38 Hierarchical clustering of 500 networks successfully trained to per-

form x ∧ y → ¬(x ∨ y) . 147

4.39 Relationships between clusters in x ∧ y → ¬(x ∨ y) 148

4.40 Analysis of cluster 1 of x ∧ y → ¬(x ∨ y) at h � 0 150

4.41 Analysis of cluster 1 of x ∧ y → ¬(x ∨ y) at h � 1 151

4.42 Outputs of nodes for UESMANN x ∧ y → ¬(x ∨ y) given inputs . . 152

4.43 Function transition for networks of different types trained for x∧y →
¬(x ∨ y) . 153

4.44 Error volume slices for x ∧ y → ¬(x ∨ y) solution 155

4.45 Error volume slices for x ⊕ y → x ∧ y solution 156

4.46 Proportion of successful convergences against Monte Carlo network

counts at different initial weight ranges 157

6.1 Example images for the line recognition experiments 169

6.2 Line end-point zones for line generation 170

6.3 Unsmoothed convergence for identifying horizontal lines 173

6.4 Smoothed convergence data for horizontal line recognition 174

6.5 Unsmoothed convergence for line recognition at η � 1 176

6.6 Smoothed convergence data for output blending line recognition . . 177

6.7 Smoothed convergence data for h-as-input line recognition 178

6.8 Smoothed convergence data for UESMANN line recognition 179

6.9 ROC curves for line recognition . 181

6.10 Box plot of φmin in line recognition 183

iv

6.11 Frequency distribution of φmin in UESMANN line recognition, η �

0.05 . 184

6.12 Weights of output blending line recognition solution 186

6.13 Weights of h-as-input line recognition solution 187

6.14 Weights of UESMANN line recognition solution 188

6.15 Outputs of nodes in UESMANN line recognition in blank images . 189

6.16 Outputs of nodes in UESMANN line recognition in horizontal line

images . 189

6.17 Outputs of nodes in UESMANN line recognition in vertical line

images . 189

6.18 Transition behaviour of different network types in line recognition . 194

6.19 Transition behaviour of UESMANN line recognition with 3 hidden

nodes . 195

7.1 The first 64 images of the MNIST database 197

7.2 Smoothed convergence data for plain back-propagation in MNIST . 201

7.3 Smoothed convergence data for output blending in MNIST 202

7.4 Smoothed convergence data for h-as-input in MNIST 203

7.5 Smoothed convergence data for UESMANN in MNIST 205

7.6 Difference between φ calculation methods 206

7.7 Box plot of φmin in MNIST, all network types 209

7.8 Box plot of φ at h ∈ {0, 1} for UESMANN in MNIST, 5 hidden nodes 210

7.9 Box plot of φ at h ∈ {0, 1} for UESMANN in MNIST, 40 hidden nodes 214

7.10 Box plot of φ at h ∈ {0, 1} for UESMANN in MNIST, 600 hidden

nodes . 216

7.11 Box plot of φ at h ∈ {0, 1} for UESMANN in MNIST, 600 hidden

nodes . 218

7.12 Box plot of φ at h ∈ {0, 1} for UESMANN inMNIST, all hidden node

counts . 220

7.13 Transition region tendencies in MNIST 222

8.1 “Bart”, the Pioneer 2-DX used in the experiments 234

8.2 The robot inside the experimental arena 235

8.3 Sonar positions on both the simulated and real robot 235

8.4 Plots showing problems with standard deviation as a measure of

distance variation . 237

9.1 Simulated light sensor operation . 242

9.2 Simple simulator arena for generating training examples 247

v

9.3 Screenshot of recordctor . 248

9.4 Mean MSEs of networks at end of robot network training 250

9.5 Convergence behaviour for back-propagation on the separate robot

tasks . 251

9.6 Convergence behaviour for output blending exploration→phototaxis 252

9.7 Convergence behaviour for h-as-input exploration→phototaxis 253

9.8 Convergence behaviour for UESMANN exploration→phototaxis . . . 254

9.9 Simple simulator test arena . 255

9.10 Paths of best networks for exploration and phototaxis separately . . . 256

9.11 Values of metrics from simple simulator experiments 258

9.12 Position plots for best output blending network 259

9.13 Phase and variable plots for the best output blending network . . . 259

9.14 Position plots for best h-as-input network 260

9.15 Phase and variable plots for the best h-as-input network 260

9.16 Position plots for the second-best h-as-input network 261

9.17 Phase and variable plots for the second-best h-as-input network . . 262

9.18 A run of network 7 of h-as-input . 262

9.19 A run of network 3 of h-as-input . 263

9.20 Position plots for best UESMANN network 264

9.21 A run of network 2 of UESMANN . 264

9.22 A run of network 3 of UESMANN . 265

9.23 A run of network 1 of UESMANN . 265

9.24 Position plots for output blending network 1 at different h levels . . 266

9.25 Distance/charge diagram for h-as-input and UESMANN 267

9.26 Distance/charge diagram for output blending 268

9.27 Phase diagram demonstrating transition point discrepancy 269

9.28 Mean emitter distances at different h levels for different network types 271

10.1 A plan of the final (real-world) arena 274

10.2 The robot and light source . 275

10.3 Images from Pioneer omnidirectional camera 276

10.4 Light sensor processing . 278

10.5 Output blending best network runs at kpower � 0.0025 283

10.6 Output blending best network runs at kpower � 0.003 283

10.7 Simulated north run of output blending, kpower � 0.0025 284

10.8 Robot run 3 (north) of output blending best network, kpower � 0.0025 284

10.9 Simulated south run of output blending best network, kpower � 0.0025 285

vi

10.10 Network inputs leading to the erroneous stop in output blending

robot south run 3 . 287

10.11 Network input values during output blending anomalous stop . . . 288

10.12 Output for left motor over time for differential drive tests 288

10.13 Differential drive test results . 289

10.14 h-as-input best network runs at kpower � 0.0025 290

10.15 h-as-input best network runs at kpower � 0.003 290

10.16 Simulated north run of h-as-input best network, kpower � 0.0025 . . 291

10.17 Robot run 2 (north) of h-as-input best network, kpower � 0.0025 . . . 292

10.18 Robot run 1 (south) of h-as-input best network, kpower � 0.0025 . . . 292

10.19 Simulated north run of h-as-input best network, kpower � 0.003 . . . 293

10.20 Simple simulator running the best h-as-input network 294

10.21 h-as-input second best network runs at kpower � 0.0025 296

10.22 h-as-input second best network runs at kpower � 0.003 296

10.23 Simulated south runof h-as-input second-best network, kpower � 0.003 297

10.24 Box plots of weight magnitudes . 298

10.25 UESMANN best network runs at kpower � 0.0025 299

10.26 UESMANN best network runs at kpower � 0.003 299

10.27 Simulated north run of UESMANN best network, kpower � 0.0025.

In this plot the time of the stop is shown — the run continued until

3000s with the robot stationary. 300

10.28 Robot run 1 (north) of UESMANN best network, kpower � 0.0025 . . 301

10.29 Robot run 3 (south) of UESMANN best network, kpower � 0.0025 . . 301

10.30 Robot run 1 (north) of UESMANN best network, kpower � 0.003 . . . 302

10.31 Robot run 1 (south) of UESMANN best network, kpower � 0.003 . . . 303

10.32 Simulated north run of UESMANN, kpower � 0.003 304

10.33 Robot run 2 (south) of UESMANN at kpower � 0.0025, t > 900. . . . 304

10.34 Robot run 1 (north) of UESMANN at kpower � 0.0025, 15 < t < 65. . 304

11.1 Combined metric for all robot runs 309

11.2 Combined metric for all robot runs 310

11.3 Comparison of training and final arenas 312

11.4 Robot run 1 (north) of UESMANN at kpower � 0.003, 180 ≤ t ≤ 230. 314

A.1 Architecture of Pioneer/Gazebo controlled by ROS 334

B.1 Images from the tracking camera, with auto and manual exposure

settings . 336

List of Tables

1 The 16 binary boolean functions expressed as f (x , y) where x , y ∈
{0, 1}, with the English abbreviation and symbols used in this work. xxii

2 Symbols used for common parameters and metrics xxii

3.1 Frequencies of boolean function pairings in randomUESMANN nodes 66

3.2 Function output to inequality mapping for UESMANN 71

3.3 Truth table for pairing ¬(x ∧ y) → ¬y with associated inequalities . . 72

3.4 Truth table for the system of simultaneous equations in Eq. 3.73. . . . 73

3.5 Subsets of boolean function pairs and their frequency in 10
11

random

2-2-1 UESMANN networks. 80

3.6 Rare functions (count less than 10000) in 10
11

random UESMANN

networks, with how often they occur and what fraction of the overall

network count they comprise. 81

4.1 Worst-performing boolean pairings, by proportion of networks correct 102

4.2 Training examples for single node training of x → x ∨ y 103

4.3 Training examples for single node training of x 105

4.4 Cluster counts, centroids and standard deviations for centroids for

clusters found with hierarchical clustering for k � 2, for successful

runs of UESMANN x ⊕ y → x ∧ y. 135

4.5 Cluster counts, centroids and standard deviations for centroids for

clusters found with hierarchical clustering for k � 2, for successful

runs of UESMANN x ∧ y → ¬(x ∨ y). 147

7.1 Prevalences of the different digits in the two parts of the MNIST data-

base, by proportion of the total. 198

7.2 One-hot encoding for numeric digits, showing the corresponding en-

coding as a vector of values x for each digit. 199

7.3 Output blending best networks, sorted by φmin . See Table 7.9 for the

row header meanings. 208

7.4 h-as-input best networks, sorted by φmin . See Table 7.9 for the row

header meanings. 208

vii

viii

7.5 UESMANN best networks, sorted by φmin . See Table 7.9 for the row

header meanings. 208

7.6 MNIST UESMANN 5 hidden nodes at η � 0.05, run 3, confusion

matrix at h � 0 . 211

7.7 MNIST UESMANN 5 hidden nodes at η � 0.05, run 3, confusion

matrix at h � 1 . 211

7.8 MNIST UESMANN 5 hidden nodes at η � 0.05, run 3, class confusion

tables at h � 0 . 212

7.9 Performance metrics for MNIST UESMANN 5 hidden nodes at η �

0.05, run 0, showing the performance at both modulator levels and

the minimum performance. The metrics are the positive predictive

value TP/(TP+FP), the negative predictive value TN/(TN +FN), the
accuracy, the F1 score, the minimum true positive rate (see Sec. 7.3.1)

and the Matthews correlation coefficient φ. 213

7.10 MNIST UESMANN 40 hidden nodes at η � 0.05, run 2, confusion

matrix at h � 0 . 214

7.11 MNIST UESMANN 40 hidden nodes at η � 0.05, run 2, confusion

matrix at h � 1 . 215

7.12 Performance metrics for MNIST UESMANN 40 hidden nodes at η �

0.05, run 2. See Table 7.9 for more details. 215

7.13 MNIST UESMANN 600 hidden nodes at η � 0.05, run 6, confusion

matrix at h � 0 . 217

7.14 MNIST UESMANN 600 hidden nodes at η � 0.05, run 6, confusion

matrix at h � 1 . 217

7.15 Performance metrics for MNIST UESMANN 600 hidden nodes at η �

0.05, run 6. See Table 7.9 for more details. 217

7.16 Confusion matrix for plain back-propagation with 3 hidden nodes at

η � 0.05, run 1, nominal labelling . 219

7.17 Most common output given the test MNIST examples passed to a

typical 60 hidden node output blending network at each value of h.
The transition region is delineated by vertical lines. 222

7.18 Most common output given the test MNIST examples passed to a

typical 60 hidden node h-as-input network at each value of h. The

transition region is delineated byvertical lines. Bold numerals indicate

the network is outputting the h � 0 labelling, while normal numerals

indicate the h � 1 labelling. 223

ix

7.19 Most common output given the test MNIST examples passed to a 60

hidden node UESMANN network (attempt 2) at each value of h. The
transition region is delineated by vertical lines. 223

7.20 Most common output given the test MNIST examples passed to a 60

hidden node UESMANN network (attempt 7) at each value of h. The
transition region is delineated by vertical lines. 224

7.21 Performances of the best networks of each type on the MNIST hand-

writing recognition problem. 224

9.1 Constants used in the simple simulator 256

11.1 Number of robot runs for each network type and power regime which

survive at least 1000s without stopping indefinitely. 307

11.2 Total survival times of all five robot runs for each network and power

regime, with each run capped at 1000s. All figures rounded to the

nearest second. 308

x

List of Algorithms

1 UESMANN-backprop algorithm . 97

2 UESMANN-backprop single training iteration 98

3 UESMANN-backprop update . 98

4 UESMANN-backprop error calculation 98

5 UESMANN-backprop weight/bias update 99

6 Line data generation . 171

7 Learning two different classifiers for vertical/horizontal lines 172

8 Light sensor algorithm for the simple simulator 243

9 Exploration controller . 245

10 Phototaxis controller . 246

11 Light sensor algorithm used on Pioneer. 277

12 Light sensor algorithm in the bridge client node on the host. 278

13 Light sensor algorithm on the host, producing a vector of neural net

inputs. 279

14 Robot tracking algorithm . 337

xi

xii

Glossary

action A single, discrete event performed by an agent. It is different from a beha-

viour, which is a group of actions to be performed when a set of criteria apply.

What constitutes an action is determined by the level of abstraction: actions

at a higher level may consist of engaging behaviours or multiple actions at a

lower level [31]. 18

action selection The problem of which behaviour or action to select, given a known

repertoire of such actions. Slightly more formally, “the problem of motor

resource allocation an autonomous agent is faced with, when attempting to

achieve its long-term objectives.” (Girard et al. [100].) 7, 18

adaptation A change in the internal structure or parameters of a system which is

adaptive, the act of changing in an adaptive manner, or the degree to which

such a system is adapted to its environment. 5, 15, 56

adaptive Of a cybernetic system, able to respond to environmental changes in an

analogous manner to evolutionary adaptation or physiological homeostasis in

biology. Refers to changes which help the system survive, or perform “better”

(according to some metric determined by the system designer). Alternatively,

descriptive of such a change. xiii, 4, 56, 57, 230

adaptivity Of a cybernetic system, the property of being adaptive, being able to

change in response to environmental changes. Not to be confused with the

“adaptability,” which in this work means “capable of being adapted [by an

outside agency].” 4, 15, 56

arg min Notation for “argument of the minimum of a function.” Thus

arg min

x
f (x)

specifies the value of x for which f (x) has its minimum value: the “argument

of the minimum of f (x)with respect to x.” 93

xiii

xiv

artificial immune system A system inspired by the processing paradigms inherent

in the vertebrate immune system. xix, 53, 54

artificial endocrine system An artificial model of a biological endocrine system, or

a system inspired by the operation of a biological endocrine system. xix, 44

artificial neural network A system inspired by the animal nervous system, made

up of a large number of similar (usually identical) units operating in parallel

with interconnections between them. xiv, xix

back-propagation Short for back-propagation of errors, a gradient descent tech-

nique used to train feedforward neural networks. Works well with networks

containing only a few hidden layers, but requires enhancements to work with

deeper or recurrent networks. xv, 7, 26, 28, 29, 30, 31, 32, 34, 35, 36, 47, 51, 52,

91, 92, 320

batching A form of gradient descent— a supervised learning technique— inwhich

the solution is updated from the mean of all gradients in the error surface de-

tected at the current solution, given all the examples. Contrast with stochastic

gradient descent. xvii, 88

behaviour Strictly, a set of actions operating over time which make up a coherent

group, typically in response to internal or external stimuli. Sometimes a beha-

viour may loosely be considered a “high level” action, in that it can be selected

by an “action selection” method. This thesis uses “behaviour” with both this

sense and also with the common English meaning “the general way a system

acts under different stimuli.” 3, 18, 20

biological endocrine system The endocrine system of organisms, as opposed to

artificial endocrine systems. Endocrine systems release and receive hormones,

chemicals which circulate through the bloodstream and decay over time. xix,

42

bio-mimetic Descriptive of techniques which attempt to imitate biological mechan-

isms in some detail, with the assumption that it is the details of the mechanism

which will generate the required performance. Contrast with biologically in-

spired. xiv, 56, 325

biologically inspired Inspired by biological mechanisms as a loose foundation, but

not imitative of those mechanisms in detail. Contrast with bio-mimetic. xiv, 5,

54, 56, 325

xv

connectionism A form of artificial intelligence in which connections between sim-

ilar or identical nodes forms a massively parallel network. The archetypal

connectionist paradigm is the artificial neural network (ANN). 13, 16

continuous time recurrent neural network Adynamical systemofdifferential equa-

tions, each describing a “leaky integrator” unit which has an activation which

decays over time [15, 16]. Frequently used in evolutionary robotics. xv, xix

evolutionary robotics An approach to generating adaptive behaviour in robots typ-

ically using a genetic algorithm (GA) to evolve a continuous time recurrent

neural network (CTRNN) to control the robot, though other approaches also

fall within the field [212, 288]. Some of these also generate physical parameters,

such as body plans. xv, xix

genetic algorithm Themost commonlyused evolutionary algorithm, basedonwork

by Holland [125]. xv, xix, 53, 56

homeostasis An adaptive response to environmental changes which keeps an “es-

sential variable” or set of such variables within a fixed range. , xiii, 11, 13, 17,

40, 49, 56, 230, 231, 233, 257, 281, 282, 307, 321, 330

hormone In biology, a chemical released by an endocrine gland into the bloodstream

which modifies the behaviour of a distant organ, and decays over time. They

can be seen as sending a signal to that organ. In the artificial systems described

in this thesis this term is often synonymous with neuromodulator, because

artificial “hormones” often modulate artificial neural networks. xiv, 7

hyperparameter A parameter used to control the training of a system, as op-

posed to those parameters trained by the system. For example, hidden node

count, learning rate, and initial weight range are hyperparameters for back-

propagation training of a multilayer perceptron, while the parameters are the

weights and biases generated by that algorithm. 89, 99, 156, 230

iteration (UESMANN) In UESMANN back-propagation training with stochastic

gradient descent, an iteration consists of an entire pass through the shuffled

example set. See Algorithm 1 on page 97. 96, 103, 165

multilayer perceptron A feedforward neural network consisting of nodes similar

to those of Rosenblatt’s perceptron, but typically modified to use a sigmoid

activation function to make it amenable to training by gradient descent. xix, 7,

27

xvi

Neal/Timmis system A form of neuromodulatory artificial endocrine system in

which a set of hormones modulate the weights in a multilayer perceptron

in a multiplicative manner. Described more fully in Sec. 2.5.6. xix, 7

neuromodulation In biology, the process by which the function of neurons can be

modified by chemicals. These chemicals may be released far from the modu-

lated neuron, and may persist for some time. They are often also neurotrans-

mitters. xv, 4, 7, 44, 45

one-hot encoding An encoding often used for the output of multi-class classifier

systems in which there is one output for each class, and in the examples the

output whose index corresponds to the label is “true” (e.g. 1) while the other

outputs are zero [204, p. 215]. See Sec. 7.1 (p. 198). 165, 198

ontogenetic Describes a form of learning which takes place in a single individual

throughout its operation. The opposite of phylogenetic. xvi, 22, 55

ordinary differential equation A differential equation which contains only ordin-

ary derivatives: derivatives of single-variable functions with respect to that

variable. Compare with partial derivative equations, in which partial deriv-

atives can appear: derivatives with respect to one variable of a multi-variable

function, with the others held constant. xix, 42

pair presentation In UESMANN back-propagation training using stochastic gradi-

ent descent, each example consists of an input and the required outputs for

modulator (hormone) levels h � 0 and h � 1. An update step involves present-

ing the h � 0 example, calculating the gradient and applying it, followed by the

same procedure for the h � 1 example. This is referred to as a “pair present-

ation.” See Algorithm 1 on page 97: the pair presentation is the inner loop of

the main part of the algorithm. 96, 165

phylogenetic Describes a form of learningwhich takes place in an entire population

across multiple generations. The opposite of ontogenetic. xvi, 22, 55, 56

reality gap The discrepancy between a simulated environment and the complex and

unpredictable real world [140], which often causes robotic controllers designed

or trained in simulation to fail when run on a real robot. 5, 41, 240

reinforcement learning A form of learning in which the agent learns a strategy

(known as a policy) to select actions which will maximise the cumulative sum

xvii

over time of a single scalar value, the reward. For example, in a game play-

ing agent, the cumulative reward to be maximised might be the score. The

agent would learn how to perform actions given each situation which would

maximise the score at the end of the game. 56

stochastic gradient descent A supervised learning technique, particularly in neural

networks, which updates the solution from each example individually using

the gradient in the error surface detected at the current solution, given the

example. Constrast with batching. xix, 96

sub-symbolic A style of “artificial intelligence” which does not involve the designer

explicitly building models of the world, in order to reduce the assumptions

made in so doing. 5, 56

temporal difference A reinforcement learning technique which uses various tech-

niques (such as dynamic programming using the Bellman equation) to update

estimates of the outcomes of potential actions. xix, 56

ultrastability “The ability of a system to change its internal organization or structure

in response to environmental conditions that threaten to disturb a desired

behavior or value of an essential variable. The changes such systems are

capable of are qualitative in the sense of changing the mode of interaction

with an environment in steps or jumps, not along a continuum, and they are

purposeful because such systems seek a behavior that is disturbance defying.

Ultrastability is stability of a logical level higher than the stability to which

a system converges without change of its internal organization or structure.”

[156]. 13

Uniformly Excitatory Switching Modulatory Artificial Neural Network (UESMANN)

The network under investigation in this thesis: a neuromodulatory network

in which the modulator (or “hormone”) functions in a uniform manner (i.e.

does the same thing to all weights), is always excitatory, and can be trained to

switch (or rather, smoothly transition) between two behaviours. The acronym

is pronounced “WES-mun.” xix, 5

xviii

Acronyms

AES artificial endocrine system 44, 45, 46, 47, 49, 50, 52, 323

AIS artificial immune system 53, 54, 55, 56

ANN artificial neural network xiv, 22, 27, 29, 30, 38, 40, 50, 52, 53

BES biological endocrine system 7, 42

CTRNN continuous time recurrent neural network xv, 7, 38, 39, 40, 41, 42, 43

ER evolutionary robotics xv

GA genetic algorithm xv, 31, 53, 56

MLP multilayer perceptron 7, 27, 28, 29, 47, 61, 79, 123, 322

NTS Neal/Timmis system 7, 8, 46, 49, 50, 51, 52, 319, 322

ODE ordinary differential equation 42, 43

PRNG pseudo-random number generator. 63, 78

SGD stochastic gradient descent 88, 96

TD temporal difference 56

UESMANN Uniformly Excitatory SwitchingModulatoryArtificial Neural Network

5, 61

xix

xx

Symbols

This section describes the symbols used in this thesis.

Boolean functions
Binary boolean functions (boolean operators) are dealt with in several ways. In

diagrams, because of the difficulty of creating LAT
E
X symbols in PDF images in some

software packages, the common English names of the functions are used along

with the “!” symbol for negation. As is the standard practice, “!” binds with a

high precedence. In the body of the work the appropriate mathematical symbol

is generally used, although the English name may sometimes be used for clarity.

Truth tables of the 16 binary boolean functions are given below in Table 1 with their

English names and the symbols used in this document.

Function transitions
This thesis deals frequentlywith transitions between binary boolean functions under

the influence of a modulator h. For example, we might perform the function x ∨ y
when h � 0 and change to x∧ y when h � 1. These are notated using the right arrow

→, so the example would be written as

x ∨ y → x ∧ y

These transitions are often referred to in the text as “pairings.”

Common parameters and metrics

xxi

xxii

Table 1: The 16 binary boolean functions expressed as f (x , y) where x , y ∈
{0, 1}, with the English abbreviation and symbols used in this work.

f (0, 0) f (0, 1) f (1, 0) f (1, 1) English abbreviation Symbol

0 0 0 0 F F
0 0 0 1 and ∧
0 0 1 0 x and !y x ∧ ¬y
0 0 1 1 x x
0 1 0 0 !x and y ¬x ∧ y
0 1 0 1 y y
0 1 1 0 xor x ⊕ y
0 1 1 1 or x ∨ y
1 0 0 0 nor ¬(x ∨ y)
1 0 0 1 xnor ¬(x ⊕ y)
1 0 1 0 !y ¬y
1 0 1 1 x or !y x ∨ ¬y
1 1 0 0 !x ¬x
1 1 0 1 !x or y ¬x ∨ y
1 1 1 0 nand ¬(x ∧ y)
1 1 1 1 T T

Table 2: Symbols used for common parameters and metrics

Symbol Meaning See section

η The learning rate in the back-propagation algorithm 4.2.1

h The modulation parameter for modulatory networks 2.5.6.1 and 4.2.1

φ The Matthews correlation coefficient, used as a metric

in classification problems

5.1

φmin The minimum φ over the two modulator levels h, used
as a metric in classification problems

5.1

xxiii

Acknowledgements
Firstly, I must thank Fred and Christine, my supervisors through the final half of

this thesis; and Mark Neal who supervised initially before moving on. Each of you

provided valuable advice, inspiration and guidance without which I would have

been wandering in the dark (and disappearing down rabbit holes). I would also like

to thank Hannah Dee and Roger Boyle for their kind advice and support, my former

employer John Jones-Steele for many years of on-the-job mentoring, and Joanna

Bryson for putting me right on a small but important matter.

More personally, I would like to thankmy family, particularlymymother and late

father, for their love and support over the years, and for encouraging my peculiar

fascination with “harnessing the lightning to teach sand to think.”

Heartfelt thanks are also due to the Robert Jones and Agnes Hunt Hospital in

Oswestry, and the Christie Hospital in Manchester, without whom I would not

be here to write these words; and to the Computer Science Department and the

University as a whole for being understanding and helpful through a difficult time.

Finally, I would like to thank my wonderful wife Catrin for all her help, encour-

agement and love through a tumultuous few years.

xxiv

Part I

Introduction and Literature Review

1

Chapter 1

Introduction

Ce n’est pas ici ma doctrine, c’est mon étude; et

n’est pas la leçon d’autrui, c’est la mienne; et ne

me doit-on pourtant savoir mauvais gré si je la

communique; ce qui me sert aussi, par accident,

peut servir à un autre. Au demeurant, je ne gâte

rien, je n’use que du mien; et si je fais le fou, c’est à

mes dépens, et sans l’intérêt de personne; car c’est

en folie, qui meurt en moi, qui n’a point de suite
1
.

Essais de Montaigne, Chapitre XXV

Many modern robotic systems must adapt to their environment, changing their

behaviour according to the situation, as well as reacting to the environment in the

short term [38].

Consider a robotwhichmust explore asmuch of the environment as possiblewith

limited resources which can be replenished at a set location (a problem considered

later in this thesis). Let us assume that this robot is “reactive” (as opposed to

“deliberative”)2: such a robot does not make plans in advance but simply reacts

to the stimuli with which it is presented in the moment. Thus it must react by

1“What I write here is not my teaching, but my study; it is not a lesson for others, but for me. And yet it
should not be held against me if I publish what I write. What is useful to me may also by accident be useful to
another. Moreover, I am not spoiling anything, I am only using what is mine. And if I play the fool, it is at my
expense and without harm to anyone. For it is a folly that will die with me, and will have no consequences.”

2The “reactive/deliberative” terminology is taken from Arkin’s work on the AuRA system, which

is a hybrid system with components of both types (see Sec. 2.2.3, p. 20). Deliberative systems, which

use symbolic reasoning on models of the system and environment (see Sec. 2.1.1, p. 14), are also a

component of “cognitive robotics” [52], which is concerned with constructing a cognitive, reasoning

architecture with which a robot can learn to achieve complex goals in a complex environment.

3

4 Chapter 1. Introduction

avoiding obstacles, but it must also adapt as its resources are expended3, changing

its behaviour to return to its “home.”

This might be achieved using two levels of reactive operation. At the lower level

are multiple behaviours such as “avoid obstacles” or “head for home”. Considered

separately, each behaviour does not account for environmental changes and typically

runs atemporally (i.e. in the instant, with no time-dependent effects). At the higher

level, an adaptive system acts over longer timescales to change how the low-level

system reacts as the environment changes, by selecting (see Sec. 2.2, p. 18) from

the lower-level behaviours. An example of such a system is “Sozzy”, a hormone-

driven autonomous vacuum cleaner [306] which uses the subsumption architecture

of Brooks [33]. It shouldbenoted, however, thatmany systems (notably those built on

the subsumption architecture) use elements of “emergent behaviour”, where desired

behaviours result fromnon-obvious interactions between lower level behaviours [32].

Robots controlled by artificial neural networks — systems inspired by the biolo-

gical nervous system (see Sec. 2.3, p. 22 and particularly Sec. 2.3.9.1, p. 37) — may

benefit from biological inspiration in how they adapt. Neurons act over very short

timescales and are thus “reactive” (in the sense used above). To change the beha-

viour of the animal over longer timescales the behaviour of the neurons must be

modified. In biology, one way this is achieved is through neuromodulators: chemicals

flowing through the space around the cells which modify the behaviour of large

groups of neurons. These may be released some distance away and may persist

for some time. In a simulated system this can create a division between temporal

dynamics, handled by the simulated chemistry of the neuromodulator (typically a

simple release/decay model4), and the atemporal behaviour of the network itself.

This thesis describes a novel neural network architecture inspired by neuromod-

ulation which is capable of transitioning between two behaviours in a single set of

parameters (i.e. weights and biases) learned by the well-established technique of

the back-propagation of errors. The transition is controlled by a global modulator

value, which affects all the weights in the same way and can be continuously varied

between 0 and 1.

While much of the thesis does not deal with the temporal dynamics of neur-

omodulation, the robot problem in Part IV contains a simple temporal model in the

form of a simulated battery, which charges and discharges over time.

3In this system the resource level, while part of the robot, is separate from the robot’s control

system and so is considered part of its environment.

4See Sec. 2.5.6 (p. 47) for a description of the temporal model used by the Neal/Timmis system as

an example.

1.1 Outline of the thesis 5

1.1 Outline of the thesis
This introduction forms part of Part I of the thesis. Section 1.3 gives the motivation

and methodology for the work: briefly, most existing artificial neuromodulatory

systems are designed by hand and are not trained, while those which are trained are

often complex. Our goal is to find a simple system which can be trained (albeit in

a supervised way, rather than the reinforcement method which would be required

for true learned adaptivity), and investigate the performance and behaviour of such

a system.

The next chapter, Chapter 2, is an extensive literature reviewwhich discusses the

theoretical background to the concept of “adaptation” (and “intelligent behaviour”

in general), with is a particular focus on sub-symbolic and biologically inspired

(bio-inspired) techniques. We then discuss neural networks and artificial endocrine

systems: systems inspired by the hormonal systems of animals, which have come to

include artificial neuromodulatory systems.

Part II introduces the network architecture under discussion, which has been

namedUniformly Excitatory SwitchingModulatoryArtificialNeuralNetwork (UES-

MANN)5. As well as introducing the network and deriving the trainingmethod, this

part of the thesis studies the architecture’s behaviour in a single node performing

pairings of binary boolean functions. We then look at the minimal network for

such pairings, with the finding that all possible pairings may be expressed in the

same number of parameters (i.e. weights and biases) which are required for any

single function. Comparisons aremade to two other simple neuromodulatorymeth-

ods: linear interpolation between the outputs of two separately trained multi-layer

perceptrons, and adding an extra modulator input to such a network.

In Part III the network is evaluated in somemore complex classification problems.

The first is a binary problem: the network is trained to recognise horizontal lines in

images when the modulator h � 0, transitioning to recognising vertical lines when

h � 1. The second problem is a multi-class problem: recognising handwritten digits

from the well-known MNIST database.

Part IV dealswith the robot problemdescribed above: howwell doesUESMANN

perform (in comparison with the two methods described above) in a task which

requires balancing exploratory behaviour with returning to “recharge” a simulated

battery from time to time? Experiments were performed using two simulators of

differing complexity and on a real robot, to study how well the different networks

crossed the “reality gap” from simulator to robot.

5Pronounced “WES-mun.”

6 Chapter 1. Introduction

1.2 Prior publications
• Some of the work in Chapter 4 (on training UESMANN on boolean pairings

with back-propagation) and Part III (on classification problems) has been

published previously in [88].

• Some of the work in Part IV (on a robotic control problem) has been published

previously in [85].

1.3 Motivation 7

1.3 Motivation
The term “artificial endocrine system6” currently has a very wide scope, covering

any technique inspired by features of the biological endocrine system (BES). These

features include leaky integrators7, global messaging with selectivity on reception8,

and diffusion through space9. If we define an AES as any system which uses such

features we could include systems such as CTRNNs10 and GasNets11, which each

use several.

Therefore in this work the term “artificial endocrine systems” will cover only

those techniques directly inspired by the BES. Even these systems are wildly dis-

parate — from the “emotional” systems of Yamamoto [306] and Cañamero [46], in

which hormones are leaky integrators driving subsumption architectures or action

selection mechanisms, to systems like the Neal/Timmis system (NTS) and GasNets

where the hormone modulates the behaviour of a neural network.

The system developed in the rest of this thesis is motivated primarily by the

Neal/Timmis AES (see Sec. 2.5.6, p. 47), and is intended to be a component of such a

system. That is, it is an artificial neural networkwhich is capable of beingmodulated

by a single AES hormone (or neuromodulator). This thesis is agnostic on the matter

of how the hormone is generated— indeed, it is possible that the network described

here may be used without a “hormone” in the sense described in the previous

sections. In practice it is likely to be some form of leaky integrator with a saturation

facility as described in Sec. 2.5.6.2.

In a robotic system the network essentially performs action selection (see Sec. 2.2,

p. 18), given that it is trainedwith twodifferent behaviours betweenwhich themodu-

lator selects. However, the modulator is continuous and thus the behaviour actually

performed may be a blend or compromise between the two trained behaviours.

Themajority of the systems described above have difficulties in training— that is,

difficulties in learning parameters which are adaptive to their environment. Some,

such as the NTS, opt for either hand-design12 while others use some form of evolu-

tionary algorithm. If the Neal/Timmis modulation model — which is already fairly

simple—were simplified further, reducing the number of parameters down to those

for a multilayer perceptron, it may be amenable to training techniques used for an

6see Sec. 2.5 (p. 42)

7As used in the Continuous Time Recurrent Neural Network, see Sec. 2.3.9.1 (p. 37)

8as used in the Neal/Timmis system, see Sec. 2.5.6 (p. 47)

9As used in GasNets, see Sec. 2.3.10 (p. 39)

10See Sec. 2.3.9.1 (p. 37)

11See Sec. 2.3.10 (p. 39)

12Although the networks may initially be trained with back-propagation, sensitivities must be

either uniform or hand-designed.

8 Chapter 1. Introduction

multilayer perceptron (MLP), such as back-propagation of errors. While not ideal

from the point of view of learning adaptivity in a wider sense, developing a gradient

descentmethod to trainNeal/Timmis style networkswould provide several benefits.

Firstly, a systemwhich could be trained tomodulate smoothly between two given

functionswould demonstrate that the basic approach of theNTSmodulatory scheme

is more versatile than the current literature suggests. These tend to modulate the

entire network uniformly in an attempt to provide more or less of a single beha-

viour [278, 243, 209], often resulting in undesirable non-linearities which require

more selective modulation. Often the decision is made to modulate only the output

layer [243] or calculate neuronal hormone sensitivities byhand [118]. There are trivial

solutions to this problem, which we shall investigate for comparison: linear inter-

polation between two sets of weights, and linear interpolation between the outputs

of two different networks. However, while these reproduce their “parent” network

outputs completely at the extrema, they have different transition characteristics from

each other and possibly from other modulatory approaches.

Secondly, such a simplified system may have practical uses. As noted above,

existing systems are either hand-designed, hand-assembled from pre-trained parts,

or trained using evolutionary techniques. Online training is not possible, or may be

prohibitively expensive, notwithstanding the speculative “Breach” system of Neal

and Timmis [208]. However, a system which is trained from examples of desirable

behaviour but can generalise from those examples may be as useful, practically

speaking, as part of a system which learns to be adaptive at a higher level. This

supervised system may behave more predictably than a system generated by the

minimisation of a single cost function relating to the system’s performance as a

whole through reinforcement learning, or it may simply be that it is possible to find

or generate plenty of suitable training examples, such that a supervised method is

more appropriate. Such a system is still useful in building adaptivity— consider the

hexapod walking robot of Henley and Barnes [118] (see Sec. 2.5.6.5, p. 51) or even

the lower levels of the “Breach” system.

Finally, if such a simplified system can be built it may have implications for both

neuromodulatory AES and neurobiology. In both systems, we might intuitively

believe that if a modulator has a uniformly excitatory action on a group of neurons

which produce a given behaviour, then more modulator will produce more of that

behaviour. If an artificial network is able to learn two different behaviours with such

a uniform and simple modulatory regime, this may form a simple “existence proof”

that such a system might exist in biology — that two qualitatively different learned

behaviours can result from a simple, globally excitatory modulator. Even if this is

1.4 Hypothesis and research questions 9

well understood in biological circles, it is counterintuitive and a simple model which

demonstrates it may be of value.

1.4 Hypothesis and research questions
Our hypothesis is:

“An extremely simple neuromodulatory network can be trained by supervised
learning to perform two different functions at the modulator extrema, smoothly
modulating between these two functions, with comparable performance to other
methods at the extrema in multiple problem domains.”

Thus our research questions are:

1. Is it possible to build an extremely simple neuroendocrine system whose re-

sponse to a neuromodulator (a global parameter) can be trained such that

the network performs qualitatively different functions at different modulator

levels?

2. How simple is it possible to make such a system, so that we can make the

fewest possible prior assumptions about it?

3. What engineering advantages might such a system have?

4. If such a simple system can be built, can we learn from it anything about the

nature and evolution of the biological systems which inspired it?

1.5 Methodology
As has been discussed, the first research question will be answered by developing

the UESMANN network. This is a reformulation of the Neal/Timmis system of

Sec. 2.5.6 designed to operate with a single hormone and global sensitivity to that

hormone, such that it may be trained by gradient descent, and is discussed in

Chapter 3. We then proceed to analyse the performance and behaviour of the system

in increasingly complex problems. We start with boolean algebra to understand

the basic characteristics of the individual network nodes, before developing the

training algorithm. We then move on to more complex classification problems,

analysing the convergence performance to understand the nature of the error surface

being traversed. We also analyse the transition behaviour: how the function being

10 Chapter 1. Introduction

performed changes as the modulator is varied between the extrema. We compare

both these properties with those of alternative modulation methods (see Sec. 4.5.1,

p. 122). Finally, we compare the performance and behaviour of UESMANNwith the

other methods in a moderately complex regression/control problem.

Initial studies of the ability of UESMANN to represent multiple functions were

made with respect to the boolean functions, by both analysis and Monte Carlo

simulations of 3-node networks (the minimum number of nodes required for a

network to learn any binary boolean function). The transitional behaviours of the

network — how the function changes as the modulator moves from 0 to 1 — are

comparedwith othermethods for a small subset of the 256 possible pairings of binary

boolean functions in Sec. 3.1. Sec. 3.2 briefly investigates variants of the UESMANN

modulation method, comparing the solution spaces of the boolean pairings with

those for UESMANN proper.

In Chapter 4 a training algorithm for UESMANN is presented and compared

with two of the other methods of Sec. 3.2: output blending and h-as-input (weight

blending is discounted — at the end-points it is identical to output blending, and

at intermediate values of the modulator it produces “nonsense” networks due to

competing conventions, as shall be shown). This is done for simpleboolean functions,

with classification problems of increasing complexity dealt with in the following

chapters. Avery simple trainingmethodwasdeliberately chosen: stochastic gradient

descent with no form of batching, no momentum and no other enhancements. This

is to determine a baseline performance for further improvement in future work.

The chapter then covershowtrainingUESMANNnetworkswithback-propagation

compares with the other modulatory methods on learning pairings of boolean func-

tions, and analyses the clusters of solutions found in order to gain insights into

the underlying principles behind their operation, such as the natures of the error

surfaces the networks traverse as they learn.

Part III deals with more complex classification problems: recognising horizontal

and vertical lines in images (Chapter 6), and recognising handwritten digits from

the MNIST data set [168] (Chapter 7). The convergence performance of UESMANN

is compared with h-as-input and output blending, to expose differences in the com-

plexity of the error surfaces traversed. For the line recognition experiments, the

resulting solutions are analysed to gain insight into how UESMANN and the other

network types modulate between the two end-points. This is not done in the hand-

writing recognition case because the complexity of the resulting patterns makes

such an analysis intractable. In both experiments the performances of the different

network types are compared over several different learning rates and hidden node

1.5 Methodology 11

counts, primarily using the Matthews correlation coefficient in preference to simple

accuracy for reasons which are explained in Sec. 5.1.

Part IV deals with applying this network to a robotic environment, both under

simulation and on a physical robot. Because the primary application for the system

is foreseen to be adaptive behaviour, particularly homeostatic behaviour (as this

is the most important role for biological endocrine systems), the task chosen is a

simple homeostatic exploring and recharging task (see Sec. 8.1 for a full description).

The task was also chosen so that the hormone value varies across the [0,1] range,

rather than remaining at the extrema, to highlight any differences in the transitional

behaviour. Because the network is trained from a large number of continuously-

valued sensor input and motor output examples for each behaviour this is also a test

of the network’s effectiveness in a regression problem.

Training data was generated using simple rule-based controllers in a simple

simulated environment. A number of networks were trained for each network type,

each using different training data: there is a stochastic element to training in that

each simulated robot generating the data randomly changes direction and position

from time to time. This mitigates against problems from a single set of training data,

although not entirely; and ideally multiple networks should have been trained for

each data set, but available resources did not permit this. The performances of the

networks are shown for the simple simulator using a new metric which combines

survival time, distance variation and edge-weighted distance travelled, in order to

score highly robots which range widely and survive well (see Sec. 8.1.2.4). Details

of the simple simulator and its use in both training and evaluation are given in

Chapter 9.1.

The best network of each type from the simple simulator experiments is carried

forward into Chapter 10, in which they are tested using the Gazebo robot simulator

and on a real robot. Because the number of runs was limited by time, only quantit-

ative analyses could be performed. However, some simple qualitative analyses are

presented.

12 Chapter 1. Introduction

Chapter 2

Bio-inspired intelligent behaviour

This literature reviewwill dealwith the problemof artificial intelligence as applied to

robotics, looking at cybernetic notions of adaptivity, neural networks, and extensions

thereof such as artificial neuroendocrine systems. It will deal primarily with these

sub-symbolic connectionist systems, but some approaches which use explicit sym-

bolic models of the world are also discussed. The intention is to begin with a broad

focus on definitions of intelligent behaviour and adaptivity, narrowing the scope to

sub-symbolic connectionist systems as applied to achieving adaptive behaviour.

2.1 “Intelligent behaviour” and adaptivity
Many robotic systems are designed to perform a well-defined task in a structured

environment, for example a factory, where it is possible for the system to have

a precise, predictable model of its environment, and where changes within that

environment can be kept to a minimum [20, 185]. Sensors can be designed and

calibrated for the domains known to be relevant in that environment, and the effects

of actuators can be modelled fairly accurately.

However, an increasing number of systems are being deployed in much more

complex and unstructured environments, such as homes or the surfaces of distant

planets [145, 186]. To continue performing their stated goals (or perform them bet-

ter), such systems need to be able to adapt to changes in the environment. This

typically involves homeostasis, changing configuration or behaviour so that certain

“essential variables” are kept within range [14]. These changes are typically quantit-

ative, and take the form of negative feedback control. At a higher level, systems may

also be ultrastable (to use Ashby’s terminology [14]), making qualitative changes in

their behaviour in order to maintain a failing homeostasis. Ashby describes ultrasta-

bility as a core aspect of biological behaviour, and constructed an electromechanical

13

14 Chapter 2. Bio-inspired intelligent behaviour

homeostatwhich attempted tomaintain a set of variables at a fixed level, reconfiguring

itself randomly until it was able to do so.

Later, Maturana and Varela developed the idea of autopoiesis: an autopoietic

system is one in which the essential variables are those which maintain the cohesion

of the system and its ultrastable state [187]. For Maturana and Varela, this is a

working definition of life. If such a system becomes maladapted, it will always

attempt to adjust in order to maintain its own ability to so adjust. For Maturana and

Varela, and also Ashby, the highest level of ultrastability is cognition — Maturana

and Varela argue that furthermore all autopoiesis, all life, is cognition.

Thus in order for a system to be adapted to its environment, it must be performing

homeostasis within that environment. In order for it be be adaptivewithin a changing

environment, it must change its homeostatic mechanism to remain adapted when

the environment changes; that is, it must exhibit some form of ultrastability [65,

Sec. 4].

A system in a complex environmentwill require some formof adaptive behaviour

—homeostasis or ultrastability— in order to achieve its goals. If an essential variable

goes out of range, simple homeostasis may resolve the problem. If this is insufficient,

a ultrastable change in the behaviour may be required at a higher level.

In this kind of environment the goals may be simply stated (e.g. collect data,

maintain battery charge) but are often considerablymore complex than they initially

appear andmay contradict each other. For example it is possible tomaximise battery

life by doing nothing, but no data will be collected; and while we can maximise

data collection by constant exploration, the battery will become depleted. Thus,

the problem of control becomes a complex, possibly multi-objective optimisation

problem operating on uncertain information.

2.1.1 Symbolic and sub-symbolic solutions

2.1.1.1 Symbolic reasoning

Most early solutions to this problem follow a symbolic route: construct a model of

the system and its environment, and logically deduce which action to perform. This

is sometimes described as the Physical Symbol Systems Hypothesis approach, after

Newell and Simon:

A physical symbol system has the necessary and sufficient means for

general intelligent action [210].

In such a system, the sensor percepts are converted into symbolic data. For example,

there may be a symbol “ball” and a symbol “chair”, and a symbol representing the

2.1 “Intelligent behaviour” and adaptivity 15

relationship “on top of”. The model might contain another symbol made up of

these symbols, representing the fact that “a ball is on top of a chair.” This has some

advantages, a key one being that the decisions of such a system are predictable and

transparent. However, over the last half century a number of problems have been

described, such as the “frameproblem” [189], the “symbol groundingproblem” [252,

112] and the “problem of situatedness” [269]. All these problems can be viewed as

part of the “problem of a prioris” [292]. This problem occurs whenever a system is

built which relies to any degree on the a priori specification of a world model. Such

an approach risks creating a system whose symbols are inadequately grounded in

the world, which mixes levels of domain ontology and which in order to be accurate

must represent the world with such a high granularity (due to the frame problem)

that the cognitive load of performing inference on the model prohibits real-time

operation.

An influential paper byDi Paolo [65] argues thatmooted solutions to the problem

of adaptivity do not go far enough: that we need to think beyond merely ground-

ing our symbols in a closed sensorimotor loop and should return to Ashbeian and

autopoietic thinking. Adding modular solutions for “motivations” and even “emo-

tions” do nothing to create systemswhich are like animals; rather they create systems

which behave superficially like animals in a rather brittle fashion. He argues that

another approach is needed to achieve true adaptivity. While his actual suggestion

— a system of constructing and preserving “habits” of behaviour — may be worth

developing, the real strength of the work is the clear statement of the problems

involved in conceptualising “adaptation” and “adaptivity.”

In spite of these problems, symbolic or representational AI has enjoyed many

successes — AIs can beat grand masters at chess [115], solve complex mathematical

problems [113, 191] and interpret natural language reasonably well (typically by

using machine learning techniques on vast text corpora, often incorporating non-

symbolic subsystems [45]). Many aspects of what is considered to be “intelligent

behaviour” have been simulated, and these simulations perform scientifically and

commercially useful functions.

2.1.1.2 Sub-symbolic AI

During the rise of symbolic AI, a few dissenters called for alternative approaches.

Hubert Dreyfus, basing his work on the existential phenomenology of Heidegger

and Merleau-Ponty, noted failures of AI in fields such as pattern recognition and

problem solving (with particular relevance to the frame problem), and concluded

that computers “must have bodies in order to be intelligent” [71]. Dreyfuswas calling

16 Chapter 2. Bio-inspired intelligent behaviour

for what is now known as a situated approach to artificial intelligence. He decries

a tendency towards “associationism”, which he defines as the belief that “thinking

must be analysable into simple determinate operations” [70, p.48] despite (at the

time)

“mounting evidence in both experimental psychology and the artificial

intelligence field itself that, althoughmachines do, people do not perform

intelligent tasks by simple determinate steps.” [70, p.49].

Dreyfus’ associationism is quite a close match to the modern “symbolic reasoning.”

Even before some of the great advances in symbolic AI, several strands of thought

existed outside the symbolic camp, processing datawithout converting it to and from

symbols for manipulation. We can call all of these “sub-symbolic” after Smolensky

[257, p. 7]1. In contrast to explicitly modelling the world (i.e. the autonomous

agent’s internal and external environment) and manipulating symbols which rep-

resent items within it, sub-symbolic techniques eschew explicit representation in

favour of processing sensor data directly. Many of these — linear classifiers and

support vector machines, Bayesian systems, etc. — are based on mathematical tech-

niques, far from biological inspiration and with little direct relevance to adaptivity,

although like many sub-symbolic techniques they come under the broad umbrella

of “machine learning” [27]. Those models which are relevant to us are artificial

immune systems, which we will leave for the moment, and explicitly connectionist

models.

“Connectionism” implies computation performed by large groups of extremely

simple nodes, inspired by the operation of the animal nervous system [95]. Most

such systems are not remotely biologically accurate: in many cases our knowledge

of biology has moved on since the models were developed, while in others the bio-

logical accuracy has been sacrificed for engineering expediency. However, they have

had remarkable success, particularly in supervised learning problems. The system

discussed in this thesis is a supervised connectionist system, and connectionismwill

be discussed later.

2.1.1.3 Behaviour-based robotics

In the late ’80s and early ’90s, strong advances weremade in a situated, sub-symbolic

— but not connectionist — approach to adaptivity through work in behaviour-based

1McHale [193] views “sub-symbolic” in Smolensky’s work as a rather mistaken defence of the

connectionist stance: Smolensky sees connectionism as a paradigm which processes the elements

of symbols, rather than symbols directly — implying that the system is perhaps generating and

processing symbols, but indirectly. However, it is a useful term: it embraces connectionism as well

as architectures such as subsumption, support vector machines and Bayesian inference techniques.

2.1 “Intelligent behaviour” and adaptivity 17

robotics [9] by Rodney Brooks and others, who believed that building “intelligence”

should start at the level of the simpler animals, rather than at the human level, thus

leading to building agents adapted to their environments for survival. This work,

sometimes known as nouvelle AI2, signalled a schism in the AI community [193]:

Brooks criticised the mainstream paradigm as not being physically grounded [35],

and proposed an architecture of low-level modules whose emergent behaviour

in interaction with a complex physical environment could be exploited. This he

named the subsumption architecture, because higher-level behavioural modules sub-

sume lower-levelmodules [33]. For example, “wander” and “avoid objects”modules

might be subsumed into an “explore” module. A key philosophy is that “the world

is its own best model” [35]: rather than building complex models which represent

the world and reacting to them, an agent should react to the world directly. Brooks

denied that symbolic representation was necessary for apparently intelligent beha-

viour, believing that such behaviour could result from “a collection of competing

behaviours” [38].

In many respects, Brooks and his colleagues were continuing the work of the

early cyberneticist William Grey Walter. His simple analogue Machina speculatrix,
more commonly known today as the “tortoise”, demonstrated homeostasis with

complex emergent behaviour due to environmental and self interactions [105]. Later

work by Braitenberg (but preceding Brooks) would explore a taxonomy of similar

“vehicles” [30], vividly pointing out the emergent complexity in their extremely

simple behaviours:

And I am sure you will feel that their motives and tastes are much too

varied and intricate to be understood by the observer. These vehicles, you

will say, are governed by Instincts of various sorts and, alas, we just don’t

know how Nature manages to embody instincts into a piece of brain.

You forget, of course, that we have ourselves designed these vehicles. [30,

p. 17]

Brooks’ systems, while being made up of many interconnected modules, are not

connectionist: the modules are not homogeneous as they tend to be in an artificial

neural network [38, p.155], and do not change their connections dynamically3. Work

by Randall Beer and Dave Cliff developed a new conceptual framework which is

explicitly connectionist: computational neuroethology. This is “concerned with the

2Both from “new” and after the French style of cookery, which advocatedminimalism and a return

to simplicity.

3Notwithstanding the ability of one module to suppress or inhibit another.

18 Chapter 2. Bio-inspired intelligent behaviour

computational modelling of the neural basis of animal behaviour” [54, 53]. Despite

this definition, the modelling used is typically not a rigorous neural model.

In robotics, a fruitful way of thinking about the problem of intelligent behaviour

has been to consider which action to perform next at any given time: an approach

called “action selection.” This has generally been approached symbolically, since

actions are predetermined and thus symbolic in nature. Because the network de-

scribed in this thesis can be seen as related to action selection (although it smoothly

interpolates between trained actions, rather than selects one), and because it can also

drive or be driven by systems working in that paradigm, action selection will be

discussed further in the next section.

2.2 Action selection
In its simplest form, the central problem of intelligent behaviour can be reduced

to finding what action or behaviour4 will maximise the system’s positive outcome

measures and minimise the negative measures. Brom and Bryson describe this in

simple terms:

“. . . the most basic problem of intelligent systems: what to do next.” [31]

Thus one way of abstracting this optimisation problem is to work in terms of

what action should be performed at any given instant [254, 31]. If we move down

this route, the key questions are:

• What is being selected?

• How is it being selected?

“Action selection” as a problem statement deals with anything which answers these

questions, and so theoretically encompasses many— if not all — forms of embodied

systems. Another statement of the problem from Girard et al. [100] is “the problem

of motor resource allocation an autonomous agent is faced with, when attempting

to achieve its long-term objectives.”

We can consider the solutions to this problem as falling on a spectrum depending

on the level of modelling of the environment performed. At one end are “deliberat-

ive” systems with a “Sense→Plan→Act” loop, working on a model of the world to

4Here, an “action” is a single, discrete event caused by the system in response to some internal or

external stimulus, while a “behaviour” is a coherent set of actions or tendency for actions to occur

elicited by such a stimulus.

2.2 Action selection 19

select optimal actions which fit into an overall plan; while at the other there are com-

pletely dynamic “reactive”models inwhich there are no discrete “actions” per se, but
multiple continuous processes running in parallel to produce the desired behaviour

as an emergent property [254]: connectionist systems fall into this latter category5.

Bryson [40] provides a useful history of the different strands of thought across this

spectrum. As such, much of the history of wider “action selection” reiterates the

history of AI as a whole: a Hegelian dialectic with symbolic/deliberative systems

as thesis, connectionist/reactive systems as antithesis, and hybrid/behaviourist sys-

tems as a synthesis.

As an area of solutions, however, what we might term “classical action selec-

tion” tends to denote a particular approach involving algorithms to select from a

known set of actions, given stimuli and varying amounts of state. This differs from

approaches which emphasise the role of actions as emergent behaviour from many

simple processes: while those elementary behaviours may be explicitly coded into

the system, as they are in Brooks’ subsumption system and its descendants, the

“actions” selected emerge from the interplay between the behaviours6.

2.2.1 Hierarchical action selection

The study of action selection in animals, beginning with the hierarchical action

selection mechanisms observed by Lorenz [175, 176] (cited in [284]) and Tinbergen

[280] has inspired many artificial constructions. Tinbergen’s model consists of an

acyclic directed graph of nodes through which some notional “activation” flows,

with the graph inputs being fundamental internal and external stimuli and the

outputs being “consummatory” nodes which generate behaviour. Nodes pass their

activation to other nodes if an “innate releasing mechanism” is active, which in

turn is activated by a weighted sum of external stimuli exceeding a threshold. This

scheme superficially resembles some simple models of neural networks, as we shall

see. Much later, an influential work by Minsky [196] on cognition postulated the

existence of many cognitive “agents” partially arranged in hierarchies (agents have

5Note that this does not imply that connectionist systems cannot deliberate — the brain, upon

which most connectionist systems are modelled, is clearly capable of building models and reasoning

on them to perform the “Sense→Plan→Act” loop. However, any apparent deliberation in a connec-

tionist system arises as an emergent property from the architecture of reactive components designed

by the experimenter. As such, the connectionist approach is closer to the reactive than to the deliber-

ative paradigm: the deliberation is not engineered in, and each component reacts in a simple manner

to its external stimuli (and optionally its internal state).

6Here, “action” refers to an entity selected by action selection, while “behaviour” is used in Brooks’

sense of “a module in a subsumption architecture.”

20 Chapter 2. Bio-inspired intelligent behaviour

“sub-agents”) and partially interacting in other ways (e.g. horizontal activation of

agents across hierarchies by “k-lines”).
Tyrrell [284] considers several kinds of hierarchical action selection techniques

(prior to 1993) in his PhD thesis. He does not include the subsumption architecture

(q.v.), although it would appear to resemble Tinbergen’s hierarchical model, because

it is “neither a computation description of the problem of action selection, nor an al-

gorithmic description of how to select actions, but rather it is an implementation tech-

nique, which can be used to implement any number of different algorithms.” [284].

Additionally, subsumption architectures often compose simple “behaviours” (i.e.

subsumption architecture modules) into complex behaviours (in the sense usually

used in this thesis) through emergence rather than selecting between a set of known

actions. He does, however, include early work by Beer and Gallagher [18] involving

neural network architectures.

In all the architectures considered by Tyrrell, and inmore recent works by Bryson

et al. ([234, 31, 41] etc.) there is a definite symbolic aspect: a known range of actions

is determined by the researcher before action selection is attempted. Thus, “action

selection” as a solution family (as opposed to a problem statement) appears to reflect

a particular approach: we know the actions, how do we select between them?

2.2.2 “Reactive planning” action selection

One class of action selection technique involves pre-calculating actions to satisfy

goals in a hierarchy, to avoid expensive goal planning: for example, in order to

throw the Ring into the fire, Frodo must have the Ring and be at Mount Doom. In

order to achieve the first goal, he must keep the Ring safe and recover it if lost. In

order to achieve the second goal, he must travel to Mount Doom. In order to travel

to Mount Doom he must travel to Mordor — and so on. Bryson [41] provides a

useful classification of successively more complex techniques of this type, starting

with completely reactive systems, passing through finite state machines and ending

with systems with more complex transitions and a little more state (such as POSH

reactive planning).

2.2.3 Hybrid architectures

In robotics, great strides have also been made in reconciling the two extremes of

“deliberative” action selection and “reactive” systems which do no explicit model-

ling. These are “hybrid” systems, in which upper layers using symbolic, deliberative

sense-plan-act loops connect to the environment through reactive, sub-symbolic

2.2 Action selection 21

lower layers. In such systems, action selection is performed by the reactive part,

while the planner typically alters the configuration of the reactive part. This leaves

the upper layer free to plan over the long term, dealing symbolically with the envir-

onment, while the lower layer acts asynchronously with the upper, performing the

high-level behaviours requested [12].

This is analogous to human conscious behaviour: we do not have to think about

how to place our feet and shift our body weight as we walk; instead we specify that

we are going to walk in a particular direction — our frontal lobes give the order, our

motor cortex, cerebellum and spinal reflexes perform the actions.

One of the most successful hybrid systems is AuRA, a mid-1980s system using

a deliberative planner, spatial reasoner and plan sequencer, layered over a reactive

system termed the “schema controller” [11]. This primarily navigational system

ultimately generates vector fields which are summed, normalised and passed to

another process for execution.

2.2.4 Neurological action selection

Some recent work on action selection is based on recent developments in neur-

oscience. It has become possible to trace the relevant pathways in the vertebrate

brain, and to develop simple models of the relevant regions in order to emulate

their behaviour. Structures known as the basal ganglia are believed to be implic-

ated ([229], [159] cited in [100]). These are believed to function by disinhibition:

targets (such as the target area for a visual saccade) are maintained under constant

inhibition, and selected when the inhibition is removed [50, 229]. This is superfi-

cially similar to a negated version of Tinbergen’s “innate releasing mechanism” (q.v.

above). Attempts have been made to build models of this neuronal arrangement

with some success [100, 107]. Neurologically-inspired action selection has also been

implemented at a higher level of abstraction in cognitive architectures such as ACT-R

and Soar [163, 6, 207, 265].

2.2.5 Summary

“Action selection” as a problem statement is straightforward: from a given repertoire

of actions and a given set of inputs, which action should be performed? This selection

may be achieved on a reactive basis as a mapping from sensor states to actions, or

by more deliberative reasoning involving the processing of these states, some form

of memory, and a goal hierarchy. Much work has been done on the development of

22 Chapter 2. Bio-inspired intelligent behaviour

action selection algorithms inspired by the ethology and neurology of vertebrates,

but typically not at the level of the individual neuron.

However, action selection is not the only kind of adaptive behaviour: at a lower

level, biological organisms do not select discrete actions to perform. Instead, they

smoothly shift between different behaviours or perform behaviours with lesser or

greater intensity dependent on external and internal factors. Other behaviours may

emerge from the interplay of these fundamental functions, whichmay be advantage-

ous (and thus be learned ontogenetically through reinforcement, or phylogenetically

through natural selection).

The term “action” is to be taken loosely here — actions may be discrete, such

as feeding, but may also include entities which act continuously but to a lesser

or greater degree, such as those involved in the insulin-regulated maintenance of

blood sugar levels. They may also include behaviours made up of several actions

or simpler behaviours. Even if discrete actions are involved, the system driving

them may use continuous quantities. For example, Walker and Wilson [295] use

an artificial endocrine system with a number of hormones, each of which drive

competing actions. These hormones are released into “pools”, which fill until a

threshold is crossed. All the hormone is then released and starts to decay. The

action is selected by the hormone with the highest released concentration. However,

the underlying methods are continuous: the result may be that the system oscillates

between several behaviours, with each behaviour taking up a different amount of

time depending on the release and decay rates of its hormone. Although action

selection takes place in such systems, our interest is primarily in the systems which

produce the continuous values which might feed into action selection.

2.3 Artificial neural networks
In parallel with the symbolic line of study, and (later) the reactive and behavioural

work of Brooks, Braitenberg et al., which can trace their sources back to the cybernetic

theories of Ashby et al. [13, 14], other researchers were building non-symbolic sys-

temsmore directly inspired by biological nervous systems. ANNs are typically used

in supervised learning, although the unsupervised and reinforcement paradigms

also have examples.

2.3.1 The biological nervous system

The nervous system of an animal is made up of neurons, all of which have approxim-

ately the same structure, as shown in Figure 2.1. Each neuron can receive connections

2.3 Artificial neural networks 23

Axons connecting from other neurons

Cell body "processes"
incoming signals

Synapse

Signals travels along the incoming axons
to the synapse, and into the cell

Signal travels out of the cell along
the axon, into the receiving cells

Figure 2.1: Structure of a neuron. This diagram shows a theoretical “typical”

neuron; in practice neurons have extremely varied structures depending on

their location and function.

from many others, and can itself transmit signals to other neurons, sometimes some

distance away (via the axon). Where the axon joins the receiving cell is the synapse.
The synapse can vary in connectivity — a “weak” synaptic join may only transmit

a small part of any received signal. It is largely through making new synapses and

varying their strengths that learning is thought to take place.

Communication ismediated at the synapse by chemicals known as neurotransmit-
ters, which travel from the presynaptic (transmitting) neuron across a short gap (the

synaptic cleft) to the postsynaptic (receiving) cell, where they combinewith receptors.

There are very many different neurotransmitters, including glutamate, GABA, sero-

tonin, acetylcholine and dopamine, each with their own receptors. The action at the

receiving neuron does not depend on the neurotransmitter, but on the postsynaptic

receptor. This is either an excitatory action, making the potential across the cell

membrane positive; or inhibitory, pushing the charge negative.

If the potential rises to a threshold level (of around -50mV), channels in the

cell membrane open causing the cell to depolarise: the membrane potential rapidly

increases, rising as high as +100mV, before dropping to below its resting potential.

This process is shown in Figure 2.2.

This action potential triggers awave of depolarisationwhichmoves along the entire

length of the axon, causing the release of neurotransmitters into more cells at the

axon’s synapses. After depolarisation, the cell returns to a level below the resting

potential where a greater stimulus will be required for another action potential,

before recovering to the normal resting potential. This is the refractory period.

24 Chapter 2. Bio-inspired intelligent behaviour

threshold potential

resting potential

action potential refractory period

stimulus

insufficient stimuli
failing to reach thresholdd

e
p
o
la

ri
sa

ti
o
n

re
p
o
la

risa
tio

n

-60

-50

membrane potential (mV)

time

Figure 2.2: The neuronal responses to an excitatory stimulus of different

levels; some failing to trigger an action potential, with one succeeding.

Thus it can be seen that both the intensity and the frequency of the stimuli are

important: a number of spikes, each of which might not reach the threshold, might

trigger the cell if they arrive in quick succession. In addition, the environment of

the cell canmodulate this behaviour in complex ways— some neurotransmitters are

not broken down or reabsorbed, and thus can spend some time in the intercellular

fluid, modulating the behaviour of the neurons therein.

2.3.2 McCulloch and Pitts

Much of this behaviour was described and modelled in the 1950’s by Hodgkin and

Huxley [124], but earlier McCulloch and Pitts [190] had produced a much simpler

model of a neuron, which is still much used in simulation. This McCulloch-Pitts

(MCP) neuron relies solely on intensity, without a refractory period or any temporal

dynamics within the neuron itself. The only temporal element is a single cycle

“synaptic delay”, such that the output of a neuron appears at the corresponding

inputs one cycle later (a discrete time model is used). Thus, the MCP neuron is far

simpler than the Hodgkin-Huxley model, which is itself an extreme simplification.

The MCP neuron consists of a sum of weighted inputs, which is then passed to

an “activation function” to produce the output. In addition, a single inhibitory input

is provided: if this is active, the output of the cell will be zero (after one cycle). We

can write:

yt+1 �

f (∑i wixt i) if zt > 0

0 if zt ≤ 0

, (2.1)

where xt i are the excitatory inputs at time t, zt is the inhibitory input at time t, wi

are the weights, and f is the activation function. In the original MCP neuron, the

2.3 Artificial neural networks 25

activation function is a step function with a constant threshold k:

f (x; k) �

1 if x > k

0 if x ≤ k
. (2.2)

This allowed McCulloch and Pitts to represent any boolean function of real values

with fairly complex temporal dynamics, although they make no attempt to describe

how such networks can acquire the correct weights to approximate a desired func-

tion, i.e. “learn.”

2.3.3 Hebbian learning and STDP

In 1949, neuropsychologist Donald Hebb developed a theory of learning at the

neuronal level. In this theory, if an action potential from a neuron takes part in

causing another neuron to itself form an action potential (to “fire”), the link between

the two is strengthened such that the firing of the first neuron is more likely to cause

the second to fire in the future [117]. This is now known as Hebb’s Law. Though this

is often summarised as “cells that fire together, wire together,” the causative aspect

is important — the first cell must take part in firing the second.

Although the mechanismwas not fully understood at the time, more recent work

has demonstrated its essential accuracy [171, 58]. If a neuron receives an input spike

immediately before it activates, the synaptic connection between the two inputs

is made stronger. “Anti-Hebbian” learning has also been demonstrated, in that if

a neuron receives an input spike immediately after it activates, the connection is

weakened. This biological process was termed spike-timing-dependent plasticity by

Song, Miller and Abbott [260], who note a weakness it shares with other Hebbian

rules:

STDP, while making an important and novel contribution to competi-

tion, probably cannot be the sole source of plasticity in Hebbian learn-

ing situations. Like any other Hebbian modification rule, STDP cannot

strengthen synapses in the absence of postsynaptic firing. If for some

reason the excitatory synapses to a neuron are too weak to make it fire,

STDP cannot rescue them. A non-Hebbian mechanism, such as synaptic

scaling, may serve this function instead. [260]

Otherdisadvantages of theHebbian learning rule are its inherent instability (synaptic

weights will tend to increase or decrease exponentially) [213] and the potential for

non-orthogonal patterns to interfere with each other [214].

26 Chapter 2. Bio-inspired intelligent behaviour

Since this pioneering work, Hebbian learning has been a major component of

artificial neural networks, particularly in unsupervised learning. In 1954, Farley

and Clark [82] described a “self-organising system”, consisting of a network of

simplified MCP neurons and a modified Hebbian learning rule, which was able to

perform simple pattern discrimination. Later, morewidely used variants which deal

with the inherent instability include Oja’s rule [213], which can be used to generate

a Principal Component Analysis; and the Generalised Hebbian Algorithm [240] of

which Oja’s rule is a special case.

2.3.4 The perceptron

The perceptron of Rosenblatt [236] is a simplification of the MCP neuron, removing

the temporality and the inhibitory input and replacing the threshold with a constant

bias. The actual calculation consists of a simple weighted sum, with the Heaviside

step as the activation function:

y �

1 if w̄ · x̄ + b > 0

0 otherwise

(2.3)

in vector notation. The perceptron algorithm specifies rules for updating theweights

in order to perform supervised learning of classes of visual patterns. In the case of a

binary classifier, a single perceptron is all that is required7. For each training example

x̄ with the desired class d and actual output y, the actual output is calculated as given

in the equation above, then the weights are updated thus:

wi ← wi + η(d − y)xi , (2.4)

where xi is input i, wi is theweight associatedwith that input, d is the desired output

for the class of the input (0 or 1) and y is the output after thresholding. The value

η is a parameter called the “learning rate” which affects how quickly the weights

change. Thus, for each training example, theweights are pulled towards thosewhich

would provide the correct classification8. The perceptron was originally envisaged

as a physical machine rather than an algorithm, and while it was initially developed

in software it was later rebuilt using photocells, with potentiometers and motors to

7Extending the perceptron for multiple classes simply requires creating a new perceptron for each

class.

8This is essentially identical to the delta rule used for the output layer in back-propagation but

assuming a linear activation function, so the derivative term is 1. However, because the step function

is not differentiable, we cannot derive the perceptron learning rule from the delta rule.

2.3 Artificial neural networks 27

manageweights andweight updates. This version, the “Mark I Perceptron”, had 400

photocells in the input layer.

Rosenblatt, in a 1958 press conference, made statements about the perceptron

which caused controversy in the AI community, and there were many reports in the

press exaggerating its abilities. For example, the New Yorker wrote

“The Perceptron... as its name implies, is capable of what amounts to

original thought... it strikes us as the first serious rival to the human

brain ever devised.” (cited in [135])

This sensational reporting in the press, combined with Minsky and Papert’s 1969

book Perceptrons [197], which deeply analysed the capabilities — and limitations —

of Rosenblatt’s machines, led to a marked reduction in connectionist AI research.

In fact, the book was not the unalloyed condemnation of perceptrons it is often

perceived to have been. Minsky and Papert did point out that perceptrons in their
single layer formwere unable to detect global properties of the input fields they were

given, such as parity (whether the number of 1 values is even or odd) and topological

connectedness (whether all the 1 values are joined together, with no isolated islands).

The parity problem is particularly significant, as its two-input form is the exclusive-

OR function. In fact, the perceptron is only able to classify linearly separable problems:

those which separate the input space’s “true” and “false” regions by a hyperplane.

They did not, however, assert that a multilayer perceptron (MLP) could not

implement such functions. However, the book was widely read — or perhaps not

read — in this way. Indeed, Minsky himself has said

“It would seem that Perceptrons has much the same role as theNecronomi-
con9 — that is, often cited but never read.” (personal communication to

Istvan Berkeley, cited in [24]).

Although MLPs are able to implement non-linearly separable classifiers, provided

the activation function is non-linear (since the sum of a set of linear functions is just

another linear function), it was unclear how to train them efficiently. The funda-

mental problem is that of credit assignment — how to determine which connections

contributed to a correct answer, to strengthen them; and which to an incorrect an-

swer, to weaken them.

2.3.5 ADALINE and MADALINE

ADALINE [300], developed byWidrow andHoff in 1960 independently fromRosen-

blatt’s work [301], is a single-layer ANN largely identical to the perceptron in op-

9the famous grimoire in the works of H.P. Lovecraft

28 Chapter 2. Bio-inspired intelligent behaviour

eration: the output is a thresholded weighted sum of the inputs, but the threshold

operation typically used is the sign function. The learning rule is slightly different,

however. Rather than adjusting the weights using the output error after threshold-

ing, the pre-threshold output is used:

wi ← wi + η
(
d − f

(∑
w jx j

))
xi (Perceptron update rule) (2.5)

wi ← wi + η
(
d −

∑
w jx j

)
xi (ADALINE update rule). (2.6)

The same definitions apply as in Eq. 2.4, with the thresholded weighted sum of all

inputs substituted for y, using f to denote the threshold operator. The ADALINE

will converge to the least squares error.

Like the perceptron, ADALINE is unable to learn non-linearly separable functions

such as XOR and the parity problem, because there is no non-linearity in any model

it generates. However, a multilayer ADALINE, or MADALINE, can express this by

combining several ADALINES feeding into an OR gate. Three training rules exist,

of which Rule III is essentially back-propagation of errors [301].

2.3.6 Back-propagation of errors

Although multilayer networks could be trained in limited ways by the MADALINE

Rule I in 1962, their use was limited to classification problems because of the

thresholding operation (the “quantizer” in Widrow’s terminology [300]).

In 1974, Werbos [298] developed a gradient descent technique for supervised

learning in MLPs with continuous outputs, suitable for regression problems. In

order for this to work, the activation function must be differentiable so that there is a

finite gradient to be descended at all points. The function used is typically a sigmoid

function, such as the easily-differentiable hyperbolic tangent tanh(x) or the standard
logistic function

σ(x) � 1

1 + e−x . (2.7)

Both these curves have a similar S-shape, hence the “sigmoid” description, and both

are easily differentiable. The range of tanh(x) is (-1,1), while the range of the standard

logistic is (0,1).

As in the basic perceptron, each neuron consists of a weighted sum of the inputs

plus a bias, run through an activation function ψ. In vector notation:

y � ψ(w̄ · x̄ + b) (2.8)

2.3 Artificial neural networks 29

where y is the output, w̄ is the weight vector, x̄ is the input vector, and b is the bias.

In this work we will use the form

y � σ

(
b +

∑
i

wi xi

)
, (2.9)

with the activation function, typically a sigmoid, represented by σ(x).
Back-propagation works, as the name suggests, by propagating the error term

back from the output layer through the entire network, such that all weights and

biases aremoved towards values whichwould cause the network as a whole tomove

towards the correct output.

For each training example, the network is run “forwards” (i.e. in the fashion

described above) to produce a result, calculating the error from the desired result.

For each neuron the direction in which the weights and biases need to move to

correct the error can be calculated by using the derivative of the activation function.

The same calculation can then be applied to the values of the previous layer, and so

on until we reach the input layer. This gives a complete set of corrections to apply.

While initially developed in themid-1970s, back-propagation languishedwith the

rest of ANN research in the “connectionist winter” brought about by the perceived

failure of the perceptron. Itwas independently reinvented in the 1980s byRumelhart,

Hinton and Williams [237, 238], triggering renewed interest in the field. Feed-

forward networks (i.e. no loops back from outer to inner layers) trained by back-

propagation, as shown in Figure 2.3, are now a standard tool in themachine learning

community. Although the differentiable activation function and continuous output

makes this rather different from Rosenblatt’s perceptron, much of the literature uses

term“multilayer perceptron” to refer to this style of network. This termwill therefore

be used throughout the rest of this thesis to refer to a network of this type trained in

this way.

Such a network is shown in Fig 2.3. This particular network has six inputs, a

single hidden layer with three nodes, and six outputs. As such, it might be referred

to as a “6-3-6” network, with nine nodes in total (the inputs are, of course, not nodes).

Back-propagation, like Rosenblatt’s perceptron and the ADALINE variants, is a

supervised learning technique: it relies on a large set of examples of desired inputs

and outputs, and learns how to generalise from them so that unseen inputs will

produce outputs congruent with the examples. It can also perform unsupervised

learningbybeingprovidedwith exampleswhichhave inputs identical to the outputs.

In this “auto-encoder” case, the hidden layer, which should have far fewer nodes

30 Chapter 2. Bio-inspired intelligent behaviour

inputs outputs

Figure 2.3: A feed-forward neural network (or multilayer perceptron) with a

single hidden layer. All connections run left to right. Inputs and outputs are

indicated as black dots, while the “neurons” or processing nodes are circles.

than the input/output layers, will learn a compressed representation of the inputs

from which they can be regenerated.

Because the UESMANN network described in this thesis is trained with a modi-

fied back-propagation algorithm, back-propagation will be discussed in more depth

in Sec. 4.1, along with some of the many enhancements which can provide better

convergence behaviour.

2.3.6.1 Adaptive resonance theory

Many other forms of network have been described in the literature of varying levels

of complexity. Adaptive Resonance Theory (ART) is one such family of architectures

designed to solve the stability/plasticity dilemma of traditional ANN systems for both

unsupervised and supervised learning. This dilemma involves finding a balance

between plasticity (being able to learn new things) and stability (not forgetting older

learned information [48]). It is included in this section as an illustration of how

network models can be extended.

The basic unsupervisedART system consists of twofields of neurons, one holding

the input and one holding “prototype patterns.” A resonance between the two

layers occurs when the input matches a prototype, in which case the prototype is

updated. If no resonance is found, a new prototype is created and the input vector

stored in it. Thus, input data will both update old stored patterns and store new

data. A “vigilance parameter” is used to manage how close the patterns need to

be to existing patterns to achieve resonance. A system could vary the vigilance

2.3 Artificial neural networks 31

parameter depending on its state — in fact, this is a possible application for an

artificial endocrine system.

Many variations of the core ART-1 binary pattern storage architecture exist, in-

cludingART-2 for real-valued patterns and the variousARTMAP systems, which use

two ART modules to learn and correlate input and output patterns, thus achieving

supervised learning [49].

A later version of ART, ART-3, attempts to model neurotransmitter regulation by

incorporating Na
+
and Ca

+
ion concentrations [47]. Besides ART-2 and ART-3 there

are a large number of variants of ART; a recent review of some of these variants and

the recent state of ART can be found at [106].

2.3.7 Recurrent networks

We have so far discussed feed-forward networks10 in which data always flows in

one direction, from the input towards the output. Recurrent networks are those

which have loops such that the input of a node relies — directly or indirectly —

on its output, typically in a previous iteration of the algorithm. Given this delay,

temporal dynamics may develop similar to those Ashby had already discovered in

his homeostats [14]. Although not directly relevant to this thesis, it may be useful to

briefly describe some of the more important developments.

2.3.7.1 Hopfield networks and Boltzmann machines

In a Hopfield network [126], nodes are connected to all others but not to themselves.

Training is done using a Hebbian-like rule to form an associative memory, i.e. to

remember a set of patterns and reproduce the full pattern when presented with a

partial or erroneous version11. This network is similar to Ashby’s homeostat, and

thus is usually interpreted in dynamical systems terms.

A related network is the Boltzmann machine [79, 1], which uses a stochastic

update mechanism and simulated annealing. Analysis of the information entropy

in Hopfield and Boltzmann networks has led to a thermodynamic analogy of the

function of biological neural networks [92, 253]. This view sees the nervous system

as a mechanism for reducing predictive error in the form of information entropy.

2.3.7.2 Back-propagation through time

Back-propagation can be used to train feed-forward networks, but because the error

must be propagated back through the network layers recurrent networks present

10With the exception of ART, which has two-way links between the two fields.

11Other rules with improved capabilities have also been devised [266].

32 Chapter 2. Bio-inspired intelligent behaviour

difficulties. However, it is possible to treat the previous time iterations’ networks as

“virtual” layers of the current iteration, “unfolding the network” through time in a

process called back-propagation through time [299]. However, this can lead to very

deep networks, which back-propagation has difficulty training due the vanishing and
exploding gradient problems— themagnitude of the gradients of components further

from the outputs either increases rapidly as the algorithmmoves backward through

the layers, or approaches zero. Both problems make it difficult to learn long-term

temporal patterns [21, 22]. For this reason, stochastic search techniques such as GAs

are used, or back-propagation modified with regularisation [216] and other “deep

learning” techniques such as alternative activation functions.

2.3.7.3 Real Time Recurrent Learning

Real Time Recurrent Learning (RTRL) [302] is a method for calculating the error

gradient at every time step which does not require “unfolding” the network. It is

suitable for online training because it does not require the sequence to be complete,

unlike BPTT. Unfortunately, it has a time complexity of O((N + L)4) where N is the

number of internal nodes and L is the number of output nodes [137].

2.3.7.4 Jordan and Elman networks: supervised learning of temporal patterns

These “simple recurrent networks” are two-layer feed-forward perceptrons with a

set of “context neurons”, which feed back from single neurons in the outer (Jordan)

or hidden (Elman) layer to those same neurons [75, 76]. An Elman network is shown

in Figure 2.4.

These networks are significant in that they can provide a feed-forward network

— which can be trained with back-propagation — with a “memory” of previous

activations in the form of the context neurons12. An Elman network was shown to

be able to learn a “temporal version” of the exclusive-OR problem [75], in which

the input consisted of an unbroken stream of bit triplets (p , q , r), in which r �

p ⊕ q. Elman also showed that the same network could learn to predict vowels and

consonants in word-like sequences generated partially randomly, and partially from

a simple set of generative rules [75]. This required the ability to “remember” over

variable timescales.

Elman networks and the earlier Jordan network show that it is possible for a

feed-forward neural network to be trained to respond appropriately to temporal

sequences, provided there is a feedback element. A useful summary of early work

in dynamic recurrent neural networks can be found in [218].

12The recurrent connections have fixedweights and are omitted from the back-propagation process.

2.3 Artificial neural networks 33

Figure 2.4: An Elman network with a hidden layer of 3 neurons and a context

layer of 3 neurons.

2.3.7.5 Self-organising (Kohonen) maps

Self-organising maps are an unsupervised learning technique inspired by the archi-

tecture of the cerebral cortex, particularly how information appears to be repres-

ented spatially in 2-dimensional sheets with many lateral connections (connections

between the neurons in the same layer) [153].

SOMs are often used to preprocess perceptual data into a lower dimensionality,

often for use in sensor-space navigation [160, 245] — effectively learning a model (or

map) of the environment.

2.3.7.6 Reservoir computing techniques

These systems use a “reservoir” consisting of a recurrent network of nodeswith fixed

and randomweights on their connections, acting as a dynamical system. The output

of the reservoir consists of the vector of the outputs for all the reservoir nodes, which

will be a complex, time-dependent function of the inputs. These feed into an output

(or “readout”) layer which can be trained by learning the appropriate weights to

generate the required output (e.g by linear regression). Thus the reservoir maps the

34 Chapter 2. Bio-inspired intelligent behaviour

inputs into a high-dimensional space and provides a “memory” of previous states,

in which patterns are analysed by readout layer.

The first example of such a technique was the “context reverberation network”

of Kirby [148], but later work has been concentrated on Echo State Networks [136]

and Liquid State Machines [180]. The former use “leaky integrator” nodes (q.v.

Sec 2.3.9.1), while the latter use a spiking neuron model. Reservoir computing has

also been amenable to implementation in unconventional physical substrates (due

to the fixed dynamical system), such as memristor arrays and networks of analogue

(or mechanical) oscillators [274]. It has also been suggested that some parts of the

brain function as reservoirs [43].

2.3.8 Deep learning

As noted in Sec. 2.3.6, feed-forward networks in supervised learning are typically

trained using back-propagation of errors, a gradient descent technique. However,

this runs into problems when training “deep” networks — networks with more

than a single hidden layer. This is because the error gradient becomes unstable

as the algorithm moves further away from the output, either approaching zero

(a “vanishing gradient”) or (more rarely) increasing exponentially (an “exploding

gradient”) [21, 22]. Additionally, hidden nodes can “saturate” at values close to 0 or

1 where the derivative is zero with a logistic sigmoid activation function13, leaving

the algorithm unable to learn [101]. See Sec. 4.1 for more on these problems.

While a single hidden layer is all that is strictly required to perform any func-

tion [56], each layerprovides an extra level of abstraction—typically featuredetectors

working on data provided by the deeper levels —which makes it easier to represent

and thus learn a given problem [211, Chapter 1], [121]. Hence the need for a solution

to the unstable gradient and saturation problems.

“Deep learning” as a term was first coined by Dechter [63], but was originally

applied to the depth of search involved in satisfying complex systems of constraints

in symbolic backtracking systems such as Prolog. However, “deep learning” in its

current sense probably begins with the Neocognitron of Fukushima andMiyake [93]

in 1982, which has been used for visual pattern recognition tasks. As such, the term

usually describes supervised learning in a neural network as described above, but

with modifications which allow the network to be deeper than the single hidden

layer considered heretofore. This was inspired by the layered architecture of the

primary visual cortex, which extracts local features in lower layers, and then detects

13or -1 and 1 with tanh()

2.3 Artificial neural networks 35

these features in upper layers despite positional shifts and other deformations [127,

184].

The Neocognitron later served as inspiration for a 3 hidden layer convolutional

network designed by LeCun et al. [169]. Used primarily in image pattern recog-

nition, convolutional networks replace the weights on each individual connection

in Fig. 2.3 with a convolution kernel, so that each node (representing a pixel) in a

layer is a convolution of the pixels around a node in the previous layer. This adds

translational invariance and vastly reduces the number of weights compared with a

fully connected layer, permitting layers to learn filters which previously were often

applied by hand, such as blurring, or orientation and edge detection. Pooling layers

downsample previous layers, replacing a group of pixels with a single pixel (typic-

ally by finding the maximum), reducing the number of weights and also providing

a small amount of translational invariance.

Much later, work by Hinton [121]14 and Bengio et al. [23] established that conver-

gence in deep networks could be aided by unsupervised pre-training, which may be as

simple as running each layer as an auto-encoder, reconstructing the training inputs.

Once all layers are pre-trained, back-propagation is run on the entire network as

normal. It is possible that pre-training helps guide the network towards minima

which generalise better and that it effectively acts as a regulariser [77].

More improvements followed: Martens [183] demonstrated Hessian-free second

order methods15 which converge more directly to the minima. In 2011 the rectified

linear unit activation function (ReLU) f (x) � max(0, x) began to replace the logistic

sigmoid as the activation function of choice because of its lower susceptibility to

unstable gradients, permitting deeper networks to be trained without pre-training.

In 2013, Sutskever et al. [270] showed that well-chosen momentum and weight

initialisation functions could aid convergence considerably.

The generative adversarial network (GAN) [102] is useful, as its name suggests,

for generating datawhich is similar to the input data. These consists of twonetworks:

a generator which takes a noise vector to produce images, and a discriminator which

compares the generated images with the inputs. The two networks are (in a sense)

competing: the generator learns to increase the discriminator’s output error, while

the discriminator learns to decrease it.

14This paper also has a useful history of the various independent discoveries of back-propagation

and other techniques for training networks with hidden layers.

15These approximate the error with a second order quadratic and use conjugate gradient descent

to avoid calculating the Hessian.

36 Chapter 2. Bio-inspired intelligent behaviour

More recently, batch normalisation [134] at each layer has been used to norm-

alise the activations of the previous layer per training batch16, which may reduce

“covariant shift” — changes in distributions of the training data. It also prevents

nodes saturating due to this shift, and regularises the data. Finally, deep residual

networks provide a way to train very deep networks of potentially hundreds of

layers by introducing a “shortcut connection” which adds in the result of a previ-

ous layer [116]. In recurrent networks, gated recurrent units (GRUs) [51] and long

short-term memory units (LSTMs) [123] have complex activation functions which

ameliorate the vanishing gradient problem.

Given such a large repertoire of techniques, deep learning has been described as

an “alchemical” disciplinewhich appliesmethodswithout a rigorous understanding

of how they work and interrelate with each other [226, 227, 133]. This has provoked

a fierce debate [165, 220]:

This [sudden failure of networks to converge when tiny changes to in-

ternals are made] is happening because we apply brittle optimisation

techniques to loss surfaces we don’t understand, and our solution is to

add more mystery to an already mysterious technical stack. [226]

A recent (pre-print) survey of top-n recommendation techniques based on deep

learning neatly illustrates the problem:

Specifically, we considered 18 algorithms that were presented at top-level

research conferences in the last years. Only 7 of themcouldbe reproduced

with reasonable effort. For these methods, it however turned out that

6 of them can often be outperformed with comparably simple heuristic

methods, e.g., based on nearest-neighbor or graph-based techniques. The

remaining one clearly outperformed the baselines but did not consistently

outperform a well-tuned non-neural linear ranking method. [57]

Nevertheless, deep learning continues to be very widely used, and has come to

dominate the machine learning field.

2.3.9 Evolutionary approaches

It is possible to use an evolutionary algorithm, such as the genetic algorithm of Hol-

land [125], to evolve neural networks. In 1989, Montana and Davis [200] showed the

feasibility of training feed-forward networks in a supervised learning environment

16See Sec. 4.1 for more details on batching.

2.3 Artificial neural networks 37

using a genetic algorithm. A key advantage of such an algorithm is that, unlike with

back-propagation, other learning paradigms than supervised learning are possible.

To learn adaptivity, adaptive systems require a function to be maximised or

minimised (reward or cost), which requires reinforcement learning techniques or a

stochastic technique such as evolution. In such a system an evolutionary algorithm

cannot usually run online (i.e. in a running embodied system), because a population

of networks must be tested for fitness repeatedly, with the process resulting in

an average increase in the fitness of the entire population17. This may require

running a large number of candidates for a longperiod of time, which is prohibitively

expensive18.

Because of these constraints, evolving adaptive behaviour usually deals with run-

ning simulations of robots to increase their adaptivity, typically with some kind of

neural network component as the genotype. Many approaches also generate body

plans and other physical parameters [66]. This is a large field, so this review will

focus on two different neuroevolutionary approaches — evolutionary robotics [212]

and NEAT [264] — because of their quite different methodologies. There are others,

such as coevolutionary techniques like SANE [201], the evolved spiking neural net-

work [90, 60]) and the Analog Genetic Encoding network [73, 288] —more examples

can be found in [248, p. 32]. GasNets are often considered part of evolutionary

robotics [288, Chapter 2], but due to their resemblance to artificial endocrine sys-

tems they will be considered separately. An important approach to note in passing

is the Evolved Plastic Artificial Neural Network, or EPANN: this term covers sev-

eral different architectures (including modifications to existing architectures) which

are evolved to learn better by finding better plasticity rules (rules for modifying

connections) [258].

2.3.9.1 Evolutionary robotics and the CTRNN

While a general trend, evolutionary robotics [212, 288] has the following three fea-

tures [114]:

• minimal cognitive abilities: rather than attempting to emulate human reason-

ing, attempt to emulate the cognition of other forms of life (taking into account

thewider definition of “cognition” implied byAshby,Maturana andVarela [14,

187]);

17This is due to Holland’s Schema Theorem: “schemata with above-average fitness (especially short,

low order schemata), increase their frequency in the population each generation at an exponential

rate, when rare [5, 125].”

18However, robots have been trained online by permitting the candidates to time share the robot,

each operating for a few seconds. For example, in [91] a single robot is trained onlinewith apopulation

of 80 candidates, each running for 24 seconds.

38 Chapter 2. Bio-inspired intelligent behaviour

• minimal prior assumptions: the architecture of an adaptive system is likely to

bias how it adapts, constraining it to the capabilities of that architecture. For

this reason, evolutionary robotics tends to use the simplest possible systemwhich

can generate the required behaviour, using the dynamical systems approach

pioneered by Ashby, Maturana and Varela.

• existence proof approach: if an experiment shows that a minimal system can

generate a given behaviour, then it will have shown aminimal set of conditions

for that behaviour. This is useful knowledge for future engineering, but also

from the biological standpoint: it may introduce new hypotheses, or refute

requirements for a more advanced processing capability.

One common form of ANN used in evolutionary robotics is the Continuous Real-

Time Recurrent Neural Network, which is based on a “leaky integrator” neuron

model of the form [17, 15]

τi
dγi

dt
� −γi +

n∑
j�1

w jiσ(γj + θj) + Ii(t), (2.10)

where

• γi is the activation of neuron i;

• θi is a threshold term;

• σ(x) is the standard logistic function (1 + e−x)−1
;

• τi is a time constant associated with the “leakiness” of the notional cell mem-

brane;

• w ji is the weight of the connection from neuron j to i;

• Ii(t) is the external input to neuron i at time t.

This simulates the firing rate of spiking neurons over timewithout having to simulate

the complex dynamics of individual spikes shown in Figure 2.2 on page 24. The spike

rate, rather than being some function of the inputs only, is increased by the inputs

and drops over time. Topologically, the nodes in a CTRNN are not constrained in

their connectivity: all nodes are connected to each other, including themselves. As

a set of differential equations, a CTRNN constitutes a dynamical system. It has been

shown that a CTRNN of this form is capable of approximating any other dynamical

system with arbitrary precision [94]. Beer [16] views CTRNNs as dynamical rather

2.3 Artificial neural networks 39

than connectionist: rather than modelling a network of layers of nodes with each

layer learning a set of representations, the system is seen as a set of differential

equations which describe how the state changes over time. The inputs serve as a

perturbation to the system dynamics, rather than as a specification for an internal

state:

Abstractly, we can think of continuous-time recurrent neural networks as

simply a basis dynamics out of which to build whatever agent dynamics

is required and we can think of GAs as simply a technique for searching

the family of flows defined by the parameterised network architecture for

one whose dynamics [match the requirements]. [15]

2.3.9.2 Neuroevolution through augmenting topologies (NEAT)

In most evolutionary artificial neural networks, the topology of the network is fixed

and the genome contains only weights and biases. This is true of CTRNNs — the

network is fixed in size and fully connected. Attempts to evolve network topologies

suffered from the “competing conventions” problem: the genomes for two candid-

ates which might usefully be combined using the “crossover” genetic operator are

often incompatible because the nodes they encode are used in different ways in each

candidate [246]. This results in a “nonsensical” child candidate with a poor fitness.

We will encounter the competing conventions problem again when we look at linear

interpolation between feed-forward networks (see Sec. 4.5.6.4).

TheNEAT algorithm of Stanley andMiikkulainen [264] solves this problemusing

historical markers on the genome: portions of the two parent genomes which come

from the same historical mutation are aligned with each other. Other improvements

include a form of speciation through “fitness sharing” within a niche and a minimal

starting case. Several extensions of the basic algorithm exist — rtNEAT runs a large

number of “agents”which are replaced continuously rather than in generations [262],

while HyperNEAT uses indirect encoding to generate larger structures [263]. Hy-

perNEAT has successfully been used in robotic gait control [170]. It should be noted

that NEAT is not generally considered part of the larger evolutionary robotics field:

because of the complexity of its mutation operation, it does not have the guiding

principle of simplicity which is at the heart of ER.

2.3.10 GasNets and their relatives

GasNets were initially developed by Husbands [130, 132] at Sussex. They are evolu-

tionary neural networks, with nodes located as points on a 2Dplane. Node activation

40 Chapter 2. Bio-inspired intelligent behaviour

functions are modulated in a complex way by the local concentration at the node of

a “gas” quantity (originally modelled on nitric oxide, NO) which diffuses through

the space. The “electrical” connections are determined by relative position and have

weights +1 or −1, and nodes can be added during mutation.

As a recurrentANN, there is a single time-step delay between inputs and outputs,

which means that GasNets have temporal dynamics, even before the addition of any

“gas”. However, the chemical connections are partially decoupled from the electrical

connections and typically operate over much longer time spans (owing to the time

it takes for changes in the gas concentration to diffuse through the plane).

In the initial tests, GasNets performed well in tasks such as T-maze naviga-

tion [130] and target discrimination [131], showing themselves to be more evolvable

than conventional binary networks without gas diffusion. Magg and Philippides

[181] have demonstrated that GasNets outperformCTRNNs in tasks which require a

timer (analogous to a biological central pattern generator, or CPG), such as temporal

pattern discrimination, but are outperformed by CTRNNs in tasks with no such

requirement. Magg also shows that another disadvantage of GasNets is the discrete

binary weighting scheme — real weights help CTRNNs perform better.

Later work by Vargas, Di Paolo and Husbands [287] has shown that it may be

the decoupling of the long-term chemical connections from the short-term electrical

connections, rather than the spatial nature of GasNets, which leads to their increased

evolvability. The NSGasNet does away with the notional 2D plane, replacing it with

a matrix of weights between nodes. The temporal element is still present, because

the gas still takes time to build up and decay, but the concentration is considered

to be equal everywhere and a node’s sensitivity is encoded in the node itself rather

than a function of distance.

Indeed, NSGasNets are typically more evolvable than normal GasNets [287, 286],

showing that the spatial nature of the network is unimportant:

Results ... seem to indicate that the explicit use of spatial constraints

and a spatially embedded diffusion process is not necessary to explain

the success of GasNet models. Rather, the interplay between two dis-

tinct processes (electrical signals and gas modulation) acting on different

timescales, and the multiplicative modulation effect of the gases appear

to be the important factor. [286]

Further work by Moioli et al. [199] has attempted to combine an AES with two

NSGasNets to evolve an artificially homeostatic system.

2.4 The “reality gap” 41

Philippides et al. [222] show that it is the loose coupling between the chemical

and electrical processeswhich leads to improved evolutionary performance, because

mutations in each of the two systems is unlikely to cause interference with the other.

In summary, GasNets can perform better than CTRNNs on tasks which require

a pattern generator because the chemical system works over long time spans, and is

decoupled from the electrical system. Thus, changes in the genome which affect the

chemical system are unlikely to act to the detriment of the electrical system and vice
versa.

In brains, nitric oxide diffuses freely through the intercellular space. As a neuro-

transmitter it has amodulatory effect on the functioning of nerve cells. However, this

is a paracrine action, rather than an endocrine action: themodulator is released by cells

and acts on nearby cells over time. In an endocrine system, hormones are released

by specialised organs in response to internal or external stimuli, which circulate

through the bloodstream much faster than paracrine intercellular diffusion. Thus

GasNets are not artificial endocrine systems, but the NSGasNet could be considered

as one.

2.4 The “reality gap”
The reality gap is the discrepancy between a simulated environment and the complex

and unpredictable real world [140]. Control systems trained to perform well in

simulation often fail to do so when transferred into the real world. To quote Brooks:

There is a real danger (in fact, a near certainty) that programswhichwork

well on simulated robots will completely fail on real robots because of

the differences in real world sensing and actuation — it is very hard to

simulate the actual dynamics of the real world. [34]

This problem can be dealt with by attempting to make the simulation as accurate

as possible, with with detailed noise profiles of each sensor and actuator, with the

simulator carefully validated against the real world environment, and the use of

adaptive elements (such as neural networks) to “soak up” the discrepancies between

the real world and the simulation [129, 140].

This can result in large and complex simulations which may run slowly, and still

perform poorly, since no simulation can be perfect. This is a particular problem in

evolutionary robotics, where each controller needs to be evaluated on several trials

with many controllers created in each generation [139].

In evolutionary robotics, Jakobi [138, 139] describes the “minimal simulations”

concept,which carefully considerswhich interactionsbetween the controlling system

42 Chapter 2. Bio-inspired intelligent behaviour

and the real robot and environment to model in the simulation: the so-called base
set of interactions. The behaviour of base set aspects of the simulation is “hidden

in an envelope of noise” [154] by varying their noise characteristics to ensure that

controllers do not evolve to rely on a particular noise profile. The behaviour of other,

implementation-dependent aspects is randomly varied between each trial, so that

controllers cannot evolve to rely on these aspects.

A different approach is used by Koos, Mouret and Doncieux [154], involving

finding ameasure for the “simulation to reality” (STR) disparity andusing this as one

of the two objectives in a Pareto-based multi-objective evolutionary algorithm [62].

The minimal solutions methodology relies on modifying the simulation between

trials during the evolution of a controller, effectively changing the adaptive landscape

between each trial so that the controller does not fall into the constantly-changing

minima introduced by the variation. As such, it may be possible to apply it outside

the evolutionary paradigm. The approach of Koos, Mouret and Doncieux, however,

relies fundamentally on an evolutionary approach.

2.5 Artificial endocrine systems
This next section will discuss artificial endocrine systems— adaptive systems which

are inspired by the biological endocrine system (BES). These systems use chemicals

known as hormones to transmit messages around the body. Hormones have two

important properties: they decay slowly over time (rather like the nodes in a CTRNN

but generally on much longer timescales) and they are broadcast rather than point-

to-point [119].

Hormones operate overmanydifferent timescales. Some, like adrenaline, act over

seconds; while others, like insulin, act over minutes or hours. These latter hormones

are of particular interest because they are typically involved inhomeostatic processes:

insulin, for example, is released when blood sugar is high, prompting its uptake and

storage. If blood sugar is too low, another hormone — glucagon — is released,

prompting sugars to be released into the bloodstream. This process keeps blood

sugar levels within a suitable range. Some hormones can act over much longer

timescales, such as those which control the reproductive cycle.

Many tissues of the body are affected by hormones, including the nervous system,

and the nervous system can itself signal the release of some hormones. This provides

a way for the nervous system to signal to itself over the medium to long term, which

could be a useful tool for neural network controllers.

2.5 Artificial endocrine systems 43

2.5.1 Mathematical models of biological endocrine systems

In 1957, Danziger and Elmergreen [59] developed a ordinary differential equation

(ODE) system model of the biological endocrine system:

dhi

dt
� xi +

∑
j

w jihi − λi hi (2.11)

where hi is hormone concentration, xi is an external input, w ji is sensitivity of

hormone i to hormone j, and λi is a decay constant. Note the similarities between

this and the CTRNN model in Eq. 2.10: this is essentially a fully-connected “leaky

integrator” network. Later work has produced more accurate models [161, 81, 172,

80], but they are all essentially ODE leaky integrator systems, sometimes with the

addition ofHill functions: sigmoidswhichmodel the binding of biochemical ligands

(i.e. hormones) to their receptors [99]. Such models are criticised by Xu and Wang

[305] as being difficult to analyse and hard to combine with other models. Therefore

much later work has been on using “hormones” in a much looser biological sense as

a metaphor for global leaky integrator communications.

2.5.2 Reactive and hybrid endocrine controllers

To this end, work has been done on building extremely simple controllers based

on the interactions between the nervous and endocrine systems. Arkin [10] used a

AuRA motor schema model (see [11] and Section 2.2.3) system to build an artificial

endocrine system which modulated the path planning of a robot: under low power

conditions, the robot was induced to take straighter (and more dangerous) paths

around obstacles. This line of thought goes as far back as Walter’s tortoise, whose

perceptions were modulated by its power level such that when low on power, it saw

the normally repulsive bright light of its charging station as attractive [105].

“Sozzy,” the robotic vacuum cleaner of Yamamoto [306] uses a hormonal layer

over a subsumption architecture, selecting betweendifferent behavioural repertoires,

dubbed “emotions”. A simpler systemwas implemented by the author in his under-

graduate dissertation, controlling a switch between rolling and wheel-walking in an

exoplanetary rover platform [86].

Work byCañamero [46] notes the importance of emotions in behavioural adaptiv-

ity, and works from Brooks’ approach to build a modular system of “motivations”

(homeostatic drives) and “emotions” (which modulate the motivations and its self-

perceived body state). Motivations and emotions aremodelled through “hormones”,

values which decay over time.

44 Chapter 2. Bio-inspired intelligent behaviour

Brooks himself has worked with artificial hormones [36, 37] using a version

of Kravitz’ model of the lobster endocrine system [155] which Brooks summarises

in [37].

2.5.3 Connectionist, “neuroendocrine” controllers

Later work uses a lower-level, overtly connectionist paradigm, typically taking the

form of just a few neurons and a single hormone. In one early example by Neal

and Timmis [209], a robot was built with a simple (four unit) neural network which

avoided obstacles. This network was then enhanced with a “hormone” — a value

which increases the effective weights of all the neurons, strengthening the connec-

tions between them. This hormone is set to decay over time, and be “released” (i.e.

increased) when the robot encounters an obstacle. This resulted in a robot which,

when trapped (and thus constantly encountering obstacles) became increasingly act-

ive until this activity allowed it to escape, whereupon it “calmed down” gradually.

It typically escaped from its entrapment sooner than a robot without the hormone,

while suffering less damage than a robot in which hormone was released constantly.

As such, the artificial endocrine system resulted in a more adapted robot by

smoothly moving between two patterns of behaviour: a less active pattern, which

results in fewer potentially damaging collisions; and a more active pattern, which

leads to quicker escapes. It is also worth noting that the robot often provoked an

emotional response in those watching it, prompting calls to “leave the poor thing

alone” when it was deliberately trapped. This is philosophically interesting, and

points topossiblemethods for buildingmore robotswithmorenaturalistic behaviour

patterns, such as those being designed to support the disabled or elderly [294].

Vargas et al. [289] have extended the Neal/Timmis system (see below) with

positive and negative feedback mechanisms on hormone production to generate

homeostatic behaviour. This system was then combined with a pair of previously

evolvedNSGasNets (see Sec 2.3.10) [199, 290]. Results indicated a considerablymore

robust performance when encountering novel environments (i.e. those for which the

robot was not evolved), such as are found when transferring from simulation to a

real robot: the so-called “reality gap” (See Sec. 2.4, p. 41).

2.5.4 Hormones and emotions

There are twomajor strands in the artificial endocrine system (AES) community. The

high level strand exemplified by Cañamero [46] deals primarily with the modelling

of emotional states, while lower level work by Neal and Timmis [209] and Vargas

2.5 Artificial endocrine systems 45

et al. [290] deals with modelling the global effect of ambient substances on neural

elements. The former strand therefore works in a “top-down” manner, observing

the perceived emotional response of animals and attempting to model it, while the

latter strand works “bottom-up”, observing the neuromodulatory effect of chemic-

als and attempting to model those to produce responses which might be labelled

“emotional.”

Arbib and Fellous [8] describe work in delineating the neurological pathways

involved in emotions, discussing how these interact with neuromodulators (which

may be hormonal) with particular relevance to robotic applications. Fellous argues

that the main purpose of emotions is to “achieve a multi-level communication of

simplified but high-impact information.” [84, p.3]. Thus, when an organism requires

its entire behaviour, at all levels, to be changed in response to a stimulus, emotions

provide a way to transmit information to multiple systems, allowing those systems

to provide support for a course of action. They provide a way to abstract out

irrelevant information, such as what a threat actually is— all the autonomic systems

need to know is that a threat needs to be responded to, and the relevant systems

should be functioning at high efficiency. He also mentions that such an efficient

communications channel is advantageouswhen used betweenmembers of a species.

If a threat message can be conveyed as a single, simple message (such as an alarm

call or pheromone release), the emotion can be communicated to other organisms.

Fellous believes that “it may be crucial to understand emotions as dynamical

patterns of neuromodulations, rather than patterns of neural activity, as is currently

done” [84, p.6]. In his model, the common emotional states such as “anger” and

“disgust” are the attractors of aneuromodulatorydynamical system. Other emotions

between these states are possible (“a little angry but mostly depressed”), but these

generally converge to the attractor states.

Another somewhat speculative and simplistic view of emotion is described by

Lövheim [177], who models eight basic emotions as the combinations of binary val-

ues of the three neurotransmitters (in a neuromodulatory role) dopamine, serotonin

and norepinephrine. The emotions modelled are those of Tomkins [281]: shame,

distress, fear, anger, contempt/disgust, surprise, joy and excitement. For example,

shame ismodelled as low levels of all three, while surprise is lowdopamine, but high

serotonin and norepinephrine. While very simplistic, this model may have value in

robotic emotional modelling [206, 273].

A wide review of recent work in “emotion augmented machine-learning” can be

found in [268].

46 Chapter 2. Bio-inspired intelligent behaviour

2.5.5 Neuromodulators and hormones

Returning to the lower, biochemical level, a biological neuromodulator is a neuro-

transmitter which is not reabsorbed in the synapse, and so continues to influence the

synapse’s behaviour and that of nearby cells—or even distant cells, since neuromod-

ulators can circulate throughout the cerebrospinal fluid. Thus the “hormones” of

the Neal/Timmis AES (see below) are more correctly termed “neuromodulators” in

that they modulate neural behaviour. However, not all neuromodulatory hormones

are secreted by neural tissue, and not all affect the neural cells directly — ghrelin,

the “hunger hormone”, is secreted by ghrelinergic cells in the intestinal tract [239]

and modulates the behaviour of cells in different parts of the brain through complex

cascades of chemical reactions [217]. Thus the terminology can become somewhat

complicated, with many grey areas.

In the context of AES, both “hormone” and “(neuro)modulator” will be used in

this work to describe any substance which acts globally to modulate all units within

a neural network, although the degree and type of modulation may be determined

locally (as it is in biology). However, some discussion of emotions (in Fellous’ terms

as an attractor within hormone space) may result.

In many of the models described in this chapter (including our own UESMANN

model) the neuromodulator/hormone affects a single aspect of the artificial neuron’s

function: the synaptic strength. It must be borne in mind that this is a gross

simplification. In biology, neuromodulators can change the behaviour of almost

any aspect of the cells’ functions in complex, non-linear ways. This can include

the intrinsic nature of how the cell fires and the membrane potential as well as

the synaptic strength [42]. There are also many hundreds of substances which

have a neuromodulatory function (often in addition to other functions). In most

artificial systems there are typically only a few modulators, each with one well-

defined function.

While the rest of this section will focus more on systems in which the neuromod-

ulatormodulates the synaptic strength, Soltoggio et al. [259] describe a systemwhich

evolves a network in which neuromodulators are also evolved which modulate the

plasticity of the neurons: the amount by which the weights change according to a

version of Hebb’s rule. This is inspired by the putative role of neuromodulators

such as dopamine as “reward predictors”, which respond to the possibility of re-

ward by increasing plasticity [249, 69]. Yoder [307] later applied a similar method to

a NEAT-like system with elements of GasNets.

2.5 Artificial endocrine systems 47

2.5.6 The Neal/Timmis artificial endocrine system

The network discussed in this thesis is a simplification of the model used by Neal

and Timmis [209], which uses a multiplicative modulation of network weights. The

NTS has two distinct parts: the neuromodulatory model, which determines how the

neuron units work and how they are modulated by hormone; and the release model,

which determines how the hormone’s concentration over time varies with release,

decay and saturation.

2.5.6.1 Neuromodulatory model

The foundation of theNeal/Timmismodel is theMLPnodewith the logistic sigmoid

activation function of Sec. 2.3.6, although back-propagation is often not used:

y � σ

(
b +

∑
i

wixi

)
. (2.12)

Here, y is the output of a given node, b is a bias, wi is the weight associated with

each input xi , and σ(x) � 1

1+e−x . In a system with a single hormone, the weights are

modulated by the concentration of the hormone, assumed to have a nominal value

of 1:19

y � σ

(
b +

∑
i

wi xihsi

)
(2.15)

where hormone concentration is h and the sensitivity of each weight to the hormone

is si . The model can be extended with multiple hormones, where each neuron has a

sensitivity to each hormone:

y � σ
©«b +

∑
i

(
wi xi

∏
j

si jh j

)ª®¬ (2.16)

19In this model, the modulation is multiplicative. It is also possible to model the modulation in

other ways, such as additively:

y � σ

(
b +

∑
i

(hsi + wi)xi

)
. (2.13)

but the amount of modulation will decrease as the weight itself increases. Another model, used by

Sauzé and Neal [243] and by the author later in this thesis, is

y � σ

(
b +

∑
i

(1 + hs)wi xi

)
(2.14)

in which zero is the base level, with negative values for inhibition and positive values for excitation.

48 Chapter 2. Bio-inspired intelligent behaviour

The original model applied modulation to the hidden layer only, and is shown in

Fig. 2.5. Unmodulated nodes are straightforward MLP nodes. Later work by Sauzé

and Neal [243] demonstrated that this arrangement behaves unpredictably under

modulation, and switched modulation to the output layer. This is likely to be due to

“competing conventions”, a common issue when combining two disparate systems

in a piece-wise manner, as described in Sec. 2.3.9.2. This issue will be examined in a

little more detail in Sec. 4.5.6.4.

gland

Figure 2.5: TheNeal/TimmisAESmodelwith the original formula from [209],

which contains a receptor match term Mi j in addition to the sensitivity term

Si j , and defines C j as the concentration of hormone j. Note that in this figure

the hormone is modulating only the hidden layer — in [243] and much other

work it is the output layer which is modulated— and that the stimulus comes

directly from the environment (i.e. the input layer) rather than via any further

processing.

2.5.6.2 Release model

In [209], the hormones are released by a notional “gland” at some release rate r, and
decay geometrically. For a single hormone:

ht+1 � τht + ∆t · rt

∑
i

xit (2.17)

where ht is the hormone level at time t, τ is a decay constant, ∆t is the tick length, rt

is the release rate at time t, and xit are the inputs at time t.

2.5 Artificial endocrine systems 49

Timmis, Neal and Thorniley [279] and Timmis, Murray and Neal [278] later

introduce a term to model hormone saturation. This gives release/decay

ht+1 � τht + ∆t · rt

1 + ht

∑
i

xit . (2.18)

Another saturation model in unpublished work by Neal and the author has

ht+1 � τht + ∆t · (k − ht)rt

∑
i

xit (2.19)

where k is the saturation level, typically 0.95. This is shown diagrammatically

in Fig. 2.6. These saturation models work if the hormone is positive-valued only,

hormone

inputs

x

release rate

saturation

x

level

decay

𝚺

Figure 2.6: A diagram of the NTS hormone release model, showing how a

“gland” node works. The effective output is the hormone level.

which may not be the case — Sauzé and Neal [243] discuss hormones which may be

excitatory or inhibitory, depending on the sign.

2.5.6.3 Endocrine homeostasis in power management

One important possible application for an AES is power management, which re-

quires homeostatic control. Consider a robotic systemwhich must be deployed for a

substantial amount of time, often with long intervals between recharge or refuelling.

Such a system must make the most efficient usage of its available power resources.

Good examples are planetary rovers and other exploratory/monitoring vehicles.

Such a system could benefit from a homeostatic model in which lower power

levels lead to behaviour which would stop them falling any further (and ideally

allow them to be recharged), while higher power levels could lead to more work

50 Chapter 2. Bio-inspired intelligent behaviour

being done, making the most of the increased capability of the robot and reducing

the possibility of battery damage from keeping them fully charged.

In work by Sauzé andNeal [243] a “battery level” hormonewas used tomodulate

only the output layer of a neural network trained to sail a boat (modulating all the

layers caused a nonlinear response between hormone concentration and actuator

change). The sensitivities and weights were all set by hand. An increase in traversed

distance was seen, as the system used the actuators less as the power decreased. At

high power levels, the boat sailed more accurately by using the actuators more. In

further simulated experiments, a solar panelwas added to recharge the battery, and a

“sunlight” hormone (an analogue to melatonin) was added. The simulated boat was

now able to sail indefinitely, achieving a stable homeostasis, albeit by suppressing

almost all activity for a large part of the day.

2.5.6.4 The Timmis-Neal-Thorniley adaptive AES

The work in [279] is an attempt to construct an AES which learns online using

Hebbian techniques. The system consists of a robot with collision sensors, proximity

sensors, and motors. The collision sensors always lead to avoidant behaviour, and

the goal is to associate collision signals with proximity signals, so that proximity also

leads to avoidance.

The system consists of two hand-built ANNs, one for “wandering” (the motor

outputs simply drive the robot forwards, there are no inputs); and one for “avoiding”

(themotor outputs avoid objects according to the proximity inputs— not the collision
sensors). These ANN outputs are summed and clamped by a single layer perceptron

before being sent to the motor, so the motor output is a blend of the two.

Each ANN is sensitive to one of two hormones, produced by two NTS glands of

the form described in Figures 2.5 and 2.6. These AES do not have the receptor match

term, so break down to

y � σ
©«
∑

i

(
wi xi

∏
j

si jh j

)ª®¬ . (2.20)

Note that there is no explicit bias term — bias is encoded as a weight for an input

which is always 1. The release of the “wander” hormone is static, but the “avoid”

hormone release is rather more complex. It is determined by two values, formed by

weighted sums of each input:

Ap(t) � w̄p(t) · x̄p(t) (2.21)

Ac(t) � w̄c(t) · x̄c(t) (2.22)

2.5 Artificial endocrine systems 51

where Ap(t) is the activation of the hormone release for proximity at time t, w̄p(t) is
the vector of weights for proximity at time t, x̄p(t) is the vector of proximity inputs at

time t, and Ac(t), w̄c(t) and x̄c(t) are similar values for collision activation, weights

and inputs respectively. In the case of the collision sensors, the weight vector is set

to unity so this becomes

Ap(t) � w̄p(t) · x̄p(t) (2.23)

Ac(t) �
∑

i

x̄c i(t) (2.24)

A hormone is released proportionally to these values, with release rate Rg(t) and a

constant stimulation rate αg :

Rg(t) � αg(Ap(t) + Ac(t)) (2.25)

The aim is for the network to learn an association between proximity and collision.

To achieve this, the weights associated with the proximity sensor in releasing the

hormone are modified by adding a delta each tick:

w̄p(t + 1) � w̄p(t) + ∆w̄p(t) (2.26)

Several learning rules to produce∆w̄p(t)were developed empirically and compared.

2.5.6.5 The neuroendocrine hexapod

Henley and Barnes [118] applied the NTS to a hexapod walker robot to modulate

leg lift height for obstacle navigation. This was achieved by performing forward

kinematics to determine the current foot position and feeding this into a NTS along

with the desired leg height. The network was trained with back-propagation to

learn the inverse kinematics required to produce the required joint angles, and was

modulated by a hormone derived from sensor data, as shown in Fig. 2.7. They note

Forward
kinematics

Network
Motion
controller

Leg potentiometer
values (a,b,c)

a

foot
pos.
x,y

Leg
angles
b,c

required z modulation h

Control
data

Figure 2.7: Henley and Barnes’ neurokinetic hexapod limb controller, after

Henley and Barnes [118]. Note that the network input is reduced to two

dimensions: one angle is carried through directly to the output.

52 Chapter 2. Bio-inspired intelligent behaviour

that as the hormone value increased, the non-linearity in the response due to the total

modulation of the network led to undesirable transformations. This was resolved

by selecting hormone sensitivities for particular hormones by hand, thus selectively

modulating only part of the network.

2.5.6.6 Multi robot systems

Endocrine models have been applied to swarm robotics, such as in [203] (see also

Sec. 2.5.7.1). Earlier work includes that ofWalker andWilson [295, 296], who evolved

a endocrine-based (without anANN) system toperform task selection amonghetero-

geneous robots, which also employed an Evolution Strategy [25] for on-line learning

while the system was running. This was based on work by Mendao [194], which

used a similar system to perform action selection in a single robot. Each hormone

in the system represents a task, and the hormone with the highest value determines

which task is performed. Other behaviours are suppressed.

A key feature of this system is that the hormone is pooled in the notional “gland”

before release, leading to a delay between its initial release and its influence on the

system. Pooling permits modifications to the hormone before it actually becomes

active, such as reducing the pooled quantity when another robot indicates it is

performing a task. In Mendao’s original system, in which the hormone modulated

an ANN in a similar way to the NTS, pooling led to smoother behaviour.

In work by Timmis, Murray and Neal [278], a swarm of robots each employed

multiple NTS networks with each network responsible for one of 11 behaviours, in

order to perform a rubbish collection and disposal task. Each network was sens-

itive to a single hormone, which represented the behaviour. The network outputs

were summed to arbitrate the behaviours. Weights and sensitivities in the networks

were determined by both hand-coding and training with back-propagation. Hor-

mone release values were calculated from sensor data by a programmed function.

This systemworkedwell, demonstrating interesting emergent swarm behaviour and

benefiting from the temporal dynamics of the AES.

2.5.7 Other systems

2.5.7.1 SYMBRION and REPLICATOR

SYMBRIONandREPLICATOR [147]were twoEU fundedprojects in swarmrobotics,

building “symbiotic” organisms from smaller units using evolutionary methods,

inspired by how some fungi and bacteria can sometimes conglomerate into multi-

2.5 Artificial endocrine systems 53

cellular organisms to increase their survival (such as the dictyostelid slime moulds,

which group to form “slugs” and then fruiting bodies when food is scarce).

The projects test a number of different approaches to the problem, including

evolvableANNsandartificial immune systems (AISs), but theprimary citation above

(which is essentially a preliminary note written before the experiments) describes

a Hormone-Driven Robot Controller (HDRC). In this system, a genome contains a

set of rules for the secretion, degradation and diffusion to other nodes of hormones

which can alter sensor sensitivities, modulate controllers, trigger activities and even

activate/deactivate subcontrollers. They note that hormones can generate homeo-

stasis, aid adaptivity, create target-seeking behaviours (in the case of short term,

fast-acting hormones), and generate temporal behaviours. Hormones diffuse both

within the robots (e.g. between sensors and actuators) and between the robots.

An initial version, dubbed AHHS (Artificial Homeostatic Hormone System) ap-

pears in [267], while an enhanced version with the genome modified in an attempt

to smooth the adaptive landscape is described in [110, 109, 247]. Each hormone

has parameters for diffusion, decay and saturation encoded into one chromosome,

with rules for how the hormone influences actuators and is secreted by sensors (and

other hormones) in another chromosome. The AHHS2 differs from AHHS1 in that

AHHS2 rules are more complex, allowing the combination of several sub-rules in

a weighted manner. AHHS systems are not neuromodulatory – the behaviour is

generated directly from the actions of hormones on the actuators.

As part of this project, Thenius, Zahadat and Schmickl [277], inspired by Fellous,

have constructed EMANN: a complex RNN with hormonal regulation of all node

functions and with all nodes capable of releasing hormone, evolved by a genetic

algorithm. Later a rather simpler system instantiated in an evolving swarm of

Braitenberg vehicles showed better performance than a hormone-free ANN in a

feeding and reproduction task [203].

2.5.7.2 Artificial Hormone Network

TheAHNofTeerakittikul, Tempesti andTyrrell [276] uses a subsumptionarchitecture

whose locomotor outputs aremodulated by a feed-forward network of three artificial

hormones. These are implemented with fairly complex gland modules, which can

pre-process their input signals in various ways. The robot on which the system is

deployed isdesigned tonavigate a complex environment, such as that found in rescue

scenarios, and the modulation assists by slowing down the robot through areas

where it is at risk of tipping over. The release of the first two hormones is stimulated

when complex environments are detected through infrared and accelerometer. One

54 Chapter 2. Bio-inspired intelligent behaviour

of the hormones is designed to detect conflicts in pitch data, resolving them in favour

of the infrared hormone by changing their relative weights in a summation. In his

later PhD thesis, Teerakittikul expands this system to detect wheel faults with more

hormones, and ultimately uses Cartesian genetic programming to evolve an AHN

to perform fault detection and amelioration [275].

2.5.7.3 Digital hormone model

The “digital hormonemodel” of Shen, Chuong andWill [256] is a cellular automaton

in which the cells modify their behaviour based on hormones emitted according to

Turing’s reaction/diffusion equations [283], which permit hormones to activate and

suppress other hormones. Shen’s model is stochastic in that cells select their actions

using a function based on connection data, sensor data, hormone concentrations

and local state in a probabilistic manner. In a swarm robotics setting, the hormones

diffuse through the continuous 2D spacewithinwhich the robotsmove, with concen-

trations calculated and modified by each robot [255]. With this system, the robots

can collectively find and surround an object, evenly cover an area and surmount

obstacles. It has been used to construct a search map for multiple UAVs in a wide

area search task [219].

2.6 Artificial immune systems
Artificial immune systems (AISs) [61] are based on models of the multiple mech-

anisms of the biological immune system, which are are a particularly rich seam for

biologically inspired adaptivity. The immune system defends against pathogens

(typically bacteria and viruses) and can learn to attack new pathogens it encounters.

Behaviour of this type is useful in adaptivity — it permits the detection of novelty

and in a wider sense is useful in pattern detection and recognition [89].

The immune system can be divided into two groups of components: those in

the innate immune system, which all organisms have and which defend from a set

of pathogens coded for in DNA; and those of the acquired immune system, which

only vertebrates have and which can learn to recognise new pathogens. The innate

system is relatively simple: the relevant cells have receptors which recognise known

pathogens, and cause them to both attack and recruit other cells. One particular

aspect of the innate immune response — cytokine release — has been used by the

author to manage motor load across a six-wheeled robot [87]. This shares many

features with the endocrine system (discussed in Sec. 2.5): diffusing substances

modelled by leaky integrators which modulate behaviour.

2.6 Artificial immune systems 55

The adaptive immune system is far more complex, and still only partially un-

derstood with several competing models of how it functions. Essentially, however,

the mechanism relies on substances expressed by pathogens called antigens, and the

constant evolution of antibodies, immune system substances which match antigens.

AISs are typically based on these models, and there are as many different forms of

AIS as there are competing theories.

The antibodies are generated constantly via a process known as clonal selec-
tion [44]. In “safe” areas of the body, candidate antibody-producing cells reproduce

with extremely high mutation rates. Those which produce antibodies which match

anything in this safe area (i.e. anything which belongs to the host) are eliminated,

along which those which fail to function. The surviving cells circulate through the

body. If an antibody-carrying cell binds to an antigen, it will trigger the immune

response, proliferate, and become a larger part of the population which will itself

undergo the same evolutionary process [89]. These cells can be very long-lived, so

that a “memory” of previous antigen encounters is constantly circulating. This is a

case in which a phylogenetic system (in which an entire population learns) is run-

ning inside an ontogenetic system (in which a single organism learns). Of course,

this system is running inside another phylogenetic system: the population of the

organisms which have the immune system.

This is very much a broad outline. The immune system is extremely complex

andonly partially understood, and can be viewed from several different perspectives.

For example, the influential idiotypic network theory of Jerne [142] describes possible

internal interactions of the immune system: binding not only to external antigens but

also to itself. While this theory was initially well received and became a dominant

paradigm for at least a decade [19], it lost prominence due to a lack of evidence [103]

and the rise of competing theories. Certain aspects have been incorporated into the

mainstream of immunological thinking, however, and artificial models of immune

networks inspired by the theory have been successfully developed. Indeed, the first

artificial immune systems were based on a dynamical systems model of idiotypic

network theory [83], which is the most widely used artificial immune model in

robotics [228]. Similarly influential[3], the danger theory of Matzinger [188] has also

become mired in controversy [143, 55].

Aickelin, Dasgupta and Gu [4] provide a useful overview of artificial immune

systems and describe two possible applications: intrusion detection and collaborat-

ive filtering (such as the recommender systems used by online shopping sites). In

robotics, Raza and Fernandez [228] describe three AIS paradigms: clonal selection,

56 Chapter 2. Bio-inspired intelligent behaviour

idiotypic networks, anddanger theory [188]; anddiscuss various robotic applications

from navigation and goal arbitration to gait acquisition.

Raza and Fernandez [228] note that most AIS applications require auxiliary com-

ponents from other paradigms (such as reinforcement learning, fuzzy logic and

genetic algorithms). This latter they suggest is particularly a problem: some re-

searchers use genetic algorithms to evolve their “antibodies”, leaving the question of

how “pure” such an AIS might be. Also, most of these systems use the controversial

idiotypic network theory: if this theory is invalid, are they “artificial immune sys-

tems?” However, as we have seen, so-called “artificial neural networks” are very far

removed from how biological neural networks are now thought to function and still

produce valid work. Thus most AISs are biologically inspired, but not necessarily

bio-mimetic.

2.7 Summary
The viewpoint of this review has been limited largely to sub-symbolic, biologically

inspired techniques for achieving adaptivity commonly used in robotic applications,

because the artificial neuroendocrine system developed in the thesis is inspired by

these varied approaches; also, in the future it may be possible to integrate such

a system into an adaptive synthesis such as that suggested by the “Breach” system

ofNeal and Timmis [208]. There is an additional focus on the field of action selection,

because the problem of autonomous behaviour is typically cast as an action selection

problem.

There are, of course, a large number of other bio-inspired adaptive algorithms.

These include phylogenetic methods, which reduce the mean of some error function

across an entire population through a number of generations. Perhaps the most

widely known are the evolutionary algorithms, which themselves have many vari-

ants from Evolution Strategies [25] to the genetic algorithm of Holland [125]. Other

examples of algorithms which involve reducing error over a population include the

loosely labelled “swarm intelligence” [28] methods. These are inspired by the col-

lective behaviour of insects, birds and fish, and typically involve a large number of

individuals which exchange information as they move through the solution space.

Particle swarm optimisation [74] and ant colony optimisation [67] are included in

this class. The latter has many variants, but all are based on the idea of “stigmergy”

— agents which leave traces in the environment to influence other agents.

The work in this thesis will concentrate on biologically inspired methods for

achieving homeostatic adaptation, but it is useful to briefly look outside this narrow

2.7 Summary 57

area. For example, the field of reinforcement learning can provide methods which

can be used to construct adaptive systems. This typically uses probabilistic and other

mathematical methods to learn which of a given set of behaviours lead to “good”

outcomes, and to avoid those which lead to “bad” outcomes, and requires solving

the “temporal credit assignment” problem [272]: how to determine which action

led to a particular outcome when several actions may have intervened. Examples

of classical reinforcement learning include the various temporal difference (TD)

learning techniques [271] which use dynamic programming and other methods to

update the values of actions as the system runs; and direct policy search, which

searches the policy space directly for solutions [64]: a “policy” is a method of

determining which action to take in which state, and is often implemented as a map

giving the probability of each action in each state. As such, direct policy search covers

a huge range of techniques in itself, from stochastic techniques such as evolutionary

algorithms to gradient-based techniques. Q-learning [297] is a temporal difference

method which has been implemented with modifications in a deep convolutional

neural network with some success [198].

We have narrowed our study down to three biological subsystems which can be

used to build adaptive systems:

• artificial neural networks, which typically work on very short timescales;

• artificial endocrine systems, which provide a medium to long term temporal

capacity, and are often loosely coupled with neural networks by some neur-

omodulatory model;

• and artificial immune systems, which can provide a on-line learning facility

for (in particular) negative reinforcement.

Of these three systems, only the first has a well-understood non-stochastic training

paradigm (gradient descent through the back-propagation of errors)while the others

are typically trained (if trained at all, in the case of AES) through phylogenetic

stochastic techniques such as evolutionary algorithms. The primary aim of this

thesis is to demonstrate and explore a gradient-based training algorithm for a simple

neuromodulatory AES, initially for supervised learning.

58 Chapter 2. Bio-inspired intelligent behaviour

Part II

The UESMANN Network

59

Chapter 3

Introducing UESMANN

The network this thesis will investigate is called UESMANN1. At its heart, it is a

simple MLP of the kind used for supervised learning for many decades, but with

the addition of a single neuromodulator. The starting point for UESMANN is the

Neal/Timmis model of neuromodulation — while there are several variations of

this model, the one used most in practice for a single hormone is given in Eq. 2.15.

This will run into problems when h � 0 (i.e. the hormone has completely decayed)

because the resulting activation will always be zero. Therefore Sauzé and Neal

[242] [244, 243] modify this equation to

y � σ

(
b +

∑
i

wi xi(1 + h)si

)
(3.1)

for a single node, where y is the output or activation, σ is the activation function,

b is a bias, wi are the weights for each input xi , h is the modulator (hormone)

concentration, and si is the sensitivity to hormone of each weight. The activation

function chosen is the logistic sigmoid,

σ(x) � 1

1 + e−x . (2.7 revisited)

This system is shown in Fig. 3.1a. In the node specified in Eq. 3.1, the weights have

their nominal or unmodulated values at h � 0, and may be inhibitory or excitatory

with positive or negative values of si respectively. The goal is to have a uniform

excitatory sensitivity to hormone for all weights, so this can be removed giving us

1UniformlyExcitatory SwitchingModulatoryArtificialNeuralNetwork, pronounced“WES-mun.”

61

62 Chapter 3. Introducing UESMANN

the core UESMANN function

y � σ

(
b +

∑
i

wi xi(1 + h)
)
, (3.2)

as shown in Fig. 3.1b, alongside the Neal/Timmis system. As can be seen, UES-

MANN omits the hormone sensitivities.

x

x

x x sa2sa1

x x

sb2sb1

w1

w2

ha+1

hb+1

(a) A Neal/Timmis system of the form given

Eq. 3.1, with two hormones ha and hb . Only

twoweights are shown, w1 and w2. The sens-

itivities of the weights to ha are sa1 and sa2,

while those to hb are sb1
and sb2

.

h+1

x

x

x

x
x

x

(b) The UESMANN system with a modulat-

or/hormone h, showing the entire network

with all weights.

Figure 3.1: The Neal/Timmis AES of Sauzé and Neal [242], compared with

the UESMANN system. In the former figure only two weights are shown for

simplicity. In both figures, a circle with a thin border represents an input, a

circle with a thick border represents a node, a solid edge represents a weight,

and ⊗ represents multiplication. Dotted edges represent the influence of the

modulator/hormone.

3.1 Can UESMANN represent all boolean pairings?
Much initial work in MLPs looked at whether networks can be trained to perform

binary boolean functions, due to their simplicity and the tractability of the resulting

networks to analysis. For example, [237] considers the exclusive-OR problem to

be the “classic problem requiring hidden units.” Additionally, the small number

of parameters for networks which implement these functions, as well as the small

3.1 Can UESMANN represent all boolean pairings? 63

domains and ranges of the functions themselves, permits a detailed exploration of

the solution space.

Therefore, rather than immediately attempting to solve more complex classi-

fication and control problems, it is worth initially evaluating the capabilities of

UESMANN in the boolean functions. This is possible without a training algorithm

because of the functions’ simplicity: Monte Carlo methods can be used instead. This

will give an indication of the power of the network architecture.

The key question for boolean nodes is “can a UESMANN network represent any

pairing of boolean functions in the same parameter dimensionality as an equivalent

MLP?” Here, a “pairing” means two functions f , g such that the network performs

f (x , y)when h � 0 and g(x , y)when h � 1.

To answer this question, we first need to ask which boolean pairings can be

represented in a single node. This was done both experimentally with Monte Carlo

simulations and analytically.

3.1.1 Monte Carlo simulations of single nodes performing boolean
functions

In this experiment, 10
11

random nodes were generated with weights and biases in

the range [−40, 40] (chosen arbitrarily; runs performed with [−10, 10] and [−2, 2]
performed similarly). The pseudo-random number generator. (PRNG) used was a

64-bit Mersenne Twister (the C++ Standard Template Library mt19937_64 random

number engine), which has a good compromise between performance, statistical

randomness and period [162]. The resulting nodes were analysed to determine

which functions they perform at h � 0 and h � 1, by feeding them all 4 possible

inputs x , y ∈ {0, 1} and thresholding the output at 0.5. Thus for inputs x , y ∈ {0, 1}
each node’s thresholded activation athresh is given by

athresh �

0 if u(x , y , h) < 0.5

1 if u(x , y , h) ≥ 0.5
,where (3.3)

u(x , y , h) � σ
(
b + (h + 1)(w1x + w2 y)

)
(3.4)

and thus

athresh � H
(
b + (h + 1)(w1x + w2 y)

)
, (3.5)

64 Chapter 3. Introducing UESMANN

where H is the Heaviside step function

H(n) �

0 if n < 0

1 if n ≥ 0

. (3.6)

For all networks, a truth table was generated by inspecting athresh for all possible

inputs at h � 0 and h � 1, and the generated function pairing obtained. This was

used to maintain a count of the function pairings, with the results shown in Fig. 3.2.

The white areas without squares show which function pairings are not represented

in the output, while the remaining functions fall into several “bands” which vary

from 19% of the total count (for the very frequent T → T, F→ F pairings2) down to

0.52% for pairings typically involving conjunctions (such as x ∧ y and ¬(x ∧ y)). A

Function at h=0

Fu
nc

tio
n

at
 h

=1

f
and

x and !y
x

!x and y
y

xor
or

nor
xnor
not y

x or !y
not x

!x or y
nand

t

f
an

d
x

an
d

!y x
!x

 a
nd

 y y
xo

r or no
r

xn
or

no
t y

x
or

 !y
no

t x
!x

 o
r y

na
nd

t

8.72

8.89

9.07

9.24

9.41

9.59

9.76

9.94

10.1

10.3
lo

g1
0(

co
un

t)

Figure 3.2: lo g10 of the counts of pairings of binary boolean functions

produced by 10
11

random random UESMANN nodes, when the output is

thresholded at 0.5. The size and tint of each square gives the log
10

of the

count. Where there is no square, the count is zero: these are function pairings

which never appear. Note that the square size and tint are scaled to the range

seen in the data once the zeroes have been removed.

full table of the non-zero pairing frequencies is given in Table 3.1, using the symbol

convention on page xxi.

The plot has several notable features. Firstly, the diagonal is strongly represented:

it appears easier to transition from a function to itself (in the sense that the solution

2The→ indicates a transition under modulator, with the left-hand side referring to the h � 0 case

and the right-hand side referring to the h � 1 case, as described on page xxi.

3.1 Can UESMANN represent all boolean pairings? 65

space for these pairings is larger), although some self-pairings are not represented:

x∧ y, ¬(x∧ y), x ⊕ y and ¬(x ⊕ y) cannot transition to themselves. The latter pair are

unrepresented because they are not linearly separable, and so cannot be performed

in a single node. The frequencies of self-pairings are all larger than the frequencies

of other pairings.

Secondly, pairings involving T or F as the h � 0 function are also strongly

represented— but not in the h � 1 position; these appear to be impossible except for

the self-pairing cases. Thus there is a qualitative difference between the functions

which can be learned at h � 0 and h � 1. This implies that the ordering of the

functions is important: it may be possible to represent f → g but not g → f .
Finally, the plot shows a rotational symmetry. Due to the ordering of the functions

along the axes, this shows that the probability of a given function pair is equal to

the probability of those functions negated: P(f , g) � P(¬ f ,¬g) where P(f , g) is the
probability of the given pairing. This is because negating the weights and biases

in any perceptron node with a logistic sigmoid activation, including a UESMANN

node, will negate the output of the node’s pre-activation function, which will negate

the boolean thresholded output (since σ(−x) � 1 − σ(x)).
This plot shows that UESMANN is able to perform only a small subset of the

boolean pairings in a single node. Naturally any pairing involving the exclusive-OR

function or its negation will be impossible, since these are non-linearly separable,

but there are still a large number of pairings unaccounted for. The next two sections

will provide algebraic and geometric justifications for these.

Despite the low number of pairings here, a network containing a single hidden

layer of UESMANN nodes may be able to combine these to perform most (if not all)

boolean pairings: consider that without modulation a hidden layer of two nodes

(if we do not permit connections to skip a layer) is required to perform any non-

separable binary boolean function[237]. We will investigate networks with hidden

layers in Sec. 3.1.4.

66 Chapter 3. Introducing UESMANN

Table 3.1: Frequencies of boolean function pairings performed in a Monte

Carlo simulation of 10
11

random UESMANN units inputs x , y and weights

and biases in [−40, 40]. Rules are given between each band of frequencies.

u(x , y , 0) u(x , y , 1) percentage of total

T T 19.27 %

F F 19.27 %

¬(x ∨ y) ¬(x ∨ y) 4.17 %

x ∨ y x ∨ y 4.17 %

¬y ¬y 3.13 %

¬x ∧ y ¬x ∧ y 3.13 %

x x 3.13 %

y y 3.12 %

x ∨ ¬y x ∨ ¬y 3.12 %

¬x ¬x 3.12 %

¬x ∨ y ¬x ∨ y 3.12 %

x ∧ ¬y x ∧ ¬y 3.12 %

T ¬x ∨ y 2.60 %

F x ∧ ¬y 2.60 %

T x ∨ ¬y 2.60 %

F ¬x ∧ y 2.60 %

¬y ¬(x ∨ y) 1.04 %

x ∧ y x ∨ y 1.04 %

¬x ∨ y ¬x 1.04 %

F y 1.04 %

y x ∨ y 1.04 %

¬x ¬(x ∨ y) 1.04 %

F x 1.04 %

x x ∨ y 1.04 %

x ∧ ¬y x 1.04 %

¬(x ∧ y) ¬(x ∨ y) 1.04 %

x ∨ ¬y ¬y 1.04 %

¬x ∧ y y 1.04 %

T ¬x 1.04 %

T ¬y 1.04 %

x ∧ y y 0.52 %

¬(x ∧ y) ¬y 0.52 %

¬(x ∧ y) ¬x 0.52 %

T ¬(x ∧ y) 0.52 %

F x ∧ y 0.52 %

x ∧ y x 0.52 %

3.1 Can UESMANN represent all boolean pairings? 67

3.1.2 Single-node UESMANN as a system of inequalities

We wish to find those pairings of boolean functions which are possible in a single

UESMANN node, given a Heaviside step activation function (which is essentially

a thresholded form of the logistic sigmoid3). Returning to Eq. 3.5 and given that

f (x , y) � u(x , y , 0) and g(x , y) � u(x , y , 1), we obtain the two equations

f (x , y) � H(b + w1x + w2 y) (3.7)

g(x , y) � H(b + 2w1x + 2w2 y). (3.8)

Using these, we can construct a set of inequalities for each function and their values,

given the truth tables for f and g. Consider the case for both inputs zero, i.e. for

f (0, 0):

f (x , y) � H(b + w1x + w2 y) (Eq. 3.7) (3.9)

f (0, 0) � H(b + w10 + w20) (subst. x � 0, y � 0) (3.10)

� H(b). (3.11)

If we substitute f (0, 0) � 0 we can find the conditions of weights and bias under

which the output is zero when both inputs are zero for function f (i.e. h � 0):

H(b) � f (0, 0) (Eq. 3.11) (3.12)

H(b) � 0 (subst. f (x , y) � 0) (3.13)

b < 0 (Heaviside step function, Eq. 3.6). (3.14)

Similarly for f (0, 0) � 1:

H(b) � f (0, 0) (Eq. 3.11) (3.15)

H(b) � 1 (subst. f (x , y) � 1) (3.16)

b ≥ 0 (Heaviside step function, Eq. 3.6). (3.17)

3Note also that H(x) � limk→∞
1

1+ekx

68 Chapter 3. Introducing UESMANN

Thus we can see that the sign of the bias b determines the value of f (0, 0). Similarly

for g, we obtain

g(x , y) � H(b + 2w1x + 2w2x) (Eq. 3.8) (3.18)

g(0, 0) � H(b) (subst. x � 0, y � 0) (3.19)

� f (0, 0), (3.20)

showing that f (0, 0) � g(0, 0) for all pairings — boolean UESMANN nodes cannot

change their output under modulation when both inputs are false (under the chosen

representation where 0 represents falsehood). Therefore we can write

f (0, 0) � 0 ⇐⇒ g(0, 0) � 0 ⇐⇒ b < 0 (from Eqs. 3.14 and 3.20) (3.21)

f (0, 0) � 1 ⇐⇒ g(0, 0) � 1 ⇐⇒ b ≥ 0 (from Eqs. 3.17 and 3.20). (3.22)

Now consider the case where f (1, 0) � 0. Here we get

f (x , y) � H(b + w1x + w2 y) (Eq. 3.7) (3.23)

0 � H(b + w1) (subst. x � 1, y � 0, f (x , y) � 0) (3.24)

H(b + w1) � 0 (3.25)

b + w1 <0 (Heaviside step function, Eq. 3.6) (3.26)

w1 < − b. (3.27)

Similarly, f (1, 0) � 1 will give

H(b + w1) � 1 (Eq. 3.25, changing 0 to 1) (3.28)

b + w1 ≥0 (3.29)

w1 ≥ − b. (3.30)

Therefore

f (1, 0) � 1 ⇐⇒ w1 ≥ −b (3.31)

and

f (1, 0) � 0 ⇐⇒ w1 < −b. (3.32)

Repeating the argument of Eqs. 3.23 to 3.30 for the f (0, 1) case, it is easy to show that

f (0, 1) � 1 ⇐⇒ w2 ≥ −b , (3.33)

f (0, 1) � 0 ⇐⇒ w2 < −b. (3.34)

3.1 Can UESMANN represent all boolean pairings? 69

In the f (1, 1) � 0 case,

f (x , y) � H(b + w1x + w2 y) (Eq. 3.7) (3.35)

0 � H(b + w1 + w2) (subst.) (3.36)

H(b + w1 + w2) � 0 (3.37)

b + w1 + w2 <0 (Heaviside step) (3.38)

w1 + w2 < − b. (3.39)

It follows that for f (1, 1) � 1,

H(b + w1 + w2) � 1 (Eq. 3.37, changing 0 to 1) (3.40)

b + w1 + w2 ≥0 (Heaviside step) (3.41)

w1 + w2 ≥ − b. (3.42)

So

f (1, 1) � 0 ⇐⇒ w1 + w2 < −b , (3.43)

f (1, 1) � 1 ⇐⇒ w1 + w2 ≥ −b. (3.44)

We can reiterate these arguments for the g functions. We have already dealt with

g(0, 0) in Eqs. 3.21 and 3.22 above. For g(1, 0) � 0,

g(x , y) � H(b + 2w1x + 2w2 y) (Eq. 3.8) (3.45)

0 � H(b + 2w1) (subst. x � 1, y � 0, g(x , y) � 0) (3.46)

H(b + 2w1) � 0 (3.47)

b + 2w1 <0 (Heaviside step) (3.48)

2w1 < − b (3.49)

w1 < − b/2. (3.50)

Similarly, g(1, 0) � 1 will give

H(b + 2w1) � 1 (Eq. 3.47, changing 0 to 1) (3.51)

b + 2w1 ≥0 (Heaviside step) (3.52)

2w1 ≥ − b (3.53)

w1 ≥ − b/2 (3.54)

70 Chapter 3. Introducing UESMANN

which gives us

g(1, 0) � 0 ⇐⇒ w1 < −b/2, (3.55)

g(1, 0) � 1 ⇐⇒ w1 ≥ −b/2. (3.56)

Again we can find the g(0, 1) cases with a similar argument, giving

g(0, 1) � 0 ⇐⇒ w2 < −b/2, (3.57)

g(0, 1) � 1 ⇐⇒ w2 ≥ −b/2. (3.58)

Finally, the g(1, 1) cases can be dealt with. For g(1, 1) � 0,

g(x , y) � H(b + 2w1x + 2w2 y) (Eq. 3.8) (3.59)

0 � H(b + 2w1 + 2w2) (subst.) (3.60)

H(b + 2w1 + 2w2) � 0 (3.61)

b + 2w1 + 2w2 <0 (Heaviside step) (3.62)

w1 + w2 < − b/2, (3.63)

and for g(1, 1) � 1,

H(b + 2w1 + 2w2) � 1 (Eq. 3.61, changing 0 to 1) (3.64)

b + 2w1 + 2w2 ≥1 (Heaviside step) (3.65)

w1 + w2 ≥ − b/2. (3.66)

These give us

g(1, 1) � 0 ⇐⇒ w1 + w2 < −b/2, (3.67)

g(1, 1) � 1 ⇐⇒ w1 + w2 ≥ −b/2. (3.68)

We can now construct a set of inequalities for UESMANN boolean nodes which

impose conditions on the values of b , w1 and w2 given known values in the truth

tables for f and g. These are shown in Table 3.2. We see that although there are 16

inequalities in this set, the inequalities for f (0, 0) and g(0, 0) are the same, leading to

a solution space separated by seven planes. These are shown in Fig. 3.3, plotted as

2D lines by using the ratio of weight to bias magnitude. At b � 0, pairs of the planes

intersect to give the separating lines w1 � 0, w2 � 0 and w2 � −w1.

The truth tables for f and g each contain four entries. Each of these can be

translated into an inequality using Table 3.2, resulting in eight inequalities (four for

3.1 Can UESMANN represent all boolean pairings? 71

Table 3.2: Function output to inequality mapping for UESMANN, showing

how certain outcomes of the f and g functions impose conditions on the

bias and weights in a single node, where f is performed at h � 0 and g is

performed at h � 1.

Function output Inequality Source in text

f (0, 0) � 0 b < 0 Eq. 3.21

f (0, 0) � 1 b ≥ 0 Eq. 3.22

f (1, 0) � 0 w1 < −b Eq. 3.32

f (1, 0) � 1 w1 ≥ −b Eq. 3.31

f (0, 1) � 0 w2 < −b Eq. 3.34

f (0, 1) � 1 w2 ≥ −b Eq. 3.33

f (1, 1) � 0 w1 + w2 < −b Eq. 3.43

f (1, 1) � 1 w1 + w2 ≥ −b Eq. 3.44

g(0, 0) � 0 b < 0 Eq. 3.21

g(0, 0) � 1 b ≥ 0 Eq. 3.22

g(1, 0) � 0 w1 < −b/2 Eq. 3.55

g(1, 0) � 1 w1 ≥ −b/2 Eq. 3.56

g(0, 1) � 0 w2 < −b/2 Eq. 3.57

g(0, 1) � 1 w2 ≥ −b/2 Eq. 3.58

g(1, 1) � 0 w1 + w2 < −b/2 Eq. 3.67

g(1, 1) � 1 w1 + w2 ≥ −b/2 Eq. 3.68

 0

0 0.5 1-0.5-1

-0.5

0.5

1

-1

(a) b < 0

0

1

-1

0 1-1

(b) b � 0

 0

0 0.5 1-0.5-1

-0.5

0.5

1

-1

(c) b ≥ 0

Figure 3.3: The separating planes of the inequalities in Table 3.2, shown as

two plots of weight against bias magnitude, separately for b < 0, b � 0 and

b ≥ 0. The seventh plane is b � 0. In Fig 3.3c the example region discussed in

the text for the pairing ¬(x ∧ y) → ¬y is highlighted in grey, while Fig 3.3a

highlights the example region discussed for the pairing x → x.

f and four for g). Thus any putative pairing f → g can be stated as a system of

eight inequalities. If these cannot be satisfied, a UESMANN node cannot represent

the pairing. Consider, for example, the inequalities involving both inputs at zero,

Eqs. 3.21 and 3.22. Since b ≥ 0 and b < 0 is a contradiction, a single UESMANN

72 Chapter 3. Introducing UESMANN

Table 3.3: Truth table for pairing ¬(x∧ y) → ¬y, with the associated inequal-

ities from Table 3.2.

x y f (x , y) � ¬(x ∧ y) g(x , y) � ¬y Inequality for f Inequality for g

0 0 1 1 b ≥ 0 b ≥ 0

0 1 1 0 w1 ≥ −b w1 ≥ −b/2
1 0 1 1 w2 ≥ −b w2 < −b/2
1 1 0 0 w1 + w2 < −b w1 + w2 < −b/2

node cannot represent a function pairing in which the output changes value while

the inputs remain zero, such as x → ¬x or y → T. As another example, the pairing

¬(x ∧ y) → ¬y has the truth table given in Table 3.3, shown with the inequalities

derived by looking up each entry in the table in Table 3.2. Thus any putative

boolean UESMANN node which performs ¬(x ∧ y) → ¬y must satisfy the system

of simultaneous inequalities given in Eq. 3.69.

b ≥ 0

b ≥ 0

w1 ≥ −b

w1 ≥ −b/2
w2 ≥ −b

w2 < −b/2
w1 + w2 < −b

w1 + w2 < −b/2

. (3.69)

Since this system contains no contradiction, the pairing will have a solution, which

is shown in Fig 3.3c.

Given Table 3.2, several approaches can be taken to find the possible pairings. We

can find contradictions within these equations, each of which will eliminate a set of

potential outputs. One example has already been given: (b ≥ 0)∧ (b < 0) is a contra-
diction which eliminates cases where f (0, 0) , g(0, 0). However, given the number

of inequalities this will involve a large number of contradictions. Alternatively, we

could look at the consequences of conjunctions which are not contradictions: for

example,

(b ≥ 0) ∧ (w1 ≥ −b/2) �⇒ w1 ≥ −b (3.70)

(f (0, 0) � 1 ∨ g(0, 0) � 1) ∧ g(1, 0) � 1 �⇒ f (1, 0) � 1 (from Table 3.2). (3.71)

3.1 Can UESMANN represent all boolean pairings? 73

While this approachmight tell us interesting things about the system, arriving at the

set of permitted pairings would be tedious. This single boolean node system itself

is not important — what is important is what the node can do, which pairings are

permitted. Instead, we shall simply analyse the pairings performed by each region

of the solution space when divided by the separating planes shown in Fig. 3.3, which

will give an exhaustive list of the permitted pairings. This is straightforward: for

each region, write down the inequalities which apply and calculate the truth tables.

Consider, for example, the region

b < 0 ∧ (w2 < −b/2) ∧ (w1 + w2 ≥ −b/2) ∧ (w1 > −b), (3.72)

which is marked on the far right of Fig. 3.3a. To get the full truth tables for f and

g, we need the full system of seven inequalities (four from Eq. 3.72, and three less

constraining inequalities), which can be found by visual inspection of Fig. 3.3a. There

are seven and not eight inequalities because the b < 0 or b ≥ 0 inequality provides

two entries in the truth table (Eq. 3.20). With the truth table entries they provide

(from Table 3.2) they are:

b < 0 �⇒ f (0, 0) � 0 ∧ g(0, 0) � 0

w1 ≥ −b �⇒ f (1, 0) � 1

w1 ≥ −b/2 �⇒ g(1, 0) � 1

w2 < −b �⇒ f (0, 1) � 0

w2 < −b/2 �⇒ g(0, 1) � 0

w1 + w2 ≥ −b �⇒ f (1, 1) � 1

w1 + w2 ≥ −b/2 �⇒ g(1, 1) � 1

(3.73)

This gives the complete truth table shown in Table 3.4, which shows the pairing

x → x. This process yields the map of possible pairings in Fig. 3.4. We can then

Table 3.4: Truth table for the system of simultaneous equations in Eq. 3.73.

x y f (x , y) g(x , y)
0 0 0 0

0 1 0 0

1 0 1 1

1 1 1 1

mark the generated functions on a grid similar to that in Fig. 3.2, producing Fig 3.5,

which shows an identical pattern to Fig. 3.2 and confirms those results. Additionally,

74 Chapter 3. Introducing UESMANN

the areas occupied by the solutions in Fig. 3.4 are consistent with the experimental

frequencies in Table 3.1 and Fig. 3.2.

0

0 0.5 1-0.5-1

-0.5

0.5

1

-1

(a) b < 0

0

1

-1

0 1-1

(b) b � 0

0

0 0.5 1-0.5-1

-0.5

0.5

1

-1

(c) b ≥ 0

Figure 3.4: Plots of function pairing by weight/bias ratio for negative, zero

and positive biases.

3.1 Can UESMANN represent all boolean pairings? 75

Initial function

F
in

al
 fu

nc
tio

n

f

and

x and !y

x

!x and y

y

xor

or

nor

xnor

not y

x or !y

not x

!x or y

nand

t

f

an
d

x
an

d
!y x

!x
 a

nd
 y y

xo
r or no
r

xn
or

no
t y

x
or

 !y

no
t x

!x
 o

r
y

na
nd

t

Figure 3.5: Possible UESMANN pairings in a single node, demonstrated by

marking those pairings which appear in Fig. 3.4. Compare with Fig. 3.2.

3.1.3 Single-node UESMANN: a geometrical interpretation

It is also possible to view the permitted transitions geometrically, whichmay provide

a more straightforward insight into how the nodes function. Given Eq. 3.5, the

boolean threshold for nodes lies at

b + (h + 1)(w1x + w2 y) � 0 (3.74)

b
h + 1

+ w1x + w2 y � 0 (assuming h > −1) (3.75)

w2 y � −
(

b
h + 1

+ w1x
)

(3.76)

y � −
(

b
(h + 1)w2

+
w1

w2

x
)

(3.77)

and hence the gradient of the threshold is given by −w1

w2

, while the intercept is

given by − b
(h+1)w2

. Thus the gradient of the threshold line remains constant under

76 Chapter 3. Introducing UESMANN

modulation, while the intercept halves as h moves from 0 to 1. More generally, the

modulation halves the bias of the node4.

As a demonstration, a UESMANN node was extracted from the data generated

in Sec. 3.1.1 which performed x ∧ y → x ∨ y (AND to OR). This node has b �

−10.49, w1 � 7.13, w2 � 7.13. Plotting the two thresholds against the inputs gives

Fig. 3.6.

(a) h � 0 (b) h � 1

Figure 3.6: Output of a single UESMANNnode, which performs x∧ y at h � 0

and x ∨ y at h � 1. The threshold (at which the activation function’s output is

0.5) is shown in red. The pair of digits at each corner show the inputs at those

points.

Thus increasing the modulator will always act to decrease the magnitude of the

bias (since h > 0), moving the threshold towards the origin. We can therefore see

why x ∧ y → x ∨ y is possible, but not x ∨ y → x ∧ y: for the latter to occur, the

magnitude of the bias (and the intercept) would have to be increased.

We can now consider the pairings not generated in Table 3.1 and Fig. 3.2 from

a geometric standpoint. For example, the pairing x ∨ y → T is prohibited because

it would require the threshold line to change the sign of its intercept, as shown in

Fig 3.7a. This is equivalent to our earlier contradiction, (b < 0)∧(b ≥ 0). Similarly, the

false function F cannot transition to x ∨ y, because that would require the situation

4Note that this says nothing about the nature of the “transition region” of the output of a sigmoid

node as it rises from 0 to 1; inspection of Eq. 3.2 shows that this region will become narrower and

steeper as the modulator increases (see also Fig. 3.12).

3.1 Can UESMANN represent all boolean pairings? 77

in Fig. 3.7b: the solid h � 1 line would need to cross the (0,0)-(0,1) and (0,0)-(1,0) line

segments to produce x ∨ y, but the dotted line would need to be entirely outside the

box. This is not possible while maintaining the rule that the intercept is halved at

h � 1. This is equivalent to the contradiction

(w1 ≥ −b/2) ∧ (w2 ≥ −b/2) ∧ (w1 + w2 < −b). (3.78)

0,0

0,1

1,0

1,1

OR (h=0)T (h=1)

h=0
intercept

h=1
intercept

+

+

x=0

-0.5 0.0 0.5 1.0 1.5
-0.5

0.0

0.5

1.0

1.5

x

y

(a) x ∨ y → T

0,0

0,1

1,0

1,1
−

−

-0.5 0.0 0.5 1.0 1.5
-0.5

0.0

0.5

1.0

1.5

x

+

+

F (h=0)

OR (h=1)

y

(b) F→ x ∨ y

Figure 3.7: Examples of prohibited pairings shown geometrically. The ar-

rowed dashed lines show the direction of the transition from h � 0 to h � 1.

The other dotted and solid lines show the typical threshold at h � 0 and h � 1

respectively, with− to+ arrows showing the direction of increasing activation

(i.e. on the + side the output is true).

While it is possible to find geometric justifications for all impossible pairings, this

would be redundant given the findings in Sec. 3.1.2. This brief look at the geometry

of the function has, however, shown howUESMANNnodes work. It has also shown

that this simple transition can perform a large enough subset of at least the boolean

functions to be useful. The next section will extend the analysis to 2-2-1 networks

(i.e. networks with 2 hidden nodes).

3.1.4 Networks with a single hidden layer of two nodes

We will now consider whether a UESMANN network with a hidden layer can

represent all 256 possible boolean binary function pairings. First we will consider

which pairings are possible if the three nodes in the network are all simple boolean

nodes, i.e. the outputs of the nodes are thresholded at 0.5. In a true UESMANN

78 Chapter 3. Introducing UESMANN

network, each node performs a function of its two inputs and the modulator R×R×
[0, 1] → R, as given by Eq. 3.4. In Fig. 3.8, the three nodes perform the functions f , g
and h, and each performs a single-node pairing as described in the previous section.

f

g

o

x

y

h

Figure 3.8: A2-2-1UESMANNnetwork, i.e. with two inputs x and y, a hidden
layer of two nodes f and g and a single output node o. The modulator here

is given by h, and its action is shown by the thin arrows.

However, we will consider each node to be completely boolean, B3 → B where

B � {0, 1}. This is equivalent to thresholding each node’s output in the same way as

Eq. 3.5. The output of the entire network is given by

u(x , y ,m) � o(f (x , y , h), g(x , y , h), h) (3.79)

so for any three function pairings f , g , o it is easy to determine the resulting pairing

u. The table in Fig. 3.2 gives the “probability” P(f) (0 or 1) of a function pairing

f (x , y ,m) being representable as a UESMANN node. The probability of a given

function pairing u(x , y ,m) can then be obtained by

P(u) �
∑

u , f ,g ,o∈U

P(f)P(g)P(o)[u � o(f , g)] (3.80)

whereU is the set of all 256 possible functions. The Iverson bracket [· · ·] gives 1when

the predicate inside is true and 0 otherwise [149], and the predicate is the condition

in Eq. 3.79. Performing this calculation gives the result in Fig. 3.9. The probabilities

are all very low with the exception of the T → T and F → F pairings, with many

completely unrepresentable. However, it may be that the missing functions may be

representable by using the hidden layer nodes without thresholding.

In order to test this, another Monte Carlo simulation was performed. Again,

10
11

random data are used, but here the data are representations of 2-2-1 networks

as shown in Fig 3.8. Thus each datum consists of nine floating point values (b , w1

and w2 for each node). The PRNG, floating point ranges and method are otherwise

3.1 Can UESMANN represent all boolean pairings? 79

Initial function

F
in

al
 fu

nc
tio

n

f
and

x and !y
x

!x and y
y

xor
or

nor
xnor
not y

x or !y
not x

!x or y
nand

t

f

an
d

x
an

d
!y x

!x
 a

nd
 y y

xo
r or no
r

xn
or

no
t y

x
or

 !y

no
t x

!x
 o

r
y

na
nd

t

−4.37

−4

−3.63

−3.27

−2.9

−2.53

−2.17

−1.8

−1.43

−1.07

lo
g1

0(
pr

op
or

tio
n)

Figure 3.9: The cumulative probabilities for each putative pairing in a 2-2-1

pure boolean UESMANN system, given the data in Fig 3.2 for single nodes.

For clarity, crossesmark those pairings for which the probability is zero: these

cannot be represented by a UESMANN system with all nodes thresholded.

the same as in Sec. 3.1.1, but note that unlike in the above thresholding only takes

place on the output node to determine the final boolean result of the network. The

resulting function pairing counts are shown in Fig. 3.10.

Note that there are no crossed cells: UESMANN can represent pairings of every

boolean function with 2 hidden nodes, the minimum required to represent any

single boolean function in the same topology [7, Theorem 3.9][261]5. Thus a UES-

MANN network is able to learn any two boolean functions using the same number

of parameters as an MLP which can learn any single boolean. However, note the

log
10

scale of the plot: many of the pairings found are vanishingly rare, while the

majority of the pairings involve the T and F functions. Table 3.5 shows the most

common function groups generated: clearly very many networks generate true or

false (≥ 0.5 or < 0.5) for all inputs at all hormone levels, accounting for 62.5% of the

total. Networks which generate single functions with T or F for the other function

5However, it is possible to represent many, if not all, binary boolean functions in a network with

a single hidden node if connections are permitted to skip layers [237]. We will not deal with such

networks in this thesis.

80 Chapter 3. Introducing UESMANN

Initial function

F
in

al
 fu

nc
tio

n

f
and

x and !y
x

!x and y
y

xor
or

nor
xnor
not y

x or !y
not x

!x or y
nand

t

f

an
d

x
an

d
!y x

!x
 a

nd
 y y

xo
r or no
r

xn
or

no
t y

x
or

 !y

no
t x

!x
 o

r
y

na
nd

t

−10.7

−9.57

−8.43

−7.3

−6.17

−5.04

−3.9

−2.77

−1.64

−0.507

lo
g1

0(
pr

op
or

tio
n)

Figure 3.10: lo g10 of the proportion of pairings of binary boolean functions

produced by 10
11

random UESMANN 2-2-1 networks, when the output node

is thresholded at 0.5. The size and tint of each square gives the log
10

of the

count.

are at 22.78% for both orders (i.e. whether the other function is h � 0 or h � 1 is not

relevant). Networks which generate the same function for both modulator levels,

excluding T and F networks, are 10.19% of the total.

Table 3.5: Subsets of boolean function pairs and their frequency in 10
11

ran-

dom 2-2-1 UESMANN networks.

Type frequency (as % of total)

f � F ∧ g � F 31.14%

f � T ∧ g � T 31.14%

(f � F ∨ g � F) ∧ ¬(f � F ∧ g � F) 11.40%

(f � T ∨ g � T) ∧ ¬(f � T ∧ g � T) 11.40%

(f � g) ∧ ¬(f � T ∨ f � F) 10.62%

Table 3.6 shows those pairingswhich cover a very small region of theweight space

— the frequency here is shown as the actual proportion rather than the percentage,

which would be hard to read for these small values. Values for which the count is

less than 10000 are shown; the next “batch” of networks have counts greater than

3.1 Can UESMANN represent all boolean pairings? 81

40000. A histogram of log
10
(count) for all pairings is shown in Fig. 3.11: note the

bimodal distribution, with a small group of low-frequency pairings, no pairingswith

log
10
(count) ≈ 2, and many with 5 < log

10
(count) < 9.

Table 3.6: Rare functions (count less than 10000) in 10
11

random UESMANN

networks, with how often they occur and what fraction of the overall network

count they comprise.

Type count frequency (as proportion of total)

¬(x ⊕ y) → ¬x ∧ y 3500 3.5 × 10
−8

x ⊕ y → x ∨ ¬y 3462 3.5 × 10
−8

¬(x ⊕ y) → x ∧ ¬y 3437 3.4 × 10
−8

x ⊕ y → ¬x ∨ y 3408 3.4 × 10
−8

x ⊕ y → ¬(x ⊕ y) 84 8.4 × 10
−10

¬(x ⊕ y) → x ⊕ y 78 7.8 × 10
−10

¬(x ∨ y) → x ∨ y 17 1.7 × 10
−10

x ∨ y → ¬(x ∨ y) 11 1.1 × 10
−10

¬(x ∨ y) → x ⊕ y 4 4.0 × 10
−11

x ∨ y → ¬(x ⊕ y) 2 2.0 × 10
−11

log10(count)

F
re

qu
en

cy

0 2 4 6 8 10

0
10

20
30

40

Figure 3.11: Histogram showing the frequencies of different values of

lo g10(count) for different pairings occurring in 10
11
random2-2-1UESMANN

networks.

We would expect the uncommon pairings of Table 3.6 to be those which are

unrepresentable by the fully-thresholded network, shown in Fig. 3.9, because values

which are very large or small will be clipped by the nodes. Functions which re-

quire intermediate values, as these must, will have a smaller solution space. Visual

82 Chapter 3. Introducing UESMANN

inspection of Figs. 3.9 and 3.10 with Table 3.6 shows that there is some degree of

correlation.

We have shown that a 2-2-1 UESMANN network is able to represent any boolean

pairing, but that some pairings (such as x ∨ y → ¬(x ⊕ y), OR to XNOR) are

vanishingly rare — occupying 2 × 10
−11

of the solution space.

3.2 Other forms of modulation
UESMANN uses weight modulation, that is:

y � σ

(
b +

∑
i

wi xi(1 + h)
)
. (3.2)

Other forms of modulation are also possible, andwe shall briefly look at two. Firstly,

weight and bias modulation:

y � σ

(
(1 + h)(b +

∑
i

wixi)
)
. (3.81)

Here, both the bias and the weight are multiplied by (1 + h). This has the effect of

multiplying the entire input to the sigmoid activation function by 1 + h. Looking

at this in terms of the threshold, it is clear that both the slope and intercept of the

threshold linewill remainunchanged. Therefore, operating as a thresholdedboolean

node, a single node cannot transition to any other function. However, the output will

change shape, as shown in Fig: 3.12. It may be that this change causes hidden nodes

to saturate under modulation which would not otherwise, which would lead to

different functions being performed in the output node. To test this, once again 10
11

random networks with the same parameters as those for Fig. 3.10 were generated,

this time performing Eq. 3.81. We should expect to see some pairings represented,

but without the “booleanmode” of operation seen in Fig. 3.9 they should be far rarer.

Fig. 3.13 shows the results — most pairings are represented, but far more are rare.

The pairings x ⊕ y → ¬(x ⊕ y) and its negation/inverse are not represented at all.

The commonest pairings, as we would expect, are from functions to themselves.

Another form of modulation is to modulate the bias rather than the weight. This

gives

y � σ

(
(1 + h)b +

∑
i

wixi

)
. (3.82)

3.2 Other forms of modulation 83

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

ou
tp

ut

h=0
h=1

Figure 3.12: Logistic sigmoid
1+h
1+ex for h � 0 and h � 1.

Initial function

F
in

al
 fu

nc
tio

n

f
and

x and !y
x

!x and y
y

xor
or

nor
xnor
not y

x or !y
not x

!x or y
nand

t

f

an
d

x
an

d
!y x

!x
 a

nd
 y y

xo
r or no
r

xn
or

no
t y

x
or

 !y

no
t x

!x
 o

r
y

na
nd

t

−11

−9.82

−8.64

−7.47

−6.29

−5.11

−3.93

−2.75

−1.57

−0.395

lo
g1

0(
pr

op
or

tio
n)

Figure 3.13: lo g10 of the proportion of pairings of binary boolean functions

produced by 10
11

random 2-2-1 networks with weight and bias modulation

as in Eq. 3.81, when the output node is thresholded at 0.5. The size and tint

of each square gives the log
10

of the count. Where there is a cross, the count

is zero: these are function pairings which never appear. Note that the square

size and tint are scaled to the range seen in the data once the zeroes have been

removed.

This has the effect of doubling the intercept under modulation, rather than halving

it. We predict this should have roughly the same effect as UESMANN’s weight

modulation. The results for a 2-2-1 network are shown in Fig. 3.14. This looks rather

84 Chapter 3. Introducing UESMANN

similar to the pattern in Fig. 3.9 — to see the difference in distribution more clearly,

kernel density estimates of both UESMANN (weight only) and the bias-onlymethod

were plotted using R’s density function, giving the result in Fig. 3.15. The results

for modulation of weight and bias are also included.

Initial function

F
in

al
 fu

nc
tio

n

f
and

x and !y
x

!x and y
y

xor
or

nor
xnor
not y

x or !y
not x

!x or y
nand

t

f

an
d

x
an

d
!y x

!x
 a

nd
 y y

xo
r or no
r

xn
or

no
t y

x
or

 !y

no
t x

!x
 o

r
y

na
nd

t

−9.6

−8.58

−7.56

−6.54

−5.52

−4.5

−3.48

−2.46

−1.44

−0.419

lo
g1

0(
pr

op
or

tio
n)

Figure 3.14: lo g10 of the proportion of pairings of binary boolean functions

produced by 10
11

random 2-2-1 networks with bias modulation as in Eq. 3.82,

when the output node is thresholded at 0.5. The size and tint of each square

gives the log
10

of the count.

We would probably prefer a good spread in the distribution with fewer pairings

having a low probability. We can see from Fig. 3.15 that if the weight and bias are

both modulated, the distribution is wide but weighted towards the low end (and we

know that certain pairings are impossible from Fig. 3.13: these are omitted from the

density plot because lo g10(0) is not defined). UESMANN’s weight-only modulation

appears to give a good distribution, perhaps slightly better than bias-only. Therefore

we will continue with this paradigm.

3.2 Other forms of modulation 85

−10 −8 −6 −4 −2 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(proportion)

D
en

si
ty

 e
st

im
at

io
n

modulate bias
modulate weights
modulate bias and weights

Figure 3.15: Kernel density estimates for lo g10 of the proportion of pairings

of binary boolean functions found in 10
11

random 2-2-1 networks for both

weight-only, bias-only, and weight-and-bias modulation.

86 Chapter 3. Introducing UESMANN

Chapter 4

Training UESMANN using
back-propagation

Aswe have seen, UESMANNappears to be able to express a large variety of function

pairings — indeed, all possible pairings of the binary boolean functions can be

represented by a network with the same topology as the minimum strict1 feed-

forward network required to represent any single boolean function. However, many

of the boolean function pairings we see in the Monte Carlo simulations of 2-2-1

networks in Fig. 3.10 and Table 3.6 are have vanishingly small counts, with functions

such as x ∨ y → ¬(x ⊕ y) taking up a volume of the order of 10
−11

of the solution

space. This suggests that many solutions for other problems will also take up small

areas of the solution space (if they exist at all).

It would be useful to find a training method to evaluate UESMANN in more

complex problems. There are several possibilities, as discussed in Chapter 2:

phylogenetic techniques such as particle swarm optimisation [74] and the genetic

algorithm [125] might produce useful results in a reinforcement learning setting

without the need to perform complex temporal credit assignment, but this would

require embedding in a full artificial endocrine system, and findingsmay not transfer

to other applications. If we look at just the network itself, reinforcement through

Hebbian learning might work, but is likely to involve considerable complexity [221].

Instead, it may prove more profitable to study this novel network by following

the path taken by early network pioneers: developing a gradient descent technique.

Gradient descent methods are easy to understand and implement, and may give

insights into the topologyof the error surfaces involved, but are a supervised learning

1“Strict” is used here to mean “no connections skip the hidden layer”: it is possible to perform

any function in a network with a single hidden layer, if connections directly from the inputs to the

output layer are possible [237].

87

88 Chapter 4. Training UESMANN using back-propagation

paradigm. This is not ideal from the point of view of adaptivity, but is still useful for

many applications.

4.1 Back-propagation of errors
Our starting point will be the well-known back-propagation method, developed

independently by Werbos [298] and later by Rumelhart, Hinton and Williams [237].

This method is in turn a generalisation and extension of the delta rule for updating

neurons in a single-layer network, developed by Widrow and Hoff [300]. Given a

single example of inputs and outputs, a single back-propagation update modifies

the weights and biases in the network to reduce the mean-squared error between the

actual outputs and the example outputs
1

n
∑n

i�0
(yi−ai)2 (where for the given example

inputs ai is the actual output indexed by i and yi is the example output indexed by

i). Each update involves calculating the gradient of the error with respect to the each

weight, and then subtracting some small fraction of that value from the givenweight

such that it moves “downhill”: hence “gradient descent.” For the output nodes this

is the delta rule, for the hidden nodes the gradients can be derived from the error

at the output nodes (hence “back-propagation of errors”). This method has already

been covered briefly in Sec. 2.3.6; we nowwill discuss some of the issues and choices

involved in its implementation.

4.1.1 Batching or stochastic training?

In order to train a network to generalise from a set of examples, it needs to be trained

on a large number of such examples. Therefore back-propagation needs to be run a

large number of times, and the results combined so that the weights converge on a

minimum which represents all the examples satisfactorily. This is typically done in

one of three ways:

• Batching: for each iteration (i.e. each run through the set of examples) the

gradients are calculated for all weights, for all examples in the set. The means

of the gradients are found and applied at the end of the iteration. This generally

gives a smoother approach to a minimum: the true gradient as given by all the

examples is being followed.

• Stochastic: the gradients are calculated and then immediately applied for each

example in the set, with the examples typically being shuffled randomly before

each iteration (hence “stochastic”). This results in a “noisy” approach to the

4.1 Back-propagation of errors 89

minimum, since each gradient vector produced will be in a different direction,

which can sometimes avoid local minima. Stochastic gradient descent (SGD)

is typically much faster than batched gradient descent, particularly for large

example sets, because the latter must find the mean of all examples’ gradients

at each step [303]. SGD only needs one gradient to perform a step. SGD

is also better at avoiding local minima in non-convex functions [97]. It is,

however, sensitive to feature scaling: ideally, inputs and outputs should be

normalised to [0,1] (for the logistic sigmoid we are using). Additionally, SGD

is prone to overfitting in “normal” neural networks, and there is no reason

to think this would not also apply in UESMANN. To avoid this, some form

of regularisation is often performed: an example is L2 regularisation of the

cost function (mean squared error), which can be shown to be equivalent to

applying a decay term to theweight in each update (penalising largeweights)2.

Several regularisation techniques are explored in [166]. However, none will be

used for these initial explorations into UESMANNbeyond some normalisation

of the example values.

• Mini-batching is a commonly used compromise between batching and SGD.

The examples are split into a number of equally sized small batches, with the

mean gradient being used in each one. This combines a smoother approach

to the minimum with a lower computational complexity, and is amenable to

parallelisation: batches can be processed in parallel.

Rather than using batching or mini-batching we will be using stochastic gradient

descent in UESMANN:

• Some of the more complex problems we are studying may have non-convex

error surfaces (i.e. with local minima), which SGD has been shown to be more

effective at optimising [97]. This is particularly true with UESMANN, given

that we are optimising for two functions (see Eq. Sec. 4.4, p. 94).

• SGD is typically much faster than batching, because of the need in batching to

find the mean of the gradient for all examples for each update [303].

• We may find that the “jitter” as UESMANN oscillates between the gradients

for the two functions (see Sec. 4.2 below) helps avoid local minima.

• It is the simplest method to implement and understand.

Mini-batching was not used because it is essentially a compromise between batching

and SGD which introduces an extra hyperparameter: the batch size.

2L2 regularisation can be derived by assuming aGaussian prior over the network parameters [230].

90 Chapter 4. Training UESMANN using back-propagation

4.1.2 Hyperparameters

Hyperparameters are those parameters fixed by the experimenter which control

learning, rather than the parameters which are learned by the system (in this system

the weights and biases). Back-propagation has three main hyperparameters: the

number of hidden nodes, the learning rate and the initial values. Until recently,

hidden nodes were usually limited to a single hidden layer because of the vanishing

gradient problem (see below). This layer learns an intermediate representation of the

data presented in the input layer, which is then processed by the output layer. If the

number of hidden nodes is too low, it may not be capable of representing the distinct

features required to give a solution in the output. If it is too high, the topology of the

solution space may become unnecessarily complex and lead to local minima, which

manifest as convergence to poor solutions or long training times. Overfitting may

also result: the network may work well on the data with which it has been trained,

but may not generalise to other data (such as the test data typically “held out” from

the training data).

It is impossible to choose a hidden node count without carefully considering

the problem: the complexity of the function to be learned, the amount of noise in

the data, the number of training cases and so on. Many sources describe “rules of

thumb”, but these are all nearly worthless [241]. Most practitioners start somewhere

between the number of input and output units, depending on the complexity of the

problem, and try a number of different values.

The other hyperparameters also require trial and error: lower learning rates take

longer to converge to a solution and may get trapped in local minima, while higher

learning rates are unlikely to find an accurate solution. The initial values for the

weights need to be random, far enough apart that the trajectories of the solutions

move away from each other, and yet small enough that sigmoid activation functions

do not saturate, leading to small derivatives (see Sec 4.1.4 below). A common rule

of thumb, or at least starting point, is Bishop’s Rule: weights in the range [−1√
n
, 1√

n
]

where n is the number of inputs to the node (i.e. the number of nodes in the previous

layer) [26]. If the inputs are not normalised to the range [0,1] this may be insufficient

to prevent saturation.

4.1.3 Early stopping and restarting

In all cases, the initial starting point is often important: it is likely that the gradient

frommany regions of the error surfacewill lead to localminima. For this reason, runs

which fail to converge to a sufficiently good solution should be restarted with new

4.1 Back-propagation of errors 91

initial values. Convergence here simply means that the error function is no longer

decreasing because the algorithm has found a local minimum. It is worth noting

that with stochastic gradient descent, the error will not decrease monotonically: the

solution is being “pulled” indifferent directions around the solution space, since each

update is coming from a different example, but the net result is a decrease. Therefore

measuringwhen to restart can be a difficult problem: in a complex solution space, the

error may remain static (or increase) for many iterations before finding a “valley” in

the solution space out of the local minimum. UESMANNmay be particularly prone

to such problems because its error surfaces are likely to be more complex.

4.1.4 Problems with sigmoid activation functions

UESMANN in its current form uses the logistic sigmoid as its activation function,

although the training method is easily adapted to any other (mostly3) differentiable

activation function. This is to permit comparison with the first neural networks

trained by back-propagation, which also used the logistic sigmoid. However, while

the “standard” sigmoid activation functions (the logistic sigmoid and the hyper-

bolic tangent) are convenient mathematically, having simple derivatives, they have

a number of known problems:

• If a given neuron has an output which is close to 0 or 1 for the logistic sigmoid

(-1 or 1 for the hyperbolic tangent), the derivative of the activation will be

close to zero. This causes the error correction term to drop to close to zero.

Because of this, the network can find itself in incorrect local minima, or can

reach a state of “network paralysis.” This can be somewhat counter-intuitive:

in human learning, a very large error produces a large correction; in the back-

propagation algorithm, a very large error might produce near-zero correction

because the output is “saturated.”

• Back-propagation works by finding the derivative of the error function with

respect to each weight at the output layer, and applying to each weight a

correctional proportional to this derivative. This error is then propagated back

by applying the chain rule. Given that the range of the activation function is

typically (-1,1) or (0,1), the derivatives will bemuch smaller than 1. This results

in themultiplicationof small numbers,whichpropagate back—getting smaller

at each layer until they become vanishingly small. The output layers therefore

3Some activation functions are not completely differentiable, notably the rectified linear unit

(ReLU) which is not differentiable at zero.

92 Chapter 4. Training UESMANN using back-propagation

train much faster than the inner layers, which is why deep neural networks can

be very difficult to train efficiently [21, 22]4.

If alternative activation functions are used in which the derivative can take

values greater than 1, the related exploding gradient problem may occur. Here,

the corrections become larger as the calculations move away from the output

layer.

4.1.5 Alternative activation functions

In somedeep learning systems, piecewise linear rampactivation functions suchas the

rectified linear unit (or ReLU) f (x) � max(0, x) are also used. While not completely

differentiable (i.e. at 0) they are extremely efficient and do not saturate [157]. These

avoid the vanishing gradient problem, but a ReLU unit may “die” if its parameters

are updated such that the summed inputs are always less than zero. In this case,

the gradient is zero and no learning can take place — a dead ReLU is unlikely to

recover. This can result in networks with many nodes outputting zero. Variants of

ReLU exist, such as the “leaky ReLU,” in which the below-threshold output still has

a small positive gradient [179]; and the “noisy ReLU”: f (x) � max(0, x + Y), where

Y is a source of Gaussian noise [205]. ReLU is currently the most popular activation

function in deep networks [167].

4.1.6 Other enhancements to back-propagation

A large amount of work has been done on adding features to the basic algorithm

to allow it to converge faster and to better minima. Indeed, the seminal paper

by Rumelhart, Hinton and Williams [237] features the first of these enhancements:

momentum, which permits the algorithm to “roll over” small local minima. Others

include an adaptive learning rate [293], which modifies the learning rate according

to local error surface topography; and weight decay, which was introduced to aid

interpretation of weights post-training [120] but may aid generalisation and reduce

the effects of noisy inputs [158]. It is also possible to use the Levenberg-Marquardt

algorithm— a numerical optimisation technique for minimising least-squares error

— to perform back-propagation[108].

Regularisation has briefly beenmentioned above, and is used to avoid overfitting.

L1 regularisation adds the absolute magnitude of a parameter to that parameter’s

4This also applies to recurrent neural networks trained by back-propagation through time (see

Sec. 2.3.7.2).

4.2 Back-propagation updates in UESMANN 93

cost function, while L2 regularisation adds the square of the parameter. These both

have the effect of reducing weights and biases, leading to a less complex model.

4.2 Back-propagation updates in UESMANN
UESMANN is an unusual network in that we wish to minimise two error functions:

the first for h � 0 with the weights at their nominal values, and the second for h � 1

with the weights doubled (since at h � 1 the summand of Eq. 3.2 — the UESMANN

node equation—becomes 2wixi). Thuswe need to find the gradients with respect to

the weights w for the examples for which h � 0, and the gradients wrt. the doubled

weights 2w for the examples for which h � 1, and apply them both. In essence, we

are following two error surfaces and attempting to find a compromise between them.

In this section, we will use the convention in Fig. 4.1 for labelling weights, biases,

and activations and errors within a UESMANN node. Writing Eq. 3.2 in this form

Figure 4.1: Neural network labelling conventions: a l
i is the activation of node

i in layer l, w l
i j is the weight between node j in layer l − 1 and node i in layer

l, b l
i is the bias on node i in layer l, and δl

i is the output error of node i in layer

l (i.e. the difference between the example output and the actual output).

we obtain:

a l
i � σ

©«b l
i +

∑
j

(h + 1)w l
i ja

l−1

j
ª®¬ (4.1)

where σ is the standard logistic function σ(x) � 1

1+e−x . Ideally, we are attempting

to find a single set of weights and biases (w, b) for a network which performs the

function pairing f → g such that

arg min

(w,b)
C f (w, b) � arg min

(w,b)
Cg(2w, b), (4.2)

where arg minx f (x) (“argument of the minimum of f (x) with respect to x”) is the
value of x at which f (x) is at its global minimum, C f (w, b) is the cost (error) function
for the given weights and biases with respect to the function y � f (x), and Cg is

similarly the error function for g(x). These functions are presented to the network

94 Chapter 4. Training UESMANN using back-propagation

during training as two sets of examples X f ,Xg mapping x to y. An example of a cost

function — and the one used in this work — is the sum of squared errors:

C f (w, b) �
∑
(x,y)∈X f

‖u(x,w, b) − y‖2. (4.3)

This is the squared Euclidean distance between the required output vector y of the

network as given in the training examples X f , and the function actually performed

by the network u for the corresponding input vector x, with weights and biases

(w, b).
If we consider the parameter space of the network (i.e. the weight space, if biases

are considered special weights), we are trying to find a point in that space which

performsone function andwhich,whendoubled in theweight dimensions, performs

a second function. Figure 4.2 shows this idea in a 3D form, simplifying the weight

space down to two dimensions. There are two distinct error surfaces, one for each

function, here shown as heat maps. We are trying to find a point w which minimises

the error on one surface, while the point 2w minimises the error on the other surface.

In the figure, the value of w gives a low error for the h � 0 function, but a much

higher error for the h � 1 function where 2w is used as the weight vector.

Error for function h=0

Error for function h=1

w

2w

w1

w2

Figure 4.2: Representation of slices through the error/weight spaces for two

functions: the functions are merely for illustrative purposes and do not rep-

resent actual functions. The brightness indicates the error (bright indicates

high error), w1 and w2 are two weight axes.

It is clearly unlikely for most function pairs that we will find a true global min-

imum for both, i.e. a value for (w, b)which satisfies Eq. 4.2. However, we can at least

find local minima for

arg min

(w,b)
(C f (w, b) + Cg(2w, b)) (4.4)

4.2 Back-propagation updates in UESMANN 95

4.2.1 The UESMANN equations

In order to train a UESMANNnetwork, the back-propagation update functionsmust

be modified to handle the parameter h. We will not derive the original form of the

functions — this can be found in [237], and involves deriving the generalised delta

rule for the output layer and applying the chain rule for the hidden layer(s) — but

we will state them in Eqs. 4.5-4.8, in scalar rather than vector form:

∂C
∂w l

i j

� a l−1

j δl
i (error surface gradient wrt. weight), (4.5)

∂C
∂b l

i

� δl
i (error surface gradient wrt. bias), (4.6)

δL
j � (aL

j − y j) · aL
j · (1 − aL

j) (error in output layer), (4.7)

δl
j � a l

j(1 − a l
j)
∑

i

w l+1

i j δ
l+1

i (error in hidden layer). (4.8)

Here, C represents the mean squared error (or cost), w l
i j and b l

i are the weights and

biases as defined in Fig. 4.1, a l
j and δ

l
j are the activation and error of node j in layer l

respectively, and L represents the final output layer. A back-propagation update in

the stochastic paradigm involves feeding each example into the network and finding

δl
j for each node, and using this with the node activations to find

∂C
∂w l

i j
and

∂C
∂b l

i
. These

cost gradients are then applied to the weights and biases, so that they move down

the gradient towards a (local) minimum in C:

w l
i j ← w l

i j − η
∂C
∂w l

i j

, (4.9)

b l
i ← b l

i − η
∂C
∂b l

i

(4.10)

where η is the learning rate: amultiplicative factor applied to the gradient to produce

the correction in each update. Note that in Eq. 4.5 the gradient is determined with

respect to the weight: for UESMANN, the actual weight is (1 + h)w l
i j (Eq. 3.2).

Therefore Eq. 4.5 must be modified:

∂C
∂w l

i j(1 + h)
� a l−1

j δl
i (Eq.4.5, substituting the modulated weight). (4.11)

∂C
∂w l

i j

� (1 + h)a l−1

j δl
i (4.12)

96 Chapter 4. Training UESMANN using back-propagation

This gives our final modified form of Eq. 4.5. Similarly for Eq. 4.8:

δl
j � a l

j(1 − a l
j)
∑

i

(1 + h)w l+1

i j δ
l+1

i

� a l
j(1 − a l

j)(1 + h)
∑

i

w l+1

i j δ
l+1

i .

This gives the full set of equations for updating a UESMANN network for examples

at modulator level h:

∂C
∂w l

i j

� (1 + h)a l−1

j δl
i (error surface gradient wrt. weight), (4.13)

∂C
∂b l

i

� δl
i (error surface gradient wrt. bias), (4.14)

δL
j � (aL

j − y j) · aL
j · (1 − aL

j) (error in output layer), (4.15)

δl
j � a l

j(1 − a l
j)(1 + h)

∑
i

w l+1

i j δ
l+1

i (error in hidden layer). (4.16)

4.2.2 Stochastic gradient descent in UESMANN

Given the discussion above of how gradient descent is performed (stochastically,

batching, and mini-batching), there are several ways to proceed given that we have

two sets of examples, one for each function to be learned. Stochastic gradient descent

will be used here because it is faster, conceptually simpler, and the “jitter” inherent

in stochastic gradient descent (SGD)may help the system recover from local minima.

Bishop’s “rule of thumb” for determining the range of the random initial weights

will be used [26, p.262], [166]: the weights and bias in each node will be initialised

to uniformly distributed random values in the interval [− 1√
n
, 1√

n
] where n is the

number of weights feeding into the node.

Weassume that examples areprovided to the systemas tuples of vectors (x, y0, y1).
Each example consists of a set of inputs and two sets of outputs, one for each mod-

ulator level h � 0 and h � 1. The algorithm will proceed by shuffling the examples,

and for each example training with first the h � 0 output, and then the h � 1 out-

put. Thus the solution will follow the gradients of the two error surfaces alternately.

Each example’s update will be referred to as a “pair presentation”, while each pass

through the entire set of examples will be referred to as an “iteration”. Algorithms 1

to 5 describe the algorithm in full, in which the following hold:

• Weights, biases and error terms are as in Fig. 4.1.

• h ∈ {0, 1} is a modulator level.

4.2 Back-propagation updates in UESMANN 97

• Layers are indexed from 1 to L. The activations for an entire layer l are notated
as the vector al

.

• a0

i holds the inputs indexed by i. The entire layer is notated as a0
.

• The number of nodes in layer l is nl .

• E is a set of examples each consisting of tuples of vectors (x, y0, y1), where x is

the input and y0 and y1 are the required outputs at h � 0 and h � 1 respectively.

• η is the learning rate.

Algorithm 1 UESMANN-backprop algorithm, using Bishop’s Rule for the initial

weights

N ← new network containing 1 hidden layer

for all layers l do
for allweights w l

i j entering layer l do

w l
i j ← U

(
−1√

d
, 1√

d

)
where d is the number of weights entering the node and

U(p , q) is a uniformly distributed random number in the range [p , q]
end for
for all biases b l

i in layer l do
bi ← U

(
−1√

d
, 1√

d

)
(d ,U defined as above)

end for
end for
for i � 0 to MaxIterations do
Shuffle E into a random order

for all (x, y0, y1) ∈ E do
h ← 0

present example (x, y0) to Algorithm 2

h ← 1

present example (x, y1) to Algorithm 2

Perform any cross-validation and/or early stopping (see Sec. 4.2.3).

end for
end for

4.2.3 Cross-validation

It is, of course, important that our algorithm is not tested with the training data

(although this is not possible with the boolean functions). In order to achieve this, a

number of test examples are held back from training (typically a ratio of 1:5). Cross-

validation during training is performed by slicing this test data into a number of

equal slices and running the network periodically during training on each example

98 Chapter 4. Training UESMANN using back-propagation

Algorithm 2 UESMANN-backprop single training iteration

Require: x is the example input

Require: y is the example output

Require: h is the modulator level

a0 ← x {Set the input layer from the example input}

aL−1 ← y {Set the output layer from the example input}

Perform Algorithm 3 to run the network forwards

Perform Algorithm 4 to calculate the errors

Perform Algorithm 5 to update the weights

Algorithm 3UESMANN-backprop update. This algorithm is used either to run the

network once trained, or produce candidate results during training.

Require: a0
contains the inputs

Require: h is the modulator

Ensure: aL
contains the outputs

for l � 1 to L do
for i � 1 to nl do

a l
i ← σ

(
b l

i + (1 + h)∑ j w l
i j a

l−1

j

)
{Eq. 4.1}

end for
end for

in the slice. This slicing is done to ensure the entire test set is used while limiting the

size of the test for performance purposes, so that they can be done frequently enough

to show convergence without sacrificing too much training performance. We will

discuss the actual cross-validation parameters separately in each experiment.

At this point it is worth mentioning that although during training the networks’

weights typically converge— asymptotically approach a given point in weight space

— in this thesis convergence is evaluated by considering how the error, not the

weights, changeover time. Theonemaps to theother: if theweights arenot changing,

Algorithm 4 UESMANN-backprop error calculation, performed after Algorithm 3

during training. The vector y contains the required outputs from the example.

{Calculate errors, output layer}

for i � 0 to nL do
δL

i ← (a
L
i − yi) · aL

i · (1 − aL
i) {Eq. 4.15}

end for
{Calculate errors, inner layers, propagating the errors back}

for l � L − 1 to 0 do
for j � 1 to nl do
δl

j � a l
j(1 − a l

j)(1 + h)∑ j w l+1

i j δ
l+1

i {Eq. 4.16}

end for
end for

4.3 UESMANN on the boolean pairings 99

Algorithm 5 UESMANN-backprop weight/bias update step, performed after Al-

gorithm 4 during training

for l � 1 to L do
for i � 1 to nl do
for j � 1 to nl−1

do
mw ← (1 + h)a l−1

j δl
i {Eq. 4.13}

w l
i j ← w l

i j + ηmw

end for
mb ← δl

i {Eq. 4.14}

b l
i ← b l

i + ηmb
end for

end for

the errors are not changing. However, because of the nature of the dynamical

system the weights are following, a small weight change may occasionally cause a

large change in error, and this should be borne in mind. In most cases the error is

measured as themean squared error at the output layer, whichmay itself be averaged

over a set of validation examples (as in Chapter 5 and later).

4.3 UESMANN on the boolean pairings
In order to determine the effectiveness of UESMANN on the boolean pairings dis-

cussed in previous sections, the algorithm described above was run on each of the

256 possible pairings. The hyperparameters were as follows:

• The learning rate η was set to 0.1, determined by informal experimentation.

• 300000 pair presentations were done (i.e. MaxIterations was 75000, with 4 ex-

amples presented at h � 0 and h � 1 in each iteration). This was determined

by informal experimentation after a suitable learning rate had been found.

• No early stopping was done — networks which failed to converge to a “good”

minimum were left to fail. This avoids the need for extra parameters determ-

ining when early stopping should occur.

• For each pairing, 1000 attempts were made from random initial starting points

with weights and biases in the range [− 1√
2

, 1√
2

] (i.e. Bishop’s rule). This was

decided after informal experimentation, and was a compromise between the

available computational resources and the need for a large sample.

The number of runs which successfully reproduced the pairing under thresholding

at 0.5 was recorded for each pairing. No cross-validation could be done: with only 8

100 Chapter 4. Training UESMANN using back-propagation

examples, which represented the two functions completely, no test set was possible.

The results are shown in Fig. 4.3a.

Initial function

Fi
na

l f
un

ct
io

n

f
and

x and !y
x

!x and y
y

xor
or

nor
xnor
not y

x or !y
not x

!x or y
nand

t

f
an

d
x

an
d

!y x
!x

 a
nd

 y y
xo

r or no
r

xn
or

no
t y

x
or

 !y
no

t x
!x

 o
r y

na
nd

t

0.002

0.113

0.224

0.335

0.446

0.556

0.667

0.778

0.889

1

Pr
op

or
tio

n
co

rre
ct

(a)Proportion giving correct output threshol-

ded

Initial function

Fi
na

l f
un

ct
io

n

f
and

x and !y
x

!x and y
y

xor
or

nor
xnor
not y

x or !y
not x

!x or y
nand

t

f
an

d
x

an
d

!y x
!x

 a
nd

 y y
xo

r or no
r

xn
or

no
t y

x
or

 !y
no

t x
!x

 o
r y

na
nd

t

4e−06

0.0139

0.0278

0.0417

0.0555

0.0694

0.0833

0.0972

0.111

0.125

M
ea

n
sq

ua
re

d
er

ro
r

(b)Mean squared error

Figure 4.3: Grid of boolean pairings, showing what proportion of 1000 2-2-1

networks trained using UESMANN correctly performed the pairing under

thresholding at 0.5 (75000 iterations for each run, 1000 runs, η � 0.1, initial
parameters uniformly distributed in [− 1√

2

, 1√
2

]), and the mean squared error

of the outputs for both functions in those networks.

We can see that the pattern is similar to that of Fig. 3.10 (the Monte Carlo 2-2-1

experiment): pairings which occupy a smaller region of the solution space converge

to a solution less often under UESMANN, as we would expect, but there are a few

anomalies. Perhaps the most notable is the pairing x ∧ y → ¬(x ∨ y) (AND→NOR)

and its negation ¬(x ∧ y) → x ∨ y (NAND→OR), which converges less often than

its solution size would suggest. The plot in Fig. 4.4 shows the correlation between

log
10

of the Monte Carlo count and the proportion of networks which converge to

a solution. The correlation is more of a general tendency, with Pearson’s r � 0.749

and (more importantly given that the log curve may not be appropriate) Spearman’s

ρ � 0.812. The AND→NOR and NAND→OR outliers are marked with squares at

the bottom right.

Fig 4.3b shows the mean squared error for all pairings: that is, the mean squared

error of all possible boolean values passed to the two functions, over all the networks

(whether they produced correct values when thresholded or not):

MSEN �

∑
n∈N

∑
x∈{0,1},y∈{0,1}

(
(f (x , y) − n(x , y , 0))2 + (g(x , y) − n(x , y , 1))2

)
2 |N | ,

(4.17)

4.3 UESMANN on the boolean pairings 101

w

●●●●●●● ● ●● ●●

●

●

●

●

● ●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●●

●

●

●

●

●

●

●● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●● ●
●

●

●

●

●

●● ●● ●● ●●

●

●

●

●

●

●

●

●● ● ●● ●● ●●●●●

●

●

●

●

●
● ●

●●●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(monte carlo count)

pr
op

. o
f n

et
w

or
ks

 tr
ai

ne
d

to
 c

or
re

ct
 s

ol
ut

io
n

Figure 4.4: Proportion of successful convergences plotted against log
10

of

the Monte Carlo count for 2-2-1 UESMANN networks learning the boolean

pairings at η � 0.1 with 75000 iterations. Pearson’s r � 0.749 and Spearman’s

ρ � 0.812. The two very close points marked with a square (at bottom right)

indicate the pairings x∧ y → ¬(x∨ y) and¬(x∧ y) → x∨ y, which are outliers

discussed in the text.

where N is the set of 1000 networks, n(x , y , h) is the function performed by network

n, and f and g are the functions for which the network has been trained at h � 0

and h � 1. The pattern here shows an expected strong negative correlation between

error and convergence (Pearson’s ρ � −0.959): if there is a high enough error, the

result will be incorrect. It also shows that the errors (i.e.

√
MSEN) vary widely, from

< 0.1 for most functions up to > 0.35 for the “difficult” functions. This is quite a

high error, but it may seem odd that the error is not higher given that many of these

networks are not producing the correct functions: consider AND→NOR, where the

mean squared error is 0.1234, giving an error magnitude estimate of around 0.35,

but with only 0.7% of the networks correct (from Table 4.1). However, in order for

the network to be entirely correct, both functions must give the correct answer when

thresholded for all possible boolean inputs. It is easy to see that a relatively low

mean error could still cause a network to fail.

102 Chapter 4. Training UESMANN using back-propagation

Table 4.1: Worst-performing boolean pairings, by proportion of networks

correct

f g rank both functions correct

¬(x ∨ y) x ∨ y 1 0.002000

x ∨ y ¬(x ∨ y) 2 0.005000

¬(x ∧ y) x ∨ y 3 0.005000

x ∧ y ¬(x ∨ y) 4 0.007000

¬(x ∨ y) x ⊕ y 5 0.061000

x ∨ y ¬(x ⊕ y) 6 0.069000

x ⊕ y ¬x ∨ y 7 0.132000

¬(x ⊕ y) ¬x ∧ y 8 0.134000

¬(x ⊕ y) x ∧ ¬y 9 0.147000

x ⊕ y x ∨ ¬y 10 0.156000

¬(x ⊕ y) x ⊕ y 11 0.199000

x ⊕ y ¬(x ⊕ y) 12 0.201000

¬x ∨ y x ⊕ y 13 0.296000

x ∨ ¬y x ⊕ y 14 0.306000

x ∧ ¬y ¬(x ⊕ y) 15 0.309000

¬x ∧ y ¬(x ⊕ y) 16 0.313000

¬(x ⊕ y) y 17 0.377000

x ⊕ y ¬x 18 0.382000

¬(x ⊕ y) x 19 0.384000

x ⊕ y ¬y 20 0.393000

4.3.1 Convergence in a single node

We might predict that Algorithm 1 would take a long time to converge compared

with the standard back-propagation algorithm: it alternates between two different

gradients across the two error surfaces, which may pull it in two different directions.

It is fairly clear that “difficult” pairings — those which cover smaller regions of the

solution space (Fig. 3.10), show lower convergence success figures, or higher errors

(Fig. 4.3) — should take longer to converge and are more likely to do so to local

minima (giving the failed convergences in Fig. 4.3a.)

Before looking at the convergence behaviour of back-propagation in networks

with a hidden layer, we will investigate that of a single node performing a typical

function marked as “possible” in Fig. 3.5. In addition to the convergence curves,

we will also investigate the paths of the weights during training through the error

volume at the level of an eventual converged bias, and the convergence behaviour at

different learning rates.

The test function is x → x ∨ y, i.e. x to OR. This was chosen because it occupies

a moderately small region of the solution space (see Table 3.1). This requires four

4.3 UESMANN on the boolean pairings 103

examples for h � 0 and h � 1 as shown in Table 4.2. 250000 iterations through this

set were made at η � 0.05, using Algorithm 1. This low learning rate was chosen to

expose any difficulties with local minima or flat regions, while the large number of

iterations should ensure convergence. To provide a baseline for comparison, simple

Table 4.2: Training examples for single node training of x → x ∨ y

h x y out

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

back-propagation (effectively the delta rule since we do not have hidden layers) was

performed for the function x.

4.3.1.1 Method

Convergence paths: For the UESMANN node performing x → x ∨ y, Algorithm 1

wasusedwith the examples given inTable 4.2. For the “control” learning the function

x, the same algorithm was used but without hormonal modulation or training for a

function at h � 1. We wish to evaluate the paths through the solution space from

different starting points, plotting them on a 2D error surface. However, this surface

is actually a 3D volume (since there are 3 parameters). As a compromise, we will

show the convergence paths on a slice through the error volume at the mean bias at

which converging runs end, first checking that these biases are normally distributed

or, if not, of small variance, to ensure that the selected bias is representative.

The initial bias for all nodes was set at zero, as an arbitrary value: for the best

convergence performance, the parameters should be close to zero. The initialweights

are selected from a grid centred around w1 � 0, w2 � 0. Because some nodes far

from the origin may not converge, the final bias at which the error surface is plotted

is the mean of a smaller grid w1, w2 ∈ [−2.5,−2, . . . , 2.5]. The initial weights for the

nodes whose paths are shown are in w1, w2 ∈ [−7.5,−4.5, . . . , 7.5]. The node was

trained for 10
6
examples or pair presentations. This corresponds to 250000 iterations

through the training examples (since there are four examples in the x set, and four

example pairs in the x → x ∨ y set). During training the node weights and bias

are sampled every 100 pair presentations (every 25 iterations). As stated above, the

104 Chapter 4. Training UESMANN using back-propagation

learning rate η is 0.05, which was chosen as a small value likely to expose local

minima. Other learning rates were tested for individual nodes (see below).

Once generated, the paths from 36 initial weights to convergence were plotted

on the mean error surface for the two functions at the mean final bias. The error

surface was calculated by generating nodes w1, w2, b for w1, w2 on a grid of 2500

points over a range larger than the weight range for the initial node settings, to give

some sense of the surrounding topography, and generating the mean squared error

for all examples (as given by Eq. 4.17). Each node was run with the example set, and

the mean squared error of the outputs calculated. Additionally, the weight gradient

at each grid point (at the final bias) was calculated directly from Eqs. 4.13 and 4.15,

finding the mean for all examples. When interpreting the plots, it should be borne

in mind that the paths pass throughmany parts of the error volume— if a path does

not appear to be following the gradient shown, that is likely because the gradients

at the path’s current bias and the final bias are different.

For some notable nodes, the individual parameters are plotted over training. In

these plots, the parameters are approximated with a 100 point spline generated by

the R sm.spline command from the pspline library.

Convergence plots: The mean squared errors over iteration for noteworthy nodes

found in the convergence paths plot generated in the previous step were plotted

individually. In these plots, the MSE is sampled every 10 iterations (to avoid large

image files). However, the data was confirmed to be smooth before so doing by

plotting without downsampling.

Learning rate tests: To understand the effect of different learning rates and invest-

igate the topography further, some nodes were also converged at a range η �
4

n

100
, n ∈

{0, 1, 2, 3, 4, 5}, i.e. η ∈ {0.01, 0.04, 0.16, 0.64, 2.56, 10.24}. This was selected as a geo-

metric progression covering a wide range of values. These were again performed

for 10
6
iterations. In these plots, the MSE was sampled every 1000 iterations.

4.3.1.2 Results for x

Performing delta rule training for the function x, i.e. the truth table in Table 4.3, we

obtain the paths in Fig. 4.5. We can see that all paths converge to solutions within

a large flat region. The plot shows the error surface for x with a bias of -4.744,

obtained as the mean from the initial small grid run within which σsamp(b) � 0.0009.

Although the distribution was not normal (Shapiro-Wilk p < 0.05), the variance is

so small (−4.7466 < b < −4.7243) that the mean can be seen as representative of the

solutions.

4.3 UESMANN on the boolean pairings 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

1● 2● 3● 4● 5● 6●

7● 8● 9● 10● 11● 12●

13● 14● 15● 16● 17● 18●

19● 20● 21● 22● 23● 24●

25● 26● 27● 28● 29● 30●

31● 32● 33● 34● 35● 36●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

w1

w
2

Figure 4.5: Paths of 36 nodes during training for boolean x, overlaid on a

plot of the mean error surface at a mean final bias for converged nodes, with

arrows showing the vector field for weights trained using back-propagation

at the same bias. Weights are sampled every 25 iterations.

Table 4.3: Training examples for single node training of x

h x y out

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

Looking at the convergence of a typical individual node (number 2) in Fig. 4.6,

convergence is rapid and smooth after an initial period in a large, flat region —

this period would be reduced if the initial weights were closer to the origin. The

parameter path shows the bias rapidly decreasing toward the final level with w1

increasing slowly, until the flat region is escaped. Both weights now increase to their

final level, with a small “bump” in bias as w1 crosses the origin. The parameter and

106 Chapter 4. Training UESMANN using back-propagation

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−
6

−
5

−
4

−
3

−
2

−
1

0

iteration

lo
g1

0(
m

ea
n

sq
ua

re
d

er
ro

r)

eta

0.01
0.04
0.16
0.64
2.56
10.24

(a) Convergence of node 2 for x at different η

0 50000 100000 150000 200000 250000

−
15

−
10

−
5

0
5

10
15

iteration
pa

ra
m

et
er

b
w1
w2

(b)Paths throughweight space at bias=-4.744,

η � 0.05

Figure 4.6: Paths to convergence after 25000 iterations plotted on error surface

for plain back-propagation for single node (i.e. delta function) learning the x
boolean function. The bias is the mean of those at final iteration from the

[-2.5,2.5] grid as described above, giving -4.744 with σ � 0.0008.

path plots show the node moving through discrete regions of the error volume with

quite different gradients.

Fig. 4.6a shows the convergence of node 2 at different learning rates. Using

smaller learning rates causes problems in flat regions, as we would expect: the

learning takes longer to escape. Even tiny flat regions, such as that roughly between

points 5 and 12 on the path plot, cause problems for node 2 where η � 0.01 — this

is the cause of the new flat region near the end of the run.

Again, this is a single node being trained for a simple boolean function by the

delta rule: even in this simple case the topology of the error surface is not trivial. We

may see considerably more complexity in UESMANN.

4.3.1.3 Training a UESMANN node for x → x ∨ y

Themean bias at convergence was found to be -11.11, with the distribution shown in

Fig. 4.7. This is at least an approximately normal distribution (Shapiro-Wilk p > 0.1),

with narrow variation (σsamp � 0.0009), so this mean was used as the basis for the

error surface plot. The surfaces at this bias for the two functions are shown in Fig. 4.8

as is their mean — the notional surface UESMANN should follow.

4.3 UESMANN on the boolean pairings 107

bias

F
re

qu
en

cy

−11.115 −11.114 −11.113 −11.112 −11.111 −11.110

0
2

4
6

8
10

Figure 4.7: Histogram of bias distribution for single nodes trained using

Algorithm 1 for x → x ∨ y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

●

w1

w
2

(a) x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

●

w1

w
2

(b) x ∨ y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

●

w1

w
2

(c) mean error surface for x
and x ∨ y

Figure 4.8: Error surfaces over w1 ,w2 at b � 0 for the functions x and x ∨ y,
found by generating nodes with the given weights and biases and running

them over the examples in Table 4.2, finding the mean squared error for all

examples.

Once these surfaces were generated, a wider range of initial weights w1, w2 ∈
[−7.5, 7.5]was used for generating nodes whose paths were to be plotted in order to

include a few which did not converge to a solution (i.e. the converged node did not

perform the required pairing). Convergence curves and parameter plots at η � 0.05

are shown in Fig. 4.10 for a typical successful node, and for one of the two nodes

which did not arrive at a solution. Both nodes show a rapid initial decrease (over

the first iteration), after which the unsuccessful node (run 1) is in a flat region.

Inspection of the path shows that the weights are hardly changing, while the bias is

108 Chapter 4. Training UESMANN using back-propagation

decreasing, approaching an asymptote: see Fig. 4.10c. Fig. 4.9 shows the paths of all

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

1● 2● 3● 4● 5● 6●

7● 8● 9● 10● 11● 12●

13● 14● 15● 16● 17● 18●

19● 20● 21● 22● 23● 24●

25● 26● 27● 28● 29● 30●

31● 32● 33● 34● 35● 36●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

w1

w
2

Figure 4.9: Paths of 36 nodes during training for x → x ∨ y, overlaid on a plot

of the mean error surface for at a mean final bias for converged nodes, with

arrows showing the vector field for weights trained using back-propagation

at the same bias. Weights are sampled every 25 iterations.

36 nodes overlaid onto the error surface for b � −11.11, the mean converged value

found above. Also shown is the vector field generated by Eqs. 4.13 and 4.15, used

to update the weights. Again, this is the vector field and error surface at the bias of

final convergence, so this will not apply for early parts of the paths.

We can see that nodes 1 and 7 are unlikely to converge successfully to a good

minimum: these start learning in a region far from the eventual solution, and flat

at both the converged bias and at b � 0, the starting point. With the exception of

these runs, all nodes converge to the same successful minimum. Note, however,

the unusual paths taken by some nodes, such as 31 and 32, and particularly node

25, which appears to change direction in w2 drastically near the beginning before

moving rapidly to positive w1 and converging on the solution as shown in Fig. 4.11.

Clearly the error surface is more complex than a simple slice would suggest. It is

4.3 UESMANN on the boolean pairings 109

worth noting that the convergence, while complex, is smooth. There is no oscillation,

at least at this low η, which also accounts for the long convergence times.

0 50000 100000 150000 200000 250000

−
0.

20
−

0.
19

−
0.

18
−

0.
17

iteration

lo
g1

0(
m

ea
n

sq
ua

re
d

er
ro

r)

(a)Node 1 convergence, w1 � −7.5,w2 � −7.5

0 50000 100000 150000 200000 250000

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
iteration

lo
g1

0(
m

ea
n

sq
ua

re
d

er
ro

r)

(b) Node 5 convergence, w1 � 4.5,w2 � −7.5

0 50000 100000 150000 200000 250000

−
15

−
10

−
5

0
5

10
15

iteration

pa
ra

m
et

er

b
w1
w2

(c) Node 1 parameters, w1 � −7.5,w2 � −7.5

0 50000 100000 150000 200000 250000

−
15

−
10

−
5

0
5

10
15

iteration

pa
ra

m
et

er

b
w1
w2

(d) Node 5 parameters, w1 � −7.5, w2 � −7.5

Figure 4.10: Convergence curves andparameter plots for nodes 1 and 5 during

training for x → x ∨ y, one successful and one unsuccessful, sampled after

every iteration. The convergence plots are on a log scale and are sampled

every iteration, The parameter plots are smoothed using a spline.

The convergence of a more typical successful node (number 5) in Fig. 4.10b

also shows a number of distinct phases. The parameter plot in Fig. 4.10d shows

110 Chapter 4. Training UESMANN using back-propagation

0 50000 100000 150000 200000 250000

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5

iteration

lo
g1

0(
m

ea
n

sq
ua

re
d

er
ro

r)

(a)Mean squared error

0 50000 100000 150000 200000 250000

−
15

−
10

−
5

0
5

10
15

iteration
pa

ra
m

et
er

b
w1
w2

(b) Parameters

Figure 4.11: Convergence and parameter paths for node 25 (which starts at

w1 � −7.5, w2 � 4.5) during training for x → x ∨ y, which changes direction

abruptly (see Fig. 4.9).

each of these phases corresponds to a change in the gradient being followed, as we

might expect: note particularly the rapid drop in error just before iteration 30000,

accompanied by a rapid change in the bias and an increase in the rate of change of

w2. It should also be noted that the error is still falling at the final iteration, although

this effect is greatly enhanced by the use of a log scale. The minimum found still

has a small gradient along which the solution will move, and this gradient probably

approaches zero asymptotically as w1 increases.

Convergence curves for the three different nodes discussed above at different

learning rates are shown in Fig. 4.12. These show a similar behaviour to the plain

delta rule, with higher η converging faster and escaping flat regions. Indeed, it seems

that η � 0.05 was rather too conservative, with the very high η � 10.24 escaping

its flat region in the normally non-convergent node 1. In this case, the node must

escape a large flat region — increasing η gives the node time to do so.

4.3 UESMANN on the boolean pairings 111

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−
5

−
4

−
3

−
2

−
1

0

iteration

lo
g1

0(
m

ea
n

sq
ua

re
d

er
ro

r)

● ● ● ● ● ● ● ● ● ●

●

eta

0.01
0.04
0.16
0.64
2.56
10.24

(a) Node 1 (unsuccessful)

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−
6

−
5

−
4

−
3

−
2

−
1

iteration

lo
g1

0(
m

ea
n

sq
ua

re
d

er
ro

r)

●

● ● ● ● ●

●

●
●

●

●

eta

0.01
0.04
0.16
0.64
2.56
10.24

(b) Node 5 (successful)

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−
6

−
5

−
4

−
3

−
2

−
1

0

iteration

lo
g1

0(
m

ea
n

sq
ua

re
d

er
ro

r)

●
● ● ● ● ● ● ● ● ●

●

eta

0.01
0.04
0.16
0.64
2.56
10.24

(c) Node 25 (successful, but unusual)

Figure 4.12: log
10

of mean squared error against iteration for nodes 1, 5 and

25 at different learning rates

4.3.1.4 An impossible pairing: x ∨ y → x

Fig. 4.13 showsa similar set of runs for an“impossible”pairing, x∨y → x, whichdoes

not appear in Fig. 3.5. Note that the error in the surface does not reach zero; no point

in the plot is a solution. However, the paths converge to minima, with the majority

finding the best (but still inadequate) solution in a long valley w1 > 5, w2 ≈ 0.28.

112 Chapter 4. Training UESMANN using back-propagation

0.1

0.2

0.3

0.4

0.5

0.6

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

1● 2● 3● 4● 5● 6●

7● 8● 9● 10● 11● 12●

13● 14● 15● 16● 17● 18●

19● 20● 21● 22● 23● 24●

25● 26● 27● 28● 29● 30●

31● 32● 33● 34● 35● 36●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

w1

w
2

Figure 4.13: Paths of 36 nodes during training for x ∨ y → x, overlaid on a

plot of the mean error surface at a mean final bias for converged nodes, with

arrows showing the vector field for weights trained using back-propagation

at the same bias. Weights are sampled every 25 iterations.

4.3.1.5 Summary

These brief explorations demonstrate that even in a single node, the convergence of

UESMANNwithback-propagation canbe complexdue to thenature of the combined

error surface which is being traversed — however, the modified back-propagation

algorithm (actually the delta rule because we are only looking at a single node)

appears to follow the gradient well. High learning rates are advantageous here

because of the number of flat regions in the error volume, although this may only

apply when initial weights and biases are too large, and only in these boolean

problems. We will now look at convergence in a network with hidden nodes.

4.3 UESMANN on the boolean pairings 113

4.3.2 Convergence in networks with hidden nodes

This section examines the convergence behaviour of 2-2-1 networks learning three

different boolean pairings, none of which are possible in a single node:

• x ∨ y → x ∧ y (OR to AND) is an “easy” pairing, occupying 4.8 × 10
−5

of the

solution space (Fig. 3.10) and converging to a correct solution in all 1000 trials

(Fig. 4.3a).

• x ⊕ y → x ∧ y (XOR to AND) is a “moderate” pairing, occupying 2.5 × 10
−6

of

the solution space and converging to a correct solution in 62% of 1000 trials.

• x ∧ y → ¬(x ∨ y) (AND to NOR) is a “difficult” pairing, despite occupying

4.65 × 10
−6

of the space, converging to a correct solution in 0.7% of 1000 trials.

While not the hardest pairing to train (this honour goes to x ∨ y → ¬(x ∨ y)
(OR to NOR) and its negative), it is anomalous in that the Monte Carlo plot in

Fig.3.10 suggests it should be easier to train.

• x ⊕ y (XOR), trained using plain back-propagation, is used as a basis for com-

parison.

An initial set of runs was made to study the performance at different learning rates.

500 networks with initial randomweights and biases in [− 1√
2

, 1√
2

]were trained, with

the performance being calculated as the MSE across all examples (Eq. 4.17). The

networks were tested at a range of different iteration counts, with themean results in

Fig. 4.14. Note that these plots are logarithmic on the iteration count axis. Also note,

importantly, that these merely show themean performance of the networks. Rather than
showing statistical details, the learning behaviour of some individual networks for

each of these problems is examined in the next section.

Firstly, the “control”: training a neural network to perform XOR with back-

propagation is, perhaps, the first non-separable problem tackled in neural networks,

dating back to Rumelhart, Hinton andWilliams [237]. Fig. 4.14a shows the networks

converge to successful minima with increasing speed as η increases, but that there

appears to be a large “flat” region near the starting point formost networks: themean

MSE takes some time to begin falling. The performance of the resulting network

is slightly worse (from the point of view of mean squared error) at higher rates,

because here the network is oscillating slightly around a solution. However, the

solution region is large enough that there is still a good result.

Fig. 4.14b shows the “easy” UESMANN problem of x ∨ y → x ∧ y (OR to AND)

converging to solutions rapidly at all η, typically more quickly than the control. It

114 Chapter 4. Training UESMANN using back-propagation

3.0 3.5 4.0 4.5 5.0 5.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

log10(iters)

m
ea

n
of

 M
S

E
 a

cr
os

s
al

l n
et

w
or

ks

●
● ● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ● ● ●

●

●

eta

0.01
0.02
0.04
0.08
0.16

0.32
0.64
1.28
2.56
5.12

(a) x ⊕ y (plain backprop)

3.0 3.5 4.0 4.5 5.0 5.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

log10(iters)
m

ea
n

of
 M

S
E

 a
cr

os
s

al
l n

et
w

or
ks

●

●

●

●

●

●

●

●
● ●● ● ● ● ● ● ● ● ● ●

●

●

eta

0.01
0.02
0.04
0.08
0.16

0.32
0.64
1.28
2.56
5.12

(b) x ∨ y → x ∧ y

3.0 3.5 4.0 4.5 5.0 5.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

log10(iters)

m
ea

n
of

 M
S

E
 a

cr
os

s
al

l n
et

w
or

ks

●

●

●

●

●

●

●

●

●
●

●

●
● ● ● ● ● ● ● ●

●

●

eta

0.01
0.02
0.04
0.08
0.16

0.32
0.64
1.28
2.56
5.12

(c) x ⊕ y → x ∧ y

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

log10(iters)

m
ea

n
of

 M
S

E
 a

cr
os

s
al

l n
et

w
or

ks ●
●

●

●

●

●
●

● ● ● ● ●● ● ● ● ● ● ●

●
● ● ● ●

●

●

eta

0.01
0.02
0.04
0.08
0.16

0.32
0.64
1.28
2.56
5.12

(d) x ∧ y → ¬(x ∨ y)
(note longer training)

Figure 4.14: Mean squared error against log
10

of training pair-presentations

(i.e. four times the number of iterations) for three different boolean pairings

in 2-2-1 UESMANN networks at different learning rates η. Also shown is the

MSE against presentations for plain back-propagation learning x ⊕ y (XOR) as

a basis for comparison. Note that the plot begins at 1000 pair-presentations:
the initial error is not shown.

maybe thatUESMANNavoids flat regions near the start simply because it isworking

with two gradients: where the surface is flat for one function, it is unlikely to be flat

4.3 UESMANN on the boolean pairings 115

in the other. We might also expect some speed increase if the gradients of the two

functions align: Algorithm 1 performs two updates where normal back-propagation

performs one, so if the two updates happen to be along roughly the same gradient,

we effectively get “two updates for the price of one.”

These systems have a simple error surfacewith largeminima and fewproblematic

local minima — using a high η will allow flat regions to be traversed rapidly, so a

solution can be found quickly. Themoderately difficult x⊕ y → x∧ y pairing, shown

in Fig. 4.14c converges increasingly quickly and to better solutions as η increases,

until η � 1.28. After this, performance rapidly declines (in the log scale).

The “very difficult” system x ∧ y → ¬(x ∨ y), shown in Fig. 4.14d converges

slowly and rarely finds an adequate solution— the best meanMSE achieved is 0.1 at

η � 1.28, giving anmean error magnitude of ∼ 0.3. However, although the networks

at this high η on average perform slightly better from the point of view of mean

squared error across all networks, none of the individual networks actually perform

the required functionswhen the output is thresholded. Lower η values have a higher

mean MSE but still produce solutions at a rate of around 1 in 100, as can be seen

in Fig 4.15 which shows the proportion of “good” networks. The error surface for

this pairing appears to have a dominating local minimum for a poor solution, such

that a relatively low η and a fortuitous choice of initial weights are required to find

it. It is an anomaly, as has already been noted in Sec. 4.3: the proportion of good

solutions found by back-propagation is far lower than the size of its solution space

would suggest.

116 Chapter 4. Training UESMANN using back-propagation

3.0 3.5 4.0 4.5 5.0 5.5

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

log10(iters)

pr
op

or
tio

n
of

 g
oo

d
so

lu
tio

ns
 u

nd
er

 th
re

sh
ol

di
ng

● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

eta

0.01
0.02
0.04
0.08
0.16

0.32
0.64
1.28
2.56
5.12

Figure 4.15: The proportion of networks trained for x ∧ y → ¬(x ∨ y) which

perform those functions when outputs are thresholded at 0.5

4.3.3 Performance studies of individual networks

Informed by the results of the previous experiments, for the following experiments

η � 0.1 was chosen as being sufficiently low to expose differences in the paths

followed through convergence, while being high enough for most networks capable

of converging to a solution to do so.

For each pairing, 100 attempts were made from different initial random weights,

and each attempt was run for 25000 iterations (i.e. four paired examples run through

100000 pair updates: iterations of the inner loop of Algorithm 1). The mean squared

error was sampled every 500 pair presentations (125 iterations), giving the results in

Fig. 4.16.

Training for x ∨ y → x ∧ y shows ready convergence to a wide minimum, or

possibly several close minima. x ⊕ y → x ∧ y shows a pattern of convergence to a

number ofminima, two ofwhich arewithin the success criterion (i.e. produce correct

outputs under thresholding for all inputs x , y ∈ {0, 1}). Most networks converge to

the minimum with the lowest error, although a pair of outliers converge to slightly

higher errors. The networks can diverge fairly late, as late as 10000 iterations (or

40000 pair presentations). With x∧ y → ¬(x∨ y), we see the vastmajority of pairings

4.3 UESMANN on the boolean pairings 117

0 5000 10000 15000 20000 25000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

iteration

m
ea

n
sq

ua
re

d
er

ro
r

(a) x ⊕ y only (plain backprop)

0 5000 10000 15000 20000 25000

0.
00

0.
05

0.
10

0.
15

0.
20

iteration

m
ea

n
sq

ua
re

d
er

ro
r

(b) x ∨ y → x ∧ y

0 5000 10000 15000 20000 25000

0.
00

0.
05

0.
10

0.
15

0.
20

iteration

m
ea

n
sq

ua
re

d
er

ro
r

(c) x ⊕ y → x ∧ y

0 5000 10000 15000 20000 25000

0.
00

0.
05

0.
10

0.
15

0.
20

iteration

m
ea

n
sq

ua
re

d
er

ro
r

(d) x ∧ y → ¬(x ∨ y)

Figure 4.16: Mean squared error (see Eq. 4.17) for 100 attempts of three

different pairings (and also XOR only), sampled during training every 500

pair presentations. Networks which converged to a successful solution (when

outputs are thresholded at 0.5) are shown in black, unsuccessful networks are

shown in grey. Learning rate η � 0.1.

heading into what appears to be a large, flat local minimum — the networks are a

little spread out (reflected by a slight difference in their final values not apparent

in the plot). However, one network finds an “escape route” on its way into the

minimum.

118 Chapter 4. Training UESMANN using back-propagation

Fig. 4.17 shows the actual parameters of some networks of the twoharder pairings

during training. x ⊕ y → x ∧ y shows a quick departure from the initial random

values towards the solution, while x ∧ y → ¬(x ∨ y) has a rather more complex

path in the successful run. The failed run path is simple, and the contrast between

this and the successful plot, along with the rarity of solutions, suggest that the

the successful network converges on an fairly small “escape route” at about 10000

iterations. Since the back-propagation algorithm (in which the weights follow a flow

along the an error surface) is a dynamical system, we can perhaps use dynamical

systems terminology and describe this point in the training as a bifurcation point:

the weights will take one of two paths, dependent on the initial conditions, with the

successful path being rare. It is likely that the error surface for this problem has a

complex topography, more so than the other problems, with a narrow area of the

solution space containing gradients leading into the solution itself.

4.4 Summary 119

0 5000 10000 15000 20000 25000

−
5

0
5

10
15

iteration

pa
ra

m
et

er

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

●

●b10
w100

w101
b11

w110
w111

b20
w200

w201

(a) x ⊕ y → x ∧ y (successful)

0 5000 10000 15000 20000 25000

−
10

−
5

0
5

10
15

iteration

pa
ra

m
et

er

●

●

●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ●
●

●

●
●

● ● ● ● ● ● ● ● ●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●
● ● ● ● ●

●

●

●b10
w100

w101
b11

w110
w111

b20
w200

w201

(b) x ∧ y → ¬(x ∨ y) (successful)

0 5000 10000 15000 20000 25000

−
5

0
5

iteration

pa
ra

m
et

er

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●b10
w100

w101
b11

w110
w111

b20
w200

w201

(c) x ∧ y → ¬(x ∨ y) (failed)

Figure 4.17: The weights and biases of some networks during training: one

example of a successful, moderately hard pairing is shown, and examples of

successful and failed networks for the most difficult pairing.

4.4 Summary
Wehave determined that 2-2-1 networks can be trained usingAlgorithm 1 to perform

any pairing of boolean functions, with a success rate roughly correlating with the

size of the solution volume as found by Monte Carlo simulation, with the exception

of a notable pair of outliers: x ∧ y → ¬(x ∨ y) and ¬(x ∧ y) → x ∨ y.

120 Chapter 4. Training UESMANN using back-propagation

Studies were done to examine the convergence behaviour of some of these pair-

ings, showing that most pairings performwell at a wide range of learning rates. The

performance of some pairings is lower at low learning rates, with more networks

becoming trapped in local minima or not converging given the number of training

iterations. However performance in some networks also appears to degrade sharply

as the learning rate increases: this may be because such pairings have a more com-

plex error space, which requires the network to converge through a fairly narrow

volume in the space before it can arrive at a solution.

The most difficult pairing converges extremely slowly, with a narrow range of

learning rates being required for success. With too slow a learning rate the network

either fails to converge or gets trapped in a local minimum which dominates the

solution space, while with a high learning rate the network misses the small “pass”

in the error space through which the solution lies.

Studies of individual networks during training bear out these conclusions: the

error space for UESMANN networks training more complex boolean functions ap-

pears to be complex, with several incorrect local minima (in the sense that they do

not produce the required results). In the extreme case of x ∧ y → ¬(x ∨ y) and
its pairwise negation, the space is dominated by a single minimum which is rarely

escaped. However, solutions are possible provided enough attempts are made from

different initial values.

Futurework could examine the effectiveness of batchmethods andmomentum in

escaping theseminima, although it is unlikely theywould help in this case: batching

may actually increase the chance of being caught in a minimum, since the stochastic

method applies “jitter” to the networks’ paths through the solution space making

fortuitous escapes more likely; while momentum may simply speed the dive into a

poor minimum, particularly where that minimum dominates large regions.

However, the results show that it is possible to train a 2-2-1 network to perform

any given pairing of binary boolean functions under thresholding at 0.5. This is

remarkable, since this is theminimumstrict feed-forwardnetwork topology required

for any single boolean, andweareusingno extraparameters. Weare simplydoubling

the weights of each node under modulation.

We will now move on to examining the actual networks generated, investigating

how many solutions there are and how they cluster, and studying their behaviour

under transition.

4.5 The nature of 2-2-1 boolean UESMANN networks 121

4.5 The nature of 2-2-1 boolean UESMANN networks
In this section wewill examine some solutions discovered by UESMANN to determ-

ine how they function. This will be done by selecting a number of pairings based on

how difficult they are to train, and training a number of both UESMANN networks

(using Algorithm 1) and three types of network of similar complexity, described

below in Sec. 4.5.1. This will provide information about how well UESMANN con-

verges to solutions compared with other network types, and about the nature of the

error surface.

This done, we will concentrate briefly on the UESMANN networks. The results

of the previous section (see Fig. 4.16) show that UESMANNpairings tend to generate

solutions which are close to one of several final mean squared errors, which would

indicate that they are approximately the same solution. This suggests that the

weights and biases of the networks themselves fall into tight clusters.

We will use a clustering technique to establish how many clusters there are, and

find their centroids. If the clusters are tight enough, this will give us a reasonable

approximation of the successful minima of the network, which we can then study.

For each minimum (each solution cluster’s centroid), we will consider the action

of the modulator as it moves from 0 to 1 and how it changes the behaviour of the

nodes in the network, and thus the output. This will improve our understanding of

how UESMANN nodes function in ways which can be generalised to more complex

problems.

In the light of this analysis, we will also look at the transition behaviour of a

number of UESMANN networks trained on the problem, and compare it with net-

works trained using the other techniques discussed below. We would expect that

output blending will always produce a crisp transition at 0.5, because (a) we are

linearly interpolating between two network outputs and (b) the individual functions

are easy to train so the endpoints will always be close to 0 or 1. Weight blending

is likely to produce complex transitions which will be different for every network,

because there are a large number of possible solutions to each function and we are

interpolating the weights, producing unpredictable networks due to the different

“competing conventions” of the two parents. The h-as-input method should pro-

duce complex non-linear transitions, involving some intermediary boolean functions

under thresholding. They may or may not be consistent (i.e. the same for different

initial weights) depending on how many solutions there are to the problem.

UESMANN itself, we predict, will produce non-linear transitions which will be

wide, i.e. the network will transition to an intermediary boolean as it moves from 0

122 Chapter 4. Training UESMANN using back-propagation

to 1. It should be consistent in behaviour, because the solutionwill fall into a number

of clusters, most of which are linked by some simple symmetry rules and so perform

the same behaviour.

4.5.1 Alternative modulatory methods

Three other modulatory methods were selected as a basis for comparison. These

were chosen primarily on the basis of being obvious and naïve ways of producing

neural network architectures trainable by back-propagation which can interpolate

between two functions — other reasons are given under the relevant method. The

methods are:

• Output blending: Two topologically identical networks are trained separately

to perform the h � 0 and h � 1 functions. At run time both networks are

run separately and the output nodes are linearly interpolated with h as the

parameter. We define the two networks’ nodes by

a l
i � σ

©«b l
i +

∑
j

w l
i ja

l−1

j
ª®¬ (4.18)

and

z l
i � σ

©«c l
i +

∑
j

v l
i j z

l−1

j
ª®¬ , (4.19)

using the conventions of Fig. 4.1 (p. 93)with a , w , b representing the activations,
weights and biases of the first network and z , v , c representing those of the

second network. The function σ(x) is the activation function: the standard

logistic sigmoid σ(x) � 1

1+e−x . Thus the output layer is given by

oi � (1 − h)aL
i + hzL

i . (4.20)

This method has no direct biological inspiration, and was was chosen because

it is perhaps the most obvious method. Arguably, it corresponds to a simple

action selection system: the modulator selects which network’s output should

be used, but in a continuous manner.

• Weight blending: As with output blending, two networks are trained separ-

ately to perform the two functions. At run time, the weights and biases are

linearly interpolated between using h as the parameter to provide the final

network to which the inputs are passed. Thus again we have two networks

4.5 The nature of 2-2-1 boolean UESMANN networks 123

with the same topologies, as given in Eqs. 4.18 and 4.19. We can denote our

final network thus:

p l
i � σ

©«r l
i +

∑
j

q l
i j p

l−1

j
ª®¬ , (4.21)

obtaining the weights and biases represented by q and r with

r l
i � (1 − h)b l

i + hc l
i (4.22)

q l
i j � (1 − h)w l

i j + hv l
i j . (4.23)

The output of the network is then given by Eq. 4.21 for the output layer. It is

also noteworthy that if we make the following definitions:

s l
i � c l

i − b l
i (4.24)

t l
i j � v l

i j − w l
i j , (4.25)

then

p l
i � σ

©«b l
i + hs l

i +
∑

j

(ht l
i j + w l

i j)p
l−1

j
ª®¬ . (4.26)

This is the similar to the alternative additive form of the Neal/Timmis sys-

tem given in footnote 19 on p. 47; however, here the bias is also subject to

modulation. This method was chosen because of this correspondence to the

Neal/Timmis system, in the belief that exploring it would reveal interesting

properties of that system and how it relates to UESMANN.

• h-as-input: The modulator is provided as an additional input to a standard

multi-layer perceptron of the form described by Eq. 2.9, and the training ex-

amples for the two functions are both passed to the networkwith the extra input

set to 0 or 1. This is analogous to a biological network with an input from a

receptor neuron for a certain chemical, and therefore is not strictly “neuromod-

ulation.” It was chosen because it is architecturally identical to an unmodified

multilayer perceptron, with only the semantics of the inputs changed.

4.5.2 Expected cluster symmetry

We have said that UESMANN networks are expected to fall into clusters, and given

the topology and function of aUESMANNnetwork, we can describe some symmetry

properties of these clusters. The following discussions will use the weight and bias

labelling given in Fig. 4.18, which itself is based on the convention in Fig. 4.1, page 93.

124 Chapter 4. Training UESMANN using back-propagation

There are certain symmetries we can expect to find in 2-2-1 networks trained for

x

y

b1

0

b1

1

b20

w1

00

w1

11

w1

01

w1

10

w2

00

w2

01

Figure 4.18: Labelling of weights and biases in networks – biases are shown

in the nodes themselves. Bias labels are layer/node, weight labels are to-

layer/to-neuron/from-neuron.

boolean pairings, since certain transformations of networks will function identically.

Consider the transformation in Fig. 4.19. With the hidden nodes and their weights

into the output node swapped, the networks N and h(N) will function identically.

This will hold for all pairings. This can be written as

x

y

b1

0

b1

1

b20

w1

00

w1

11

w1

01

w1

10

w2

00

w2

01

(a) N : unswapped

x

y b1

0

b1

1

b20

w1

00

w1

11

w1

01

w1

10

w2

00

w2

01

(b) h(N) : hidden nodes swapped

Figure 4.19: Hidden node swap transformation of a network N

h(N) � N : {w1

00
↔ w1

10
, w1

01
↔ w1

11
, w2

00
↔ w2

01
, b1

0
↔ b1

1
}, (4.27)

where N : {· · · } represents N after a series of exchanges on its weights and biases,

each described by a ↔ b, where the parameters to be exchanged are given using the

notation in Fig. 4.18.

Now consider the situation in Fig. 4.20, where the inputs are swapped alongwith

their weights into the hidden layer. This exchange will result in the same function

being performed, but only if the function passed in is commutative. In a UESMANN

4.5 The nature of 2-2-1 boolean UESMANN networks 125

setting, both functions in the pairing must be commutative for this transformation

to be valid.

x

y

b1

0

b1

1

b20

w1

00

w1

11

w1

01

w1

10

w2

00

w2

01

(a) N : unswapped

x

y b1

0

b1

1

b20

w1

00

w1

11

w1

01

w1

10

w2

00

w2

01

(b) i(N) : inputs swapped

Figure 4.20: Input swap transformation of a network N

This transformation can be written as

i(N) � N : {w1

00
↔ w1

01
, w1

10
↔ w1

11
}, (4.28)

following the convention set earlier.

These transformations can themselves be composed into the transformations

h(i(N)) and i(h(N)), which are identical, both consisting of the exchanges

i(h(N)) � h(i(N)) � N : {w1

00
↔ w1

11
, w1

10
↔ w1

01
, w2

00
↔ w2

01
, b1

0
↔ b1

1
}.
(4.29)

This transformation is shown in Fig. 4.21, and again is only valid if the functions

the network is trained for are commutative. Although the transformation results

in the network being apparently drawn “upside-down”, the inputs and weights are

exchanged: input x in the old network is now input y in the new, and weight w1

00

takes the place of weight w1

11
(and so on).

Thus for any network N which performs a pairing f → g, there will also be a

network h(N) which also performs that pairing. If both functions are commutative,

there will be two more networks i(N) and h(i(N))which perform the pairing. These

solutions will occupy the same amount of solution space, but may not appear with

equal frequency in the trained networks due to the complexity of the error surface.

We will investigate this possibility for each network.

126 Chapter 4. Training UESMANN using back-propagation

x

y

b1

0

b1

1

b20

w1

00

w1

11

w1

01

w1

10

w2

00

w2

01

(a) N : unswapped

x

y

b1

0

b1

1

b20

w1

00

w1

11

w1

01

w1

10

w2

00

w2

01

(b) i(h(N)) � h(i(N)) : inputs and hidden

nodes swapped

Figure 4.21: Input and hidden node swap transformation of a network N

4.5.3 Clustering method

Wewish to find clusters of similar networks, i.e. networkswhich have similarweights

and biases. The method chosen for finding clusters is agglomerative hierarchical

clustering[78]:

• Each item is placed into a cluster by itself.

• Thedistances between all pairs of clusters are found. There are severalmethods

for this. We have chosen the “average linkage distance”: the mean Euclidean

distance between all pairs of elements in each cluster. Two other methods

commonlyused are complete linkage distance, where thedistance is themaximum

distance between two points (one from each cluster), and single linkage distance
which is the minimum such distance (all using the Euclidean distance between

individual items). Complete linkage clustering is sensitive to outliers, and

single linkage clustering can tend to form long chains which do not correspond

to our intuitive idea of clusters as compact, spherical objects. The average

linkage distance is a compromise between these two[174, 251].

• The two closest clusters are merged into a single cluster.

• The previous two steps are repeated until there are two clusters; however, all

intermediate cluster merges are kept and examined by the experimenter.

Typically, the entire clustering process is visualised as a dendrogram — a tree dia-

gram showing the process of agglomeration — where the height of the tree corres-

ponds to the distance between the clusters. The decision of where to “cut” the tree,

of which clustering to accept, is ultimately subjective; but typically the clustering

which has the largest vertical space in the dendrogram is used. This is the clustering

4.5 The nature of 2-2-1 boolean UESMANN networks 127

for which the greatest change in distance is required before another agglomeration

occurs. See Fig. 4.22 for an example.

4.5.4 Clustering solutions for x ⊕ y using plain back-propagation

To both provide a baseline for comparison and demonstrate the clustering technique,

networks were trained for 75000 iterations with η � 2 to perform x ⊕ y using back-

propagation with no modifications, as in Fig. 4.16a. New networks were generated

until 500 successful instances were found, requiring 649 networks and giving a

success rate of 77%. The high η was used here to match the result in the subsequent

experiment, since we will compare this plain back-propagation x ⊕ y clustering with

the clusters for x ⊕ y → x ∧ y, to determine if any of the latter clusters (which

perform XOR at h � 0) match clusters for networks trained to perform XOR alone.

Additionally, we have already seen in Fig. 4.16a that this function is better trained at

high η, possibly because of a large flat region in the error surface around the origin.

The results of the clustering operation are shown in Fig. 4.22. The dendrogram

discussed above is shown on the left: at the bottom are the individual clusters at the

start of clustering, each one containing a single network run. These are gradually

agglomerated into clusters as the tree height increases, until we arrive at a single

split. We have chosen a cut at height 20, where there are 10 clusters. We could

have perhaps chosen 4 clusters, to get a coarser view with many outliers folded into

clusters. The right hand figure shows the network parameters themselves, with each

network shown as a polygonal chain coloured according to the cluster.

This is a complex clustering, and indicates that there are many solutions to the

XORproblem, although two solutions (clusters 2 and 6) dominatewithmore than 200

individual networks each. Other solutions are outliers. The two dominant clusters

are effectively the same clusters with the hidden nodes exchanged: recall Eq. 4.27 in

Sec. 4.5.2. Similar relationships exist between the outliers. All the relationships and

cluster sizes are shown in Fig. 4.23.

There is a large body of literature on the solutions for this problem [173, 29, 261,

111]5, sowewill not analyse the clusters any further, having found tight clusters with

which to compare UESMANNnetworks and demonstrated the clustering technique.

We should note, however, that there may be many other solutions which it possible

to generate using back-propagation, but they may be vanishingly rare.

5Note the that [173, 29] and [111] disagree on the existence of local minima in the XOR problem:

this demonstrates the difficulty of analysing error surfaces in multilayer perceptrons!

128 Chapter 4. Training UESMANN using back-propagation
16

4
15

3
18

4
33

9 9
13

1
30

8
23

5
41

5
24

5
13

6
27

8
38

2 8
6

16
7

11
9

53
6

60
6

18
5

33
2

15
9

48
7

56
9

23
3

28
9 5

61
7 18 62
7

21
7

26
9

62
4

17
1

27
6

25
8

15
4

55
4

43
9

63
5

45
5 39 43
8

19
3

24
8

44
9

60
4

14
0

45
0 73 47
2 56 52
0

21
0

34
5

54
2

29
7

64
7

11
7

55
9 13 90 64
3

58
7

52
3

53
9

16
5

40
2

39
0

14
3

26
4

16
0

57
0 36 31 49
4

52
2

48
9

53
7

25
2

34
8

35
1

62
8

65
3

25
9

28
1

34
0

28
2

57
5

17
4

36
2

47
3

53
2 53 74 30
0 14 8 23
7

55
3

37
6

50
0 47 19 48
4

59
8

32
4

14
1

19
9

50
9

15
1

43
5

32
0

32
1

42
0 85 16
6

44
5

60
8

40
7

36
5

60
2

21
1

27
0 67 48
3 89 15
5

10
7

22
2

53
1

26
5

24
7

24
2

37
9

13
8

19
4

42
7

31
3

33
1 61 27
5

35
9

36
9

10
6

24
4

54
8

29
2

50
6 17 12
3

59
3

64
1

50
4 62 34
6 37 29
8

62
1

31
5

24
0

35
8 52 58
3

15
6

18
9

23
0

55
7 45 82 34
4

45
1

25
5

61
3

42
5

52
1

22
6

57
9

55
0

11
8

51
7

41
6

61
2

64
6

31
6

32
9

46
8

39
5

46
1

49
9

52
4

30
3

29
5

26
2

31
0

13
0

42
8 70 29
6

36
8

44
0

65
4

22
5

63
8

54
9

39
2

61
6

39
1 50 49
0 95 39
9

21
6

44
7

57
2

41
9 91 37
5

23
6

13
3

37
3

51
0

38
34

1 97 60
5 4

13
2

41
4

36
6

41
7

28
3 6

17
9

38
7

61
8

51
4

30
1

51
1

46
3

56
7

19
7

48
1

14
6

20
2 58

0
41 27
4 60 32
2

21
5

12 37
0

29
28

5
17

0
41

2
18

1
31

8
49

3
10

0
11

0
42

3
30

2
26

3
63

1 24 45
7

20
4

21
4

29
1

36
7

56
2

38
8 2

19
6 16 44 14
8

43
2 64 11
5 75 47
6

37
7

39
4

61
9

25
4

47
4

53
3 83 18
7

28
6

41
1 58 25
6

54
5

51
5

54
0

12
7

61
4

22
0

23
1

63
4

42
6

30
4

65
2

33
0

48
5

57
8 68 47
9

14
9

33
5 22 52
9

23
8

16
2

36
0

10
1

15
7

59
9

17
6

54
4

18
3

20
1

60
9

56
6 46 27
1 65 88 45
9

26
7

37
1

42
4

25
7

53
5

63
3

28
7

37
4

38
6

10
2

58
9

20
5 96 46
7

19
5

36
1

40
8

53
0

25
1 25 47
0 28 63 32 43
4

24
3 10 58
6

63
7

25
3 35 26
6

40
9

30
5

13
9

29
4

28
0

64
8

19
0

39
8

49
6

12
8

34
7

26
0

59
2

27
9

35
5

43
1

45
4

50
7

20
0

12
4

29
9

33
8

38
3

44
8

13
5

57
1

51
3 21 22
3 15 39
7

38
5

18
6

55
1

21
3

29
0

46
4

47
5

56
8

57
3

14
2 20 17
5

34
3

12
6

30
6

24
6

51
8 43 23
4

46
5

58
4 98 42
1

50
3

62
9 76 56
3

33
7

52
5

25
0

26
8

18
0

63
2

11
6

48
6 54 55 26 49 26
1

58
2

15
2

49
1

28
8

17
3

60
0

60
3

40
4

35
2

38
0

12
5

21
8

44
3

50
1

54
7

27
3

64
5

20
6

34
9

22
9

50
2

15
8

31
7

43
6 87 41
0

10
4

16
9

55
2 77 71 32
7

29
3

62
3 66 55
8 80 69 62
6

11
4

20
3 39

3
46

2 84 23
9 44

2
12

1
47

8
40

1
57

4 36
4

49
8

43
7

50
8 17

2
30

9
22

8
45

3
20

7
56

5 34 10
8 64
0

54
1

59
5

Cluster Dendrogram

Run

H
ei

gh
t

0
10

20
30

40

Weight/bias name
W

ei
gh

t/b
ia

s
va

lu
es

b10 w100 w101 b11 w110 w111 b20 w200 w201

−1
0

−5
0

5
10

1
2
3
4
5
6
7
8
9
10

dominating
cluster

dominating
cluster

Figure 4.22: Hierarchical clustering of 500 networks successfully trained to

perform x ⊕ y, 75000 iterations at η � 2, Bishop’s rule for initial weights,

with accompanying dendrogram. The selected cut point is shown in the

dendrogram as a red horizontal line, giving 10 clusters: the two dominating

clusters are marked with a cross where they intersect the cut line. Within the

cluster diagram itself, each individual network is shown as a faint polygonal

chain of the cluster colour. There is more explanation of the dendrogram in

the text.

4.5.5 Pairings tested

The two pairings tested were

• x ⊕ y → x ∧ y (XOR to AND)

• x ∧ y → ¬(x ∨ y) (AND to NOR)

The first, x ⊕ y → x ∧ y, was selected as a “moderately difficult” pairing. It has a

fairly small solution volume (20th smallest according to theMonte Carlo simulations

performed earlier), and under the training regime specified for Fig. 4.3 converges to a

solution for about half the networks (0.515) making it the 29th most difficult pairing

— although this may vary for different learning rates and iteration counts.

Importantly, it is also represented in Fig. 3.9: it is implementable in a 2-2-1

UESMANN network in which each node performs a boolean function, although the

solutions are extremely rare at 10
−4

of the solution space for such networks. Because

boolean nodes — nodes which perform boolean functions when thresholded at 0.5

— still perform their functions when saturated, there should be a larger number of

solutions which use them. It is likely that the error surface will lead the algorithm

to such a solution.

4.5 The nature of 2-2-1 boolean UESMANN networks 129

C1 (14) C3 (14)h

C8 (19)

i

C2 (203) i
C6 (208)h

C5 (13)

i

C4 (14)
C7 (8)

h
i

h

i

C9 (4) i
C10 (3)h i

Figure 4.23: Relationships between the clusters in 500 solutions found for

x ⊕ y at η � 2 with 75000 iterations, in terms of the symmetries discussed

in Sec. 4.5.2. The number of nodes in each cluster is shown in brackets, with

the relationship type h (hidden node swap) or i (input node swap) shown as

a label on the relationship edge. If the relationship is weak (mean distance

greater than 0.1) the edge is dotted.

The second network, x ∧ y → ¬(x ∨ y), is an anomaly: Fig. 4.4 shows that it

is extremely difficult to train with UESMANN despite having a reasonably large

solution space: it is only the 24th rarest pairing in the Monte Carlo experiments.

Sec. 4.3.2 (p. 113), shows that this pairing seems to converge to a good solution only

through a very narrow path in the error surface, with networks appearing to fall

into local minima which dominate the space. It is not represented in Fig. 3.9, and so

cannot be implemented in a 2-2-1 network consisting of purely boolean UESMANN

nodes. This may be a partial clue to its difficulty in training: it must require a hidden

node which is operating in an unsaturated manner, which will require a narrower

range of weights.

4.5.6 Analysis of x ⊕ y → x ∧ y (XOR to AND)

4.5.6.1 Comparison of convergence of different techniques for x ⊕ y → x ∧ y

Fig. 4.24 shows the performance at different learning rates of UESMANN and the

alternative modulation methods described in Sec. 4.5.1 (p. 122) for x ⊕ y → x ∧ y,

130 Chapter 4. Training UESMANN using back-propagation

given 125000 iterations. The learning rates chosen are in the range

η � 0.01 × 2
0.5x , x ∈ {0 · · · 19}, (4.30)

chosen to produce a reasonable range of values (given the previous experimental

results) over a logarithmic scale. The metric is the proportion of networks which

converged to a correct solution (i.e. one which performs the desired function pairing

under thresholding) out of 100 trials.

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(η)

pr
op

or
tio

n
co

rr
ec

t

UESMANN H−input output blend weight blend

Figure 4.24: Proportion of networks trained for x ⊕ y → x ∧ y which find

the correct solution at different learning rates η after 125000 iterations, using

four different types of modulatory network. Bishop’s method was used for

the initial weights. Note that weight and output blending are the same.

We can see that for this pairing UESMANN finds correct solutions for all but one

trial if η � 1.81. This is a better rate of success than all other methods (note that a

more accurate value for the optimum is shown in Fig. 4.28: η � 2, log
10
η � 0.30). The

plots for output blending and weight blending are identical because in both cases

we are generating networks for each function in the pairing and interpolating either

their outputs or their weights: given that we are only evaluating the networks at the

modulation extrema, weight and output blending are effectively the same operation.

The h-as-input method converges to solutions well, but not as well as UESMANN

at a well-chosen η. It also requires more parameters: a UESMANN network has

4.5 The nature of 2-2-1 boolean UESMANN networks 131

9, while an h-as-input network’s extra input increases the count to 11 (two extra

weights from the h input to the hidden layer).

On this pairing at least, UESMANN converges to solutions well — better than

the other network types at a well-chosen η. For the blended network types this is

likely to be because of a large flat area around the origin, which we have already

established is likely to exist in the plain back-propagation error surface for x ⊕ y (see

Fig. 4.16a). This will certainly inhibit the training of the x ⊕ y network required for

blended networks.

To examine the convergence behaviour more closely, 100 networks were trained

at the optimal learning rates found in Fig. 4.24. During training, the mean squared

error in the output over the four possible boolean inputs {x , y}; x , y ∈ {0, 1} was

plotted for all networks separately for each h value {0, 1}. This was done to see if

the networks moved towards solutions which “preferred” one of the functions in the

pairing. The results for x ⊕ y → x ∧ y at η � 1.81 are shown in Fig. 4.25.

The results show again that output blending and weight blending have the same

convergence behaviour when viewed at themodulator extrema. They also show that

UESMANNnetworks converge readily to a solutionwithin a few thousand iterations.

Most h-as-input networks converge rapidly on a solution for x ∧ y (although some

do not), but have considerably more difficulty finding a solution within the former

solution which also performs x ⊕ y. We have already seen that this function is

considerably more difficult to learn, at least by itself by plain back-propagation, and

this will carry over into output blending and weight blending networks. In h-as-
input the error surface seems more complex: the convergence oscillates until it finds

a narrowpathway down the gradient; an oscillation exacerbated by the high learning

rate (which is nevertheless the best learning rate of those tested).

4.5.6.2 The relationship between UESMANN and plain back-propagation solu-
tions

UESMANN networks for x ⊕ y → x ∧ y may converge to a solution for x ∧ y first, so

we might suspect that there exists a solution for x∧ y which performs x ⊕ y → x∧ y
when its weights are halved. Fig. 4.26 shows a clustering for plain back-propagation

solutions for x ∧ y with the weights halved, with all the UESMANN clusters6 found

for x ⊕ y → x ∧ y superimposed on it. We can see that there is no UESMANN

solution which matches the solutions for x ∧ y with halved weights.

Similarly, no plain back-propagation solution for x ⊕ y is a UESMANN solution

cluster when its weights are doubled, as Fig. 4.27. Thus the UESMANN solutions

6See the following section for how these clusters were derived.

132 Chapter 4. Training UESMANN using back-propagation

0 5000 10000 15000 20000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

iteration

M
S

E
 a

t e
ta

=
0.

16
00

00

xor and

(a) weight blending, η � 0.16

0 5000 10000 15000 20000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

iteration
M

S
E

 a
t e

ta
=

0.
16

00
00

xor and

(b) output blending, η � 0.16

0 5000 10000 15000 20000

0.
00

0.
05

0.
10

0.
15

0.
20

iteration

M
S

E
 a

t e
ta

=
3.

62
03

87

xor and

(c) h-as-input, η � 3.62

0 5000 10000 15000 20000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

iteration

M
S

E
 a

t e
ta

=
1.

81
01

93

xor and

(d) UESMANN, η � 1.81

Figure 4.25: Convergence behaviour for 100 different networks trained for

x ⊕ y → x ∧ y at optimal learning rates for four different network types. The

plot shows theMSE of the different four different boolean input pairs for both

the initial and terminal functions in the pairing separately.

for x ⊕ y → x ∧ y are unrelated to the individual back-propagation solutions for

x ⊕ y and x ∧ y.

4.5 The nature of 2-2-1 boolean UESMANN networks 133

75
12

2
49 43

1
40

7
22

7
35

7
17

6
12

3
39

8 30
1

44
1

35
5

37
6

15
6

35
0

29
2

23
7

26
0

37
5

33
4

36
6

10
1

16
6

26
3

47
0 18 69 41
7

18
8

23
2

22
2

18
7

14
6

43
2 59 48
2 23

8
91 36
7

49
2

21
9

28
4 34 22
0 17

7
95 39

6
10

6
11

6
10 19

8
36

0
60 27
0 40
8

47
3

50 82 27
3

28
5 92 30
2 38

2
74 84

65
36

5
28 14
7

46
2

22
8

32
5

13
0

20
7

19
7

21
7

13
5

33
5

11
5

44
2

25
3

39
0

34
5

48
7 12

5
47

2
42

2
33 21

2 29
0

98 40
5

27
2

19
5

27
7 38

41
0

49
7

32
8

41
5

48 39
4

47
6 89 15
2 1

13
19

0
39

9
10

4 99 43 46
6 94

16
2

48
1

15
8

14
2

44
4 1 78

32
2

13
4

14
4 2

96
37

3
11 88 54 38
9

21
3

47
1 44 97 34
9

80 62 39
7 44
7

20
8

42
6

16
7

30
4 3

37
0 72 12
6

36
2

26
7

43
6

32
0

33
3

16
3

24
5

32
7 40 11
7

13
1

31
2

38
1 12 57 25 45
8 81 22 10
2 52 35 46
8

33
6

40
2 67 70 11
2 30 41
8

10
7

45
0 20 49
5

38
6

85 17
2

17
45

2
46

3
30

9
40

6 14
3

21
8

21
4

14
8

43
0 13

2
79 31
9

30
5

38
0 61 71 23
0 31

5
44

9
31

4
38

7
8

48
3

16
4

42 39
2

12
7

13
3

33
9

13
7

49
3 41

6
18

2
14

1
25

4
15

1
32

9 9 46
4

35
1

24
4

45
4 29 29

4 45
7

10
0

27
8

39
28

3
28

0
39

1
29

8
37

2
23

1
21

6
22

1 46 56 43
4

46
5

22
6

39
5 13

9
26

6
31

8
29

5
30

8 40
9

14
9

18
1

17
1

34
0 24

7
11

8
12

0
17

0
17

9
18

4
49

4
16

0
11

0
25

7 96 19
1

20
1

41
3

15
5

17
3 31

27
6

35
4

36
9

47
9

48
9 23

5
26

1
40

3
35

3
38

5
6

48
6

25
8

37
7

10
5

20
0

33
2

16
5

27
4

31
6

22
4

39
3

40
0

24
2

28
2 83 93 21
5

26
2

45
9

37
8

23
6

30
3

18
9

19
9 48

4
19

4
34

8 4
27

44
5

43
5

28
6

31
3 18

0
12

8
17

5
22

5
43

9 36 73 20
5

36
4 8

6
45

5
44

6
46

9
41 51 26
5 16 30
6

44
3

17
8

24
1

41
9

47
4

34
4 14 27
5

24
3

27
9

49
6

14
0

35
9

33
0

35
8

33
1

38
4

25
5

46
1 4

60
35

6
32

1
37

4
21

1 63 17
4

48
5 53 15
3

42
5

26
8

48
0

15
0 4

15
9

49
0

20
4

31
1

36
3

37
9

18
3 7

28
7

28
1

20
2

42
3

36
8

15
7

33
8 64 16
8

25
1

37
1

12
1

24
0

45
1

19
2

23
4 58

40
4

47
5 21
0

68 15 27
1 77 29
7

10
9

30
7

11
9

13
8

14
5

23
3

24
9

22
3

23
9

28
8

49
1

18
6

32
4 34
3

19
3

47
7

41
4

46
7 5

29
3 21

22
9

35
2

20
9

42
9

45
6

10
8

34
2

15
4

28
9

26
4

47
8

11
4

29
9

42
0

40
1

45
3 31

7
16

9
43

7
20

3
25

6 13
6

37 47 38
3 23 42
1

33
7

32
6

41
2 2 66 16
1

34
1

49
9 20

6
12

9
18

5
38

8 32 41
1 76

24
6

25
2

42
4

32
3

42
8 25

0
25

9
34

7
29

1
45 55 44

0
19 24 2

48
13 87

10
3

34
6 36
1

49
8

31
0

48
8 44

8
26

9
11

1
30

0
12

4
43

3 27 19
6

90
26 43

8

Cluster Dendrogram

Run

H
ei

gh
t

0
5

10
15

20

Weight/bias name

W
ei

gh
t/b

ia
s

va
lu

es

b10 w100 w101 b11 w110 w111 b20 w200 w201

−1
0

−5
0

5
10

15
20 1

2
3
4

UESMANN XOR−>AND clusters

Figure 4.26: Clustering of 500 plain back-propagation solutions for x∧ y with

weights halved, with theUESMANNsolutions for x⊕ y → x∧ y fromFig. 4.29

superimposed over them. The clustering dendrogram and cut point for x ∧ y
are shown on the left. Learning rate η � 2 for all runs, with initial weights

from Bishop’s Rule. Each network is shown as a polygonal chain linking the

values of its parameters. Weights and bias columns are labelled according to

the scheme in Fig. 4.18, modified such that wLIJ represents w l
i j .

16
4

15
3

18
4

33
9

13
6

27
8

38
2

24
5 9

13
1

30
8

23
5

41
5

11
9

53
6

60
6

15
9

48
7

56
9

18
5

33
2

23
3

28
9 5

61
7 86 16
7

18 62
7

21
7

26
9

62
4

17
1

27
6

31
5

45
5

39 43
8

19
3

24
8

44
9 73 47
2 56 52
0

58
7

60
4

14
0

45
0

21
0

34
5

54
2

29
7

64
7

52
3

90 64
3 13 26
5

11
7

55
9

53
9

16
5

40
2

39
0

14
3

26
4

16
0

57
0

25
2

34
8

35
1

62
8

65
3

25
9

28
1

34
0

25
8

15
4

55
4

43
9

63
5

40
7

36
5

60
2

21
1

27
0 67 48
3 89 15
5

10
7

22
2

53
1

13
8

19
4

24
7

24
2

37
9

31
3

33
1 61 27
5

29
2

50
6 17 12
3

42
7

35
9

36
9

10
6

24
4

54
8

59
3

64
1

50
4

62 34
6 37 29
8

62
1

13
0

52 45
1

25
5

61
3 45 82 34
4

36
8

44
0

65
4

42
8 70 29
6 36 31 49
4

52
2

48
9

53
7

47
3

53
2 53 74 30
0

17
4

36
2

28
2

57
5 14

37
6

50
0 8

23
7

55
3 47 19 48
4

59
8

32
4

14
1

19
9

50
9

15
1

43
5

32
0

32
1

42
0

16
6 85 44
5

60
8

24
0

52
1

42
5

22
6

57
9

35
8

23
0

55
7

58
3

15
6

18
9

55
0

11
8

51
7

39
5

46
1

49
9

52
4

31
6

32
9

46
8

41
6

61
2

64
6

30
3

29
5

26
2

31
0

22
5

63
8

54
9

39
2

61
6

39
1

50 49
0 95 39
9

21
6

44
7

57
2

41
9

91 37
5

23
6

13
3

37
3

51
0

38
34

1
97 60

5 4
13

2
41

4
36

6
41

7
28

3 6
17

9
38

7
61

8
51

4
30

1
51

1
46

3
56

7
19

7
48

1
14

6
20

2 58
0

41 27
4 60 32
2

21
5

12 37
0

29
28

5
17

0
41

2
18

1
31

8
49

3
10

0
11

0
42

3
30

2
26

3
63

1 24
45

7
20

4
21

4
29

1
36

7
56

2
38

8 2
14

8
43

2 64 11
5

19
6

16 44 7
5

47
6

37
7

39
4

61
9

39
3

25
0

26
8

33
7

52
5

18
0

63
2

11
6

25
4

47
4

53
3 83 18
7

58
4

98 42
1

50
3

62
9 76 56
3

24
3 10 58
6

63
7

25
3

35 26
6

40
9

30
5

13
9

29
4

28
0

64
8

19
0

39
8

49
6

12
8

34
7

33
8

38
3

44
8

13
5

57
1

51
3 21 22
3

62
3 15 39
7

27
9

35
5

43
1

45
4

50
7

20
0

12
4

29
9

24
6

51
8

26
0

59
2

38
5

18
6

55
1

21
3

29
0

34
3

12
6

30
6

57
3

46
4

47
5

56
8

14
2

23
4

46
5 20 43 17
5

41
1

58 25
6

54
5

51
5

28
6

54
0

12
7

61
4

22
0

23
1

30
4

63
4

42
6

65
2

33
0

48
5

57
8 68 47
9

14
9

33
5 22 52
9

23
8

16
2

36
0

10
1

15
7

59
9

17
6

54
4

18
3

20
1

60
9

56
6 46 27
1 65 88 45
9

26
7

37
1

42
4

25
7

53
5

63
3

28
7

37
4

38
6

10
2

58
9

20
5 96 46
7 28

40
8

53
0

25
1 25 47
0 63 32 43
4

19
5

36
1

48
6 54 55 26 49 26
1

58
2

15
2

49
1

60
3

40
4

35
2

38
0

12
5

21
8

44
3

50
1

54
7

27
3

64
5

28
8

17
3

60
0

20
6

34
9

22
9

50
2

15
8

31
7

43
6

41
0

10
4

16
9

55
2 87 77 71 32
7

29
3 66 55
8 80 69 62
6

11
4

20
3 4

42
46

2
84 23
9

12
1

47
8

40
1

57
4 36

4
49

8
43

7
50

8 17
2

30
9

22
8

45
3

20
7

56
5 34 10
8

64
0

54
1

59
5

Cluster Dendrogram

Run

H
ei

gh
t

0
20

40
60

Weight/bias name

W
ei

gh
t/b

ia
s

va
lu

es

b10 w100 w101 b11 w110 w111 b20 w200 w201

−
20

−
10

0
10

20

1
2
3
4
5
6
7
8
9
10

UESMANN XOR−>AND clusters

Figure 4.27: Clustering of 500 plain back-propagation solutions for x ⊕ y with

weights doubled, with the UESMANN solutions for x ⊕ y → x ∧ y from

Fig. 4.29 superimposed over them. See Fig. 4.26 for more details.

134 Chapter 4. Training UESMANN using back-propagation

4.5.6.3 Solution clusters for x ⊕ y → x ∧ y

First, we shall establish a more accurate optimal learning rate, and while doing so

study the convergence behaviour for this pairing in a little more detail. Fig. 4.24

shows that UESMANN’s performance increases with learning rate until η � 1.81.

The next sample, at η � 2.56, shows a rapid decline. This sudden drop in learning

rate suggests that the error surface is moderately complex: as the learning rate

becomes too high, the algorithm can no longer find successful minima.

To show this more accurately and find a more accurate optimum learning rate,

500 networks were trained for the pairing at different η, with an increased iteration

count of 250000 to hopefully ensure that networks which were converging towards a

solution had time to do so. Bishop’s rule was once again used for the initial weights,

giving the range [−0.707, 0.707]. The percentage of networks which converged to a

successful minimum was taken, and the results are shown in Fig. 4.28. This shows

a rapid drop in performance after η � 2.25, with the optimum being η � 2. This is

consistent with the plot in Fig. 4.24.

0 1 2 3 4

0
20

40
60

80
10

0

eta

su
cc

es
sf

ul
 r

un
s

(%
)

●

●

●

●

●

●
●

●

●

● ● ● ●

Figure 4.28: Percentage of successful runs (out of 500) for UESMANN x⊕ y →
x ∧ y, given 10

6
training iterations, at different learning rates (η).

With an approximate optimum of η � 2 established, the same learning rate and

initial weight range were used to generate 500 networks, all of which converged

to a solution. The weights and biases of the successful networks were clustered

4.5 The nature of 2-2-1 boolean UESMANN networks 135

98 90 18
6

49
9

39
9

31
1

26
8

31
5

27
3

43
8

25
2

20
2

39
4

43
3

33
9

20
8

31
2

48
8

14
7

35
0

18
0

31
8 21 10
3

35
1

48
1 10 44
4

30
7

22
4

35
5 32

14
2

15
8

13
6

22
9

13
9

28
4

16
1

19
4

29
6 23 30
9 45 49
0

20
5

39
7

25
4

40
3 11 18
3

47
8

32
2 1

44
6

17
5

49
3

23
7 89 18
2

36
8

22
1

26
5

15
0

35
9

35
7 24 29
2 57 34
2 73 49
8

48
0

16
6

49
1 13 28
7 55 61 13
2

36
3 29 45
2

40
7 7

33
1

38
9

26
4

49
6 95 48
2

40
5

36
1

13
7

45
4

13
1

46
5

31
7 87 14
5 62 27 44
8

35
6

38
1

43
6

41
0 56 92 40
0

27
6

32
6 50 15
5 68 10
6

44
9

18
5

33
5

22
0

40
1

23
6

18
9 3

31
9

41
2

44
0

10
8

26
7 8 53 33
6

50
0

45
6 20 21
0

38
0

48
4 15 11
3

19
2 58 69 64 34
7

36
2 99 11
7

19
8

16
0

35
2 14 11
6

40
2

47
0

27
1

43
9

36
4

37
0

41
4

13
8

32
0

13
4

47
3

27
9

39
6

23
1 94 10
0 66 22 18
4

22
8

31
3

23
4

22
3

18
1

12
4

14
3

38
4

44
1

15
9

37
3

24
7

22
6

26
9 97 11
5

22
5

10
5

50
1

27
0 6

47
9

27
5 71 43
5

18
7

45
7

13
3

48
3

14
1

44
7

35
4

42
8

30
5

20
1

23
3

34
9 82 43
1 31 27
7

41
5 19 15
2

17
8

24
5

20
3 52 32
1 75 39
3

16
8 96 31
0

27
8

15
7

12
9

17
3

22
2

29
4

33
8

20
0

40
4

25
0

47
2

26
6

39
8 48 36
0

29
1

48
6 74 14
0

47
5

17
9

42
3

26
1

37
6

21
3

19
7

32
8

12
5

33
3 84 11
4

34
0

42
6 65 41
6

29
0

34
4 40 21
8

47
7

37
2

10
9

25
7

24
0

19
3

42
2 51 38
3

17
1

17
7

43
0

28
1

47
1

19
6

42
7

43
7

16
4 67 12
8

24
2

42
5

46
6

10
1

11
2

48
7

38
6

12
3

19
9

30
1 79 42
1 18 17
2

46
0 54 24
1

32
3

33
4

41
1

12
0

37
8

19
1

45
5

44
3

36
7

28
5

32
9 49 23
5

25
1 43 27
4

45
9 76 15
3

24
6

20
7

23
0

21
9

26
3

24
4

34
3

17
4

46
4

37
1

38
7

45
3 30 28
8

49
7

38
2

15
1 41 40
6

28
3 83 40
9

25
6

33
2

16
2

45
0

21
1

16
7

36
5

42
4

15
6 47 21
7

13
5

25
5

23
9

30
0 4 80 14
6

21
2 91 19
0

25
3 5

32
7 25 29
9

44
2 36 20
9

30
8

25
8 38 19
5

12
2

48
9 9

45
8

33
0

41
8

12
6

30
2

10
4 88 37
9

28
9 85 21
4

46
1

10
7 70 16
3

44
5 63 31
6 60 11
8

29
7

34
1

41
7 59 43
4

42
9

13
0 42 81 20
6 86 27
2

46
3

46
7

39
5

42
0 17 41
3

22
7

37
5

50
2 26 16
5

31
4

34
8

47
4

24
8 39 24
3

32
4 35 10
2 77 20
4

23
2

39
1

46
8

21
5 37 26
2

14
8

34
6

12
7

30
3

25
9

28
0

46
2 44 41
9 46 48
5

29
8

38
5

49
2 16 28
2

11
0

35
3

37
4

47
6

33
7

46
9

14
9

17
0 93 11
9

24
9

21
6

36
9

12
1 72 32
5

35
8 2

15
4

29
3 78 23
8 34 40
8

36
6

49
5

26
0

43
2

11
1

34
5

28
6

49
4

14
4

45
1 33 29
5

30
6

16
9

37
7 12 17
6

39
2

18
8 28 38
8

Cluster Dendrogram

Run

H
ei

gh
t

0
10

20
30

Weight/bias name

W
ei

gh
t/b

ia
s

va
lu

es

b10 w100 w101 b11 w110 w111 b20 w200 w201

−
10

−
5

0
5

10
15

20 1
2

Figure 4.29: Hierarchical clustering of the weights and biases for 500 success-

fully trained UESMANN networks for x ⊕ y → x ∧ y. Note that the clusters

are tight. Each network is shown as a polygonal chain linking the values of its

parameters. Weights and bias columns are labelled according to the scheme

in Fig. 4.18, modified such that wLIJ represents w l
i j .

using agglomerative hierarchical clustering, using the average linkage distance as

described in Sec. 4.5.3. This produces the clustering in Fig. 4.29, with two clear

clusters as indicated in the dendrogram. The values of the parameters at the clusters’

centroids are shown in Table 4.4.

Table 4.4: Cluster counts, centroids and standard deviations for centroids for

clusters found with hierarchical clustering for k � 2, for successful runs of

UESMANN x ⊕ y → x ∧ y.

Cluster count b1

0
w1

00
w1

01
b1

2
w1

10
w1

11
b2

0
w2

00
w2

01

1 248 7.55 7.13 -11.52 7.56 -11.52 7.13 19.85 -13.50 -13.50

SDs 0.06 0.02 0.07 0.06 0.07 0.02 0.00 0.00 0.00

2 252 7.56 -11.52 7.13 7.55 7.13 -11.52 19.85 -13.50 -13.50

SDs 0.06 0.07 0.02 0.06 0.02 0.07 0.00 0.00 0.00

These clusters are symmetric and tight (note the small standard deviations): in

each, both the i and h operations produce the other cluster. The symmetry is evident

in Fig. 4.30, which shows both clusters as network diagrams.

It may be that the low number of solution clusters is caused by the limited

dimensionality of the solution space — if more weights were provided, for example

a network with three hidden nodes, more clusters might result. This is an area

136 Chapter 4. Training UESMANN using back-propagation

7.13

-11.52

-11.52

7.13

-13.50

-13.50

7.55

7.56

19.85

(a) Cluster 1 centroid

-11.52

7.13

7.13

-11.52

-13.50

-13.50

7.56

7.55

19.85

(b) Cluster 2 centroid

Figure 4.30: The two types of successful networks produced by UESMANN

for XOR→AND with η � 2, as represented by the centroids of their clusters.

Weights and biases tinted and sized by sign and magnitude: red is negative,

grey is zero, blue is positive.

where more experiments are required. However, while the clusters are small, they

dominate a fairly large area of the solution space as is indicated by the successful

training at an appropriate learning rate.

Given the symmetry there is effectively a single solution to the problem, although

this results in two minima. These two minima appear with the same frequency

(disregarding noise), which means that the same number of networks have fallen

into each solution from initial points distributed randomly but evenly around the

origin. This suggests that the error surface is symmetric in some plane through the

origin.

Because these two minima function identically, we will analyse only cluster 1:

cluster 2will perform in an analogousway. To determine how this network functions

— how it performs x ⊕ y when h � 0 but x ∧ y when h � 1, as trained — we will

make use of diagrams showing how the activations of the individual nodes in the

network vary with the node inputs, and how this changes the function of the entire

network7. For our network, the set of diagrams for all nodes and the overall network

is in Fig. 4.31, and is shown for the modulator at 0, 0.5 and 1. A video of the full

transition is available at https://www.youtube.com/watch?v=ek7u96nhlmE.

With the modulator low, the hidden layer calculates x∨¬y and ¬x∨ y (assuming

the two inputs in Fig. 4.30a are x and y reading from top to bottom). Each node

in this layer is normally high because of its bias, but the negatively weighted input

will pull it low unless the positively-weighted input is also high. The output node

also has a large positive bias, and so will be high unless both (negatively weighted)

7These diagrams are inspired by Hinton diagrams, originally used by Hinton and Shallice to

describe activations in network layers [122]. We use far more points and amuch smaller scale to show

network behaviour rather than activations.

4.5 The nature of 2-2-1 boolean UESMANN networks 137

inputs to it are high, calculating ¬(h1 ∧ h2). Thus, the network calculates

(x ∨ ¬y) ∧ (¬x ∨ y) � x ⊕ y.

We can clearly see these functions in Fig. 4.31, bearing in mind that solid black

is 1 and white is 0, while the intersections of the four dotted lines mark the four

possible inputs to the boolean system (0,0), (0,1), (1,0) and (1,1).

h=0.000000

x

y
h1

1

0

0 1
x

y
h2

1

0

0 1
h1

h2
out

1

0

0 1
x

y
out

1

0

0 1

h=0.500000

x

y
h1

1

0

0 1
x

y
h2

1

0

0 1
h1

h2
out

1

0

0 1
x

y
out

1

0

0 1

h=1.000000

x

y
h1

1

0

0 1
x

y
h2

1

0

0 1
h1

h2
out

1

0

0 1
x

y
out

1

0

0 1

Figure 4.31: Diagrams showing the output of each node of a UESMANN

network trained for x ⊕ y → x ∧ y (at η � 2) given its inputs, along with the

output node given the inputs to the network. The two left-hand plots show

the hidden node activations as the inputs x and y change, the third from

the left shows the output node as the hidden node outputs change, and the

right-hand plot shows the output of the network (i.e. the output node) as the

inputs change. The edge length of each square is proportional to the output at

that point; white is 0 and solid black is 1. Plots are given for both modulator

h ∈ {0, 0.5, 1} to demonstrate how the modulation changes the functions.

138 Chapter 4. Training UESMANN using back-propagation

We can see that this network is different from most networks generated by plain

back-propagation for x ⊕ y: if we run that algorithm 50000 times with random initial

weights each time, this function or its counterpart from the other UESMANN cluster

appears only 39 times. It does not appear at all in Fig. 4.29. Themost notable point of

difference is the high bias on the output node, b20, which does not appear in Fig. 4.29.

With the modulator high, we can see from Fig. 4.31 that the thresholds of the

input nodes move closer to zero so that the hidden layer now calculates ¬y and ¬x.
The output layer’s threshold also moves closer to zero, decreasing so that it now

calculates ¬(h1 ∨ h2). Thus the network calculates

¬x ∨ ¬y � x ∧ y.

Of50000 randomly initialisednetworks trained for x∧y usingplainback-propagation,

only 2used this strategy. Thus, the large bias on the output nodewhichwas remarked

upon earlier is key to the operation of the network. Without the weight modulation,

both hidden nodes must be high to overcome this bias and produce a high output.

With the weights doubled, only one high hidden node will produce a high output.

Note also how marginal the h � 1 solution is: at (1,1), the h1 node produces

an output of ∼ 0.2, with the same output being produced by h2 at (1,1). This is

within the unsaturated range of the sigmoid activation function for the ¬y and ¬x
functions respectively, and is the result of a small change in bias due to modulation.

The resulting overall network behaviour is also marginal: the input (1,1) is only just

inside the region where the output is over threshold.

4.5.6.4 Transitional behaviour of x ⊕ y → x ∧ y

Having established that UESMANN converges to solutions more readily than the

three other modulatory techniques, and having examined those solutions, we will

now compare how the four different network techniques transition: i.e. how their

behaviour changes as the modulator h rises from 0 to 1. Until now, we have only

considered the behaviour at the extrema. To do this, 12 networks of each type were

trained to perform the pairing at the optimal learning rates found above, for 128000

iterationswith randominitialweights chosenwithBishop’sRule. For thesenetworks,

the actual functions evaluatedunder thresholding at differentmodulator valueswere

found, and plotted on a number of graphs. The learning rates were determined in

previous experiments, and can be found in Fig. 4.25 with the exception of that used

for the UESMANN network, which was obtained from Fig. 4.28 (η � 2). The results

are shown in Fig. 4.32.

4.5 The nature of 2-2-1 boolean UESMANN networks 139

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

h−as−input

modulator

ne
tw

or
k

in
de

x

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

UESMANN

modulator

ne
tw

or
k

in
de

x

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

Weight blending

modulator

ne
tw

or
k

in
de

x

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

Output blending

modulator

ne
tw

or
k

in
de

x

0
nor

!x and y
!x

x and !y
!y

xor
nand

and
xnor

y
!x or y

x
x or !y

or
1

Figure 4.32: Discrete function transition diagrams for different network types

trained for x⊕ y → x∧y (using the optimal learning rates—see the text). Each

diagram shows 12different networks trained from random initialweights, and

how the function it performs under thresholding of the output at 0.5 varies as

the modulator changes.

It is immediately obvious that weight blending produces different transitions for

each network. For example:

Network 0: (x ⊕ y) → (x ∨ y) → x → (x ∧ y)
Network 1: (x ⊕ y) → (x ∧ ¬y) → x → (x → x ∧ y)
Network 2: (x ⊕ y) → ¬(x ∧ y) → T → (x ∨ y) → y → (x ∧ y)

Two of these transitions are shown in more detail in Fig. 4.33 with the actual con-

tinuous outputs for each input pairing x , y ∈ {1, 0} also shown, along with their

thresholded values. Clearly, these two networks function differently.

140 Chapter 4. Training UESMANN using back-propagation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

modulator

ou
tp

ut

00
01
10
11

0
nor
!x and y
!x
x and !y
!y
xor
nand
and
xnor
y
!x or y
x
x or !y
or
1

(a) Network 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

modulator
ou

tp
ut

00
01
10
11

0
nor
!x and y
!x
x and !y
!y
xor
nand
and
xnor
y
!x or y
x
x or !y
or
1

(b) Network 2

Figure 4.33: Transition behaviour for weight blending networks 0 and 2 from

Fig. 4.32. The continuous curves show the output for the different input

pairings x , y ∈ {0, 1} as the modulator changes. The dotted curves in grey

rectangles show the thresholded output for the input pairing of the same

colour — each can be considered to have its own y axis (0,1).

The x ⊕ y problem has a number of solutions: Fig. 4.22 shows that these fall into

around 10 clusters, dominated by 2. The x ∧ y problem has many solutions which

occupy large regions of the solution space in flat regions, as shown by Fig. 4.26.

The weight-blending technique trains two networks to perform these functions, and

which of the solutions are found depends on the random initial weights. How the

system transitions as the modulator changes depends on the inner workings of the

two networks of which it is comprised.

This is analogous to the “competing conventions problem” encountered in naïve

attempts to train neural networks with evolutionary algorithms [246]. In such sys-

tems, attempts to crossover (combine the genomes of) two high-fitness neural net-

works to produce a good candidate may fail, because the two parent networks may

have a fundamentally different functional architecture: they use the nodes at the

same positions for different things. Any form of naïve combination of these two

networks will result in a network whose behaviour will be hard to predict, and may

bear no resemblance to the parent networks’ behaviours. Evolutionary algorithms

such as NEAT attempt to counter this by tracking each node’s history, so that only

nodes which are functionally similar are combined (see Sec. 2.3.9.2).

4.5 The nature of 2-2-1 boolean UESMANN networks 141

Our weight-blending algorithm is naïve in that we are simply finding a linear

interpolation between all the network parameters — finding, for each node, an

interpolation of the weights and biases of the two nodes in that position in the

parent networks. Thus we may find that the two networks do not combine in a

useful way. With boolean problems, the interpolated networks will perform some

boolean function, but it will be hard to predict what this function will be. Given

that in this particular problem (and probably very many others) the initial networks

may be very different for different initial weights, the behaviour of the interpolated

networks will also be difficult to predict as, Figs. 4.32 and 4.33 show. This also

may explain why the interpolative modulation used by Sauzé and Neal in initial

experiments in [243] and in the hexapod of Henley and Barnes [118] produced a

“nonlinear response,” as discussed in Sec. 2.5.6.

Such a system may arguably have its uses: the unpredictable behaviour of the

output network can serve as a source of variety in an evolutionary algorithm, if one

were to evolve both networks as part of a single genome (albeit risking the competing

conventions problem again when combining genomes for crossover). However, we

will discount weight blending as a modulatory method: the intermediate functions

are simply too unpredictable.

Moving on to output blending, this works exactly as predicted: the transitions

are crisp, and only have a small transition region because the “parent” networks

have not converged to a solution which gives exactly {0, 1} outputs. This can be seen

in Fig. 4.34a, which shows network 0: the outputs for each input pairing transition

linearly, and all cross the threshold very close to h � 0.5 because the end points are

very close to 0 or 1.

In the h-as-input network, a distinct transition region is present roughly sym-

metrically around h � 0.5 which performs x ∨ y. This is present in all networks

but is slightly smaller in network 10, indicating that perhaps there are (at least) two

minima, or clusters of identically functioning minima, to which these networks are

converging. This is a good transition from x ⊕ y to x ∧ y, in that each step has only

a single change in the truth tables of the performed function. The full transition for

a typical network is shown in Fig. 4.34b, which also clearly demonstrates the sym-

metry around h � 0.5. Compare, in particular, with the output blending network in

Fig. 4.34a: the non-linearity in the transitions create the transition region.

Finally, the UESMANN network shows a complex but consistent behaviour,

which was expected since there are only two solution clusters (from 500 networks),

and these are functionally identical. As noted above, this low number of solutions

may arise from the low dimensionality of the system. The full transition is shown in

142 Chapter 4. Training UESMANN using back-propagation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

modulator

ou
tp

ut

00
01
10
11

0
nor
!x and y
!x
x and !y
!y
xor
nand
and
xnor
y
!x or y
x
x or !y
or
1

(a) output blending network 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

modulator
ou

tp
ut

00
01
10
11

0
nor
!x and y
!x
x and !y
!y
xor
nand
and
xnor
y
!x or y
x
x or !y
or
1

(b) h-as-input network 0

Figure 4.34: Transitions for output blending and h-as-input networks (both

number 0) from Fig. 4.32. See the caption for Fig. 4.33 for explanatory notes.

Note, however, that the {1, 0} and {0, 1} (red and purple) lines are superim-

posed.

Fig. 4.35. While this transition region is considerably wider than that of h-as-input, it
is not as symmetric around h � 0.5 and shows a transition to the F function (always

false), the truth table of which is a Hamming distance of 2 from the h � 0 function8.

This is in contrast to h-as-input, the transitions of which both have a Hamming dis-

tance of 1 (and can therefore be seen as “minimal” transitions), and is symmetric.

However, h-as-input requires 2 more weights.

In summary, the UESMANN transition is consistent (in terms of getting the same

results for multiple networks trained), and wider than that of output blending and

h-as-input. It is, however, markedly asymmetric and produces a somewhat odd

choice of transition function due to the asymmetry in the continuous responses (see

Fig. 4.25d). Weight blending produces a large set of complex transitions, due to

the competing conventions of its “parent” networks being combined in piecewise

fashion. Interestingly, UESMANN converges well, until the learning rate increases

to the point where the algorithm “skips over” the small solution: although the

solutions are small, the combined error surfaces of the two functions sum to a large

enough gradient to be followed from the initial point, while x ⊕ y has a large, flat

8It is worth noting that we have no reason to expect this type of symmetry in UESMANN’s

transition.

4.5 The nature of 2-2-1 boolean UESMANN networks 143

region in the initial weight region which affects the convergence for output (and

weight) blending. The h-as-input convergence appears to be affected by a complex

error surface.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

modulator

ou
tp

ut

00
01
10
11

0
nor
!x and y
!x
x and !y
!y
xor
nand
and
xnor
y
!x or y
x
x or !y
or
1

Figure 4.35: Transitions for UESMANN network 0 from Fig. 4.32. See the

caption for Fig. 4.33 for explanatory notes. Note, however, that the {1, 0} and
{0, 1} (red and purple) lines are superimposed.

4.5.7 Analysis of x ∧ y → ¬(x ∨ y) (AND to NOR)

4.5.7.1 Comparison of convergence of different techniques for x ∧ y → ¬(x ∨ y)

We will now examine the convergence and behaviour of this pairing, which is the

most difficult pairing for UESMANN to learn despite having a reasonably sized

solution in the parameter space (see Fig. 4.4).

The previous section established that there is no link between the UESMANN

solution for f → g and the common solutions (by back-propagation) for f and g in

the case of x ⊕ y → x ∧ y. That is, there is no solution for x ⊕ y which, with weights

doubled, gives a solution for x ⊕ y → x ∧ y; and there is no solution for x ∧ y which,

with weights halved gives such a solution (see Sec. 4.5.6.2).

To establish a suitable learning rate for the different network types, 100 networks

were trained for 125000 iterations at varying η as in the previous experiments, with

the proportion of “correct” networks being recorded. The results are shown in

Fig. 4.36a. Output blending andweight blending have the same perfect success at all

learning rates: individually, these are easy functions for a network to learn. The h-
as-input networks have a variable performance, while UESMANN performs poorly.

144 Chapter 4. Training UESMANN using back-propagation

A more detail learning rate plot was made for UESMANN, using 10
6
iterations for

5000 networks: this is shown in Fig. 4.36b.

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(η)

pr
op

or
tio

n
co

rr
ec

t

UESMANN H−input output blend weight blend

(a)All fourmethods, 100 networks for 125000

iterations

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

log10(η)

pr
op

or
tio

n
of

 c
or

re
ct

 n
et

w
or

ks

(b) UESMANN, 5000 networks for 10
6
itera-

tions

Figure 4.36: Proportion of networks trained for x ∧ y → ¬(x ∨ y) which find

the correct solution at different learning rates η using four different types of

modulatory network. Bishop’s method was used for the initial weights. Note

that weight and output blending are the same. A separate plot is shown for

UESMANN with a different y axis; this uses a higher number of iterations

and more individual networks.

The latter figure shows a large amount of noise, because we are looking at events

which occur rarely. The networks succeed less than 1% of the time, with each success

dependent on essentially random conditions (the initial weights). If we consider

the success or failure of a network as a Bernoulli trial with probability P � 0.01,

the actual number of successes will follow a binomial distribution with n � 5000

and P � 0.01. This will give a mean success count of nP � 50 with a standard

deviation of

√
nP(1 − P) � 7.036 [195]. This is a wide distribution, hence the noise.

For UESMANN, we will use a learning rate of η � 0.039, which is a maximum in

Fig. 4.36b, with the understanding that this is likely not a truly optimal learning rate

due to the noise. For weight and output blending we will use the largest learning

rate attempted (since they all work well), and for h-as-input we will use 0.08 from

the data behind Fig. 4.36a. The results (and selected learning rates) are shown in

Fig. 4.37.

4.5 The nature of 2-2-1 boolean UESMANN networks 145

0 5000 10000 15000 20000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

6e
−

04

iteration

M
S

E
 a

t e
ta

=
7.

24
07

73

and nor

(a)weight blending, η � 7.24

0 5000 10000 15000 20000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

6e
−

04

iteration

M
S

E
 a

t e
ta

=
7.

24
07

73

and nor

(b) output blending, η � 7.24

0 5000 10000 15000 20000

0.
00

0.
05

0.
10

0.
15

0.
20

iteration

M
S

E
 a

t e
ta

=
0.

08
00

00

and nor

(c) h-as-input, η � 0.08

0 20000 40000 60000 80000 100000 120000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

iteration

M
S

E
 a

t e
ta

=
0.

03
90

00

and nor

(d) UESMANN, η � 0.039

Figure 4.37: Convergence behaviour for 100 different networks trained for

x ∧ y → ¬(x ∨ y) at good learning rates for four different network types. The

plot shows theMSE of the different four different boolean input pairs for both

the initial and terminal functions in the pairing separately.

As before, the weight blending and output blending plots are identical, because

we are looking at the endpoints of the transitions which are trained separately and

identically in those two network types. Both converge rapidly to a solution, as

should be expected for such simple functions. The h-as-input plot is more complex,

146 Chapter 4. Training UESMANN using back-propagation

and appears to show a flat region near the origin which takes some time to escape,

rather like the earlier x ⊕ y plots. Indeed, some networks fail to find a region within

which both functions are evaluated correctly, instead finding a minimum in which

one functions works but not the other. UESMANN networks rapidly converge on a

solution for ¬(x ∨ y) but of the 100 runs only one converges on x ∧ y; this network

has already arrived at a solution for the former function. It may be that “incorrect”

local minima which solve for ¬(x ∨ y) dominate the solution space, with narrow

areas leading to a solution for x ∧ y within that space.

4.5.7.2 Solution clusters for x ∧ y → ¬(x ∨ y)

We now turn to the UESMANN solution clusters for this pairing. We have already

established a reasonable learning rate of 0.039, although this is only an approximate

optimum. UESMANN networks were trained at this learning rate, using Bishop’s

rule for the initial weights and biases. For this experiment, 250000 iterations through

the training set were used to ensure convergence. To obtain 500 networks, 41659 net-

works needed to be trained, giving a success rate of around 1.2%: these successful

networks were clustered using agglomerative hierarchical clustering with the aver-

age linking distance, as described in Sec. 4.5.3.

The solutionsdonot fall into clusters asneatly as x⊕y → x∧y, which is interesting

in itself: there may more minima available, although the learning algorithm has

difficulty finding them, as we have seen. The clusters are also wider than those

for x ⊕ y → x ∧ y, and the distributions of the individual parameters tend to be

skewed away from zero, as can be seen particularly clearly for w2

00
in cluster 2. A cut

of 8 clusters was selected from the dendrogram; although 2 gives a larger distance

range, this is not enough clusters for a clear view of the solutions. The results are

shown in Fig. 4.38, and in tabular form in Table 4.5. Grouping the clusters using the

symmetries of Sec. 4.5.2, we obtain Fig. 4.39.

4.5 The nature of 2-2-1 boolean UESMANN networks 147

56
09

11
98

7
37

89
6

15
19

4
32

30
0 23

66
0

40
37

5
27

57
2

30
29

7 3
69

0
45

98
33

27
9

81
44

11
46

4
38

36
6

25
48

4
32

46
9

26
12

8
34

10
0

35
74

13
57

6
14

76
9

56
46

38
61

2
30

73
5

32
72

8
54

77
58

10
30

10
6

38
53

8
35

21
19

24
6

30
48

4
40

44
1

11
56

7
21

90
2

32
27

6
25

72
7

53
16

05
8

27
56

4
31

52
1

33
44

8
37

50
0

39
17

1
23

33
5

28
11

3
15

59
8

19
42

3
26

19
4

13
44

4
31

60
3

11
37

7
28

21
6

17
35

6
37

41
3

29
53

6
25

23
3

75
44

13
53

1
35

34
6

11
36

9
19

90
6

24
25

4
32

17
3

15
28

9
28

12
1

34
07

1
26

32
1

31
54

24
04

0
24

20
9

27
95

2
15

89
9

15
99

4
30

01
9

40
39

6
13

96
28

26
1

72
43

12
64

32
00

4
33

31
24

09
0

76
02

26
06

2
36

35
7

26
05

4
40

22
7

30
11

4
28

04
7

32
35

0
34

41
7

38
15

2
34

40
9

37
76

4
17

26
9

39
83

1
34

33
5

71
56

15
20

33
93

9
28

12
9

31
87

2
11

72
8

12
96

6
22

14
2

34
24

0
35

50
15

78
0

13
78

7
13

79
5

11
82

3
36

32
21

67
2

26
02

5
25

89
3

15
65

19
60

5
14

00
1

19
81

1
30

01
1

26
27

6
30

06
4

20
00

1
26

10
7

32
08

6
26

01
7

17
91

3
34

53
6

93
02

17
31

9
30

18
8

35
99

8
17

05
4

46
42

36
40

2
12

04
6

16
07

1
23

63
3

32
81

4 3
89

87
21

24
18

95
8

15
47

9
25

19
6

16
61

3
29

38
5

51
02

17
17

3
21

81
7

91
91

19
30

4
39

60
3

51
52

27
36

8
11

45
95

87
13

38
0

17
41

9
21

15
7

32
12

33
82

0
10

93
5

19
83

2
15

08
3

17
38

7
70

37
21

55
8

13
41

2
31

93
0

36
05

6
32

99
13

21
6

11
14

9
17

25
5

89
77

49
70

18
66

2
74

9
76

97
33

42
4

49
88

23
70

7
35

81
0

29
21

37
66

3
17

68
3

35
59

6
19

75
0

19
96

4
32

01
7

17
04

1
39

63
5

21
64

0
20

83
4

27
53

2
17

63
3

40
19

5
13

67
6

15
74

3
36

18
8

93
73

23
52

5
16

82
7

20
99

8
19

70
0

92
09

15
87

5
31

42
0

16
58

1
36

99
4

18
74

4
32

06
2

10
85

3
37

07
6

46
37

31
53

9
25

61
0

35
97

4
25

70
15

00
1

21
04

8
10

61
6

17
69

1
41

91
32

73
2

45
60

23
54

3
31

59
7 6

47
2

27
99

2
23

80
2

24
97

3
20

73
7

27
71

4
83

03
22

80
4

71
32

25
11

4
25

29
1

29
35

3
21

69
8

44
05

12
34

2
27

18
1 21

13
0

29
06

2
10

50
7

88
98

17
60

1
27

31
8

39
40

39
33

4 2
28

12
62

6
53

33
19

78
17

17
2

14
37

6
12

44
0

12
09

1
17

16
4

66
30

34
07

5
41

50
21

83
9

14
44

9
21

62
1

34
78

0
31

94
4

33
97

0
36

73
4

36
31

15
38

1
34

22
1

38
58

9
11

88
1

10
37

3
36

41
7

22
76

3
80

64
11

98
6

18
25

0
12

65
0

27
91

7
19

89
5

20
10

5
28

54
31

40
9

42
55

32
91

7
29

76
4

31
83

1
33

68
6

21
11

8
17

82
8

11
00

5
20

98
1

29
13

2
30

75
3

33
12

7
33

3
25

59
9

30
77

7
37

04
9

31
61

42
47

10
93

2
25

37
30

74
5

30
85

0
24

48
1

22
73

1 50
12

61
8

32
50

3
25

05
81

69
18

18
5

37
68

9
25

13
15

55
9

69
78

35
29

9
27

31
7

28
02

2
24

00
10

90
8

33
58

1
32

49
5

39
88

5
19

55
4

17
20

4
42

63
14

36
8

22
84

4
25

56
7

28
03

0
35

64
8

37
05

7
12

65
8

23
46

8
17

27
35

41
2

14
82

2
38

35
45

63 26
0

24
55

4
23

47
6

24
93

5
34

66
7

31
95

2
75

37
15

31
7

25
92

4
19

58
6

60
15

22
27

1
13

30
40

17
1

80
3

25
86

0
14

45
7

19
88

2
28

69
6

17
87

8
29

40
8

28
70

15
81

1
40

23
4

34
64

9
40

45
9

11
76

6
21

42
5

16
40

5
18

72
6

27
29

32
05

3
33

03
4

58
1

40
01

4
61

00
30

44
0

11
99

8
15

21
4

24
34

38
46

4
17

06
1

34
00

5
21

29
8

28
39

3
38

11
6

29
19

6
59

14
36

85
1

23
80

8
29

61
8

21
24

5
34

55
2

32
05

5
34

90
0

13
7

83
18

33
42

5
34

78
4

23
31

2
28

83
7

29
88

1
31

50
6

39
86

7
81

91
11

41
8

34
44

7
40

71
0

27
44

6
40

10
9

27
55

1
29

12
2

16
55

4
32

27
5

10
64

8
18

55
26

34
40

18
4

55
7

96
99

28
45

8
37

10
15

64
6

45
2

28
07

8
26

24
29

16
4

19
46

3
40

95
3

49
4

46
91

25
19

44
16

31
18

9
35

42
8

42
79

43
74

33
25

6
11

73
4

36
06

0
83

71
26

01
1

21
10

8
30

52
5

32
38

0
15

43
6

27
37

2
11

20
7

33
88

8
46

2
32

88
30

10
3

41
65

9
10

54
3

30
25

0
36

19
7

15
11

9
17

18
6

31
93

24
92

5
10

22
6

34
97

4
84

76
13

37
9

38
88

6
54

60
36

51
4

22
40

6
75

27
31

94
8

51
33

94
89

28
03

6
98

78
24

61
0

48
70

53
65

85
82

15
68

8
13

51
6

23
62

9
66

20
33

36
1

23
04

8
93

51
17

22
8

30
96

7
34

34
2

21
14

0
25

37
9

27
26

7
37

27
3

Cluster Dendrogram

Run

H
ei

gh
t

0
10

20
30

40

Weight/bias name

W
ei

gh
t/b

ia
s

va
lu

es

b10 w100 w101 b11 w110 w111 b20 w200 w201

−
10

−
5

0
5

10
15 1

2
3
4
5
6
7
8

Figure 4.38: Hierarchical clustering of the weights and biases for 500 UES-

MANN networks successfully trained on x ∧ y → ¬(x ∨ y). Each network is

shown as a polygonal chain linking the values of its parameters. Weights and

bias columns are labelled according to the scheme in Fig. 4.18, modified such

that wLIJ represents w l
i j .

Table 4.5: Cluster counts, centroids and standard deviations for centroids for

clusters found with hierarchical clustering for k � 2, for successful runs of

UESMANN x ∧ y → ¬(x ∨ y).

Cluster count b1

0
w1

00
w1

01
b1

2
w1

10
w1

11
b2

0
w2

00
w2

01

1 113 -0.12 6.63 -0.95 -8.09 9.11 -3.79 -10.10 14.57 -12.71

SDs 0.02 0.40 0.13 0.52 0.56 0.21 0.98 1.23 0.84

2 129 -8.08 9.10 -3.79 -0.12 6.62 -0.95 -10.12 -12.71 14.59

SDs 0.53 0.60 0.25 0.03 0.45 0.20 0.95 0.91 1.24

3 119 -0.12 -0.97 6.65 -8.12 -3.81 9.14 -10.14 14.61 -12.74

SDs 0.02 0.28 0.45 0.52 0.22 0.56 0.92 1.17 0.80

4 7 9.01 4.43 -9.74 0.57 2.22 -7.88 -10.16 14.28 -11.55

SDs 0.59 0.35 0.67 0.01 0.37 0.50 0.34 0.52 0.45

5 112 -8.08 -3.79 9.10 -0.12 -0.95 6.63 -10.10 -12.72 14.57

SDs 0.51 0.21 0.54 0.02 0.23 0.44 0.93 0.80 1.17

6 9 9.07 -9.82 4.48 0.57 -8.03 2.35 -10.04 14.12 -11.42

SDs 0.87 0.97 0.51 0.01 0.59 0.45 0.50 0.78 0.66

7 5 0.56 2.44 -8.02 9.20 4.56 -9.98 -9.74 -11.10 13.69

SDs 0.01 0.64 0.68 0.86 0.52 0.98 0.78 0.91 1.12

8 6 0.56 -8.53 2.92 9.90 -10.72 4.92 -9.96 -11.30 13.97

SDs 0.02 1.32 1.33 1.97 2.18 1.11 0.65 0.89 1.05

148 Chapter 4. Training UESMANN using back-propagation

C1 (113)

C2 (129)

h

C3 (119)

i

C5 (112)

i h

C4 (7)

C6 (9)

i

C7 (5)

h

C8 (6)

h i

Figure 4.39: Relationships between the clusters in 500 solutions found for

x∧y → ¬(x∨y) at η � 0.039with 125000 iterations, in terms of the symmetries

discussed in Sec. 4.5.2. The number of nodes in each cluster is shown in

brackets, with the relationship type h (hidden node swap) or i (input node
swap) shown as a label on the relationship edge. If the relationship is weak

(mean distance greater than 0.1) the edge is dotted. In this case, this is likely

to be due to the low number of samples in the right-hand group.

4.5 The nature of 2-2-1 boolean UESMANN networks 149

The clusters fall into two distinct groups: one consisting of clusters 1, 2, 3 and 5;

and another consisting of clusters 4, 6, 7 and 8. The latter clusters are an order of

magnitude smaller than the former. There are similarities between the two groups in

the output: each cluster in the second group is close to a cluster in the first, but with

all parameters except b2

0
negated. However, these distances are larger than Fig. 4.38

suggests. Consider clusters 1 and 8:

Cluster count b1

0
w1

00
w1

01
b1

2
w1

10
w1

11
b2

0
w2

00
w2

01

1 113 -0.12 6.63 -0.95 -8.09 9.11 -3.79 -10.10 14.57 -12.71

8 6 0.56 -8.53 2.92 9.90 -10.72 4.92 -9.96 -11.30 13.97

The cluster parameters are clearly quite different in magnitude. Cluster 1 has b1

0

with a mean of -0.12, and a range of [−0.204,−0.088], but the corresponding bias in

cluster 8 is well outside the negation of this range.

Indeed, if we take any cluster centroid (all cluster centroids perform the correct

pairing x ∧ y → ¬(x ∨ y)) and generate a new network by negating all parameters

but b2

0
, we find that the resulting networks perform x ∧ y → F. Therefore we will

continue to treat these groups of clusters as distinct.

Because these clusters are a little more complex than those for x ⊕ y → x ∧ y in

their operation, and do not consist of entirely boolean nodes, we will show cluster

function inmore detail. Although it appears from Fig. 4.39 that there are two groups

of clusters which may function differently, we will only analyse a single cluster:

all clusters within the larger group (1, 2, 3, 5) are equivalent by symmetry; and

the clusters of the smaller group probably work in a related fashion. We are only

interested in the details of how the clusters behave because it might tell us more

about why this particular pairing is so difficult to train. We have chosen cluster 1

as a representative of the larger group of clusters: Fig. 4.40 shows how the cluster

behaves at h � 0 for every possible boolean input.

150 Chapter 4. Training UESMANN using back-propagation

6.63

9.11

-0.95

-3.79

14.57

-12.71

-0.12

-8.09

-10.10

0

0

0.470

-0.12 + 0.00*6.63 + 0.00*-0.95
-0.12 + 0.00 + -0.00 = -0.12

0.000

-8.09 + 0.00*9.11 + 0.00*-3.79
-8.09 + 0.00 + -0.00 = -8.09

0.037
-10.10 + 0.47*14.57 + 0.00*-12.71
-10.10 + 6.85 + -0.00 = -3.26

6.63

9.11

-0.95

-3.79

14.57

-12.71

-0.12

-8.09

-10.10

0

1

0.255

-0.12 + 0.00*6.63 + 1.00*-0.95
-0.12 + 0.00 + -0.95 = -1.07

0.000

-8.09 + 0.00*9.11 + 1.00*-3.79
-8.09 + 0.00 + -3.79 = -11.88

0.002
-10.10 + 0.26*14.57 + 0.00*-12.71
-10.10 + 3.72 + -0.00 = -6.38

6.63

9.11

-0.95

-3.79

14.57

-12.71

-0.12

-8.09

-10.10

1

0

0.999

-0.12 + 1.00*6.63 + 0.00*-0.95
-0.12 + 6.63 + -0.00 = 6.51

0.735

-8.09 + 1.00*9.11 + 0.00*-3.79
-8.09 + 9.11 + -0.00 = 1.02

0.007
-10.10 + 1.00*14.57 + 0.73*-12.71
-10.10 + 14.55 + -9.34 = -4.89

6.63

9.11

-0.95

-3.79

14.57

-12.71

-0.12

-8.09

-10.10

1

1

0.996

-0.12 + 1.00*6.63 + 1.00*-0.95
-0.12 + 6.63 + -0.95 = 5.56

0.059

-8.09 + 1.00*9.11 + 1.00*-3.79
-8.09 + 9.11 + -3.79 = -2.77

0.975
-10.10 + 1.00*14.57 + 0.06*-12.71
-10.10 + 14.51 + -0.75 = 3.66

Figure 4.40: Centroid for x ∧ y → ¬(x ∨ y) cluster 1 analysed at h � 0. The

network’s function is shown for all possible boolean inputs. The small blue

figures show the calculation at each node in two stages, while the large blue

figures show the output of the node post-sigmoid. Weights and biases are

shown in black.

In order for the output node to be high at h � 0, the upper hidden node must be

high and the lower hidden node low (since the lower node inhibits the output):

• If both inputs are low, the upper node will have a mid-range output (from its

small bias), and the lower node will be pulled low (having a high negative

bias). Thus there is no inhibitory effect from the lower node, but the upper

node’s low activation is insufficient – even with its high weight – to overcome

the output’s bias.

• If only the upper input is high, both hidden nodes will be driven high because

of the high weights from that input, and but now the lower inhibitory node

keeps the output low.

• If only the lower input is high, the inhibitory effect of that input’s weights will

keep both nodes low (although the upper node still outputs a low positive

value). The upper node’s high weight into the output is still not sufficient to

overcome the high negative bias, however.

• If both inputs are high, the upper node is high but the lower node is low – it

will no longer inhibit the output, which goes high.

At h � 1 the network functions as shown in Fig. 4.41. Here, we see the negation of

the previous function – the output is only high if the inputs are both low:

• If both inputs are low, the mid-range output from the upper hidden node is

now sufficient to drive the output high (since the weight is doubled).

4.5 The nature of 2-2-1 boolean UESMANN networks 151

13.26

18.22

-1.90

-7.58

29.14

-25.42

-0.12

-8.09

-10.10

0

0

0.470

-0.12 + 0.00*13.26 + 0.00*-1.90
-0.12 + 0.00 + -0.00 = -0.12

0.000

-8.09 + 0.00*18.22 + 0.00*-7.58
-8.09 + 0.00 + -0.00 = -8.09

0.973
-10.10 + 0.47*29.14 + 0.00*-25.42
-10.10 + 13.70 + -0.01 = 3.59

13.26

18.22

-1.90

-7.58

29.14

-25.42

-0.12

-8.09

-10.10

0

1

0.117

-0.12 + 0.00*13.26 + 1.00*-1.90
-0.12 + 0.00 + -1.90 = -2.02

0.000

-8.09 + 0.00*18.22 + 1.00*-7.58
-8.09 + 0.00 + -7.58 = -15.67

0.001
-10.10 + 0.12*29.14 + 0.00*-25.42
-10.10 + 3.41 + -0.00 = -6.69

13.26

18.22

-1.90

-7.58

29.14

-25.42

-0.12

-8.09

-10.10

1

0

1.000

-0.12 + 1.00*13.26 + 0.00*-1.90
-0.12 + 13.26 + -0.00 = 13.14

1.000

-8.09 + 1.00*18.22 + 0.00*-7.58
-8.09 + 18.22 + -0.00 = 10.13

0.002
-10.10 + 1.00*29.14 + 1.00*-25.42
-10.10 + 29.14 + -25.42 = -6.38

13.26

18.22

-1.90

-7.58

29.14

-25.42

-0.12

-8.09

-10.10

1

1

1.000

-0.12 + 1.00*13.26 + 1.00*-1.90
-0.12 + 13.26 + -1.90 = 11.24

0.928

-8.09 + 1.00*18.22 + 1.00*-7.58
-8.09 + 18.22 + -7.58 = 2.55

0.011
-10.10 + 1.00*29.14 + 0.93*-25.42
-10.10 + 29.14 + -23.58 = -4.54

Figure 4.41: Centroid for x ∧ y → ¬(x ∨ y) cluster 1 analysed at h � 1. The

network’s function is shown for all possible boolean inputs. The small blue

figures show the calculation at each node in two stages, while the large blue

figures show the output of the node post-sigmoid. Weights and biases are

shown in black.

• If the upper input is high, both the lower and upper hidden nodes are pulled

high, but the lower inhibits the output, and the sum remains too low to over-

come the bias.

• If the lower input is high, both hidden nodes are pulled low and the output is

low.

• If both inputs are high, once again the hidden nodes are both high, and the

lower node inhibits the upper so that the sum cannot overcome the bias.

The two h values differ in how they deal with the cases where both inputs are the

same. At h � 0, if both inputs are high the lower hidden node remains low because

of its bias, so it does not inhibit the output being driven high by the upper node. At

h � 1 the lower node is now driven high by the doubled weight of the upper input,

inhibiting the output. In the case where both inputs are low, at both h values the

lower hidden node is saturated at zero, so it has no inhibitory effect. When h � 0, the

upper node’s low activation level from its low negative bias is insufficient to drive

the output high. When h � 1 this low activation now drives the output high due to

the doubling of the weight.

Fig. 4.42 shows this transition using the method used for Fig. 4.31. It is clear

from this figure that the upper hidden node — hidden node 1 in Fig. 4.42 — hardly

changes under modulation due to the wide transition region, while changes in the

other hidden node and the output node are much more significant. Indeed, if

modulation is performed but weights w1

00
and w1

01
are left unmodified, the network

152 Chapter 4. Training UESMANN using back-propagation

still performs the pairing. The effect of the transition as a whole is to shift a ridge

of activation towards x � 0 while narrowing it (due to increased saturation in all

nodes).

h=0.000000

x

y
h1

1

0

0 1
x

y
h2

1

0

0 1
h1

h2
out

1

0

0 1
x

y
out

1

0

0 1

h=0.500000

x

y
h1

1

0

0 1
x

y
h2

1

0

0 1
h1

h2
out

1

0

0 1
x

y
out

1

0

0 1

h=1.000000

x

y
h1

1

0

0 1
x

y
h2

1

0

0 1
h1

h2
out

1

0

0 1
x

y
out

1

0

0 1

Figure 4.42: Diagrams showing the output of each node of the centroid of

cluster 1 of x ∧ y → ¬(x ∨ y) given its inputs, along with the output node

given the inputs to the network. See Fig. 4.31 for explanatory notes.

In order to perform the pairing correctly, this ridge of activation must cover

only (1,1) when h � 0 and shift to cover only (0,0) when h � 1, which places some

constraints upon it. However, these constraints are insufficient to explain why the

pairing is so hard to train — any constraints here would also limit its frequency in

the Monte Carlo simulations, where it is only the 24th rarest pairing.

4.5 The nature of 2-2-1 boolean UESMANN networks 153

4.5.7.3 Transitional behaviour for x ∧ y → ¬(x ∨ y)

Before we look further into the problem of why this pairing is so difficult to train,

we will analyse the transitions of the different network types. These are shown in

Fig. 4.43 using the same conventions as Fig. 4.32. However, theUESMANNnetworks

were selected differently. In the previous pairing, there are only two clusters, and

they behave identically (albeit with hidden nodes and inputs swapped). Thus all

the networks work the same way, and produce the same transition. This pairing has

eight different clusters belonging to two groups. Therefore, rather than selecting 12

random networks to show transitions, we use the centroids of each of the clusters.

Figure 4.43: Discrete function transition diagrams for different network types

trained for x ∧ y → ¬(x ∨ y) (using the optimal learning rates — see the text).

The diagram shows a number of different networks trained from random

initial weights, and how the function it performs under thresholding of the

output at 0.5 varies as the modulator changes. The UESMANN network plot

uses the centroids of the clusters found in the previous section, while the other

plots use 12 networks from random initial weights.

We see that both output blending and h-as-input produce narrow transition

regions. This is expected for output blending, but in the previous pairing h-as-

154 Chapter 4. Training UESMANN using back-propagation

input produced a wider transition (see Fig. 4.32). The h-as-input transitions are

also inconsistent, suggesting that there may be a large number of solutions to which

the system converges: only two solutions appear in the previous pairing. Weight

blending does produce functionally consistent solutions, but of different transition

widths. Finally, UESMANNis again consistent in thenature of the functions involved

in the transitions, transitioning through the XNOR function ¬(x ⊕ y). This is a

“sensible” transition, in that it is the minimal Hamming distance from the endpoint

functions. There is slight inconsistency in the transition widths: the transition width

for clusters 1, 2, 3 and 5 is less than that for clusters 4, 6, 7 and 8. This reflects that the

former clusters (which belong to the more populated group in Fig. 4.39) may have a

qualitatively different solution from those in the smaller cluster group.

It is notable that the UESMANNnetworks for both this pairing and x⊕ y → x∧ y
have a marked “preference” for the h � 0 endpoint during the transition. In both

cases, the transition does not switch over to the intermediate function until slightly

less than 0.5. The reason for this apparent bias in favour of the h � 1 function is

currently unclear, and requires testing multiple networks for all pairings to establish

whether it is a general property for the boolean functions. This is left for future

study, particularly if such a bias is evident in more complex problems.

4.5.7.4 Why is this pairing so difficult to train?

We noted above that x ∧ y → ¬(x ∨ y) is more difficult to train than its frequency

in Monte Carlo simulations would suggest, but have yet to find a reason for this.

One possible approach is to directly examine the error surface. This is actually a

9-dimensional scalar field, where the dimensions are the weights and biases and

the value at each point is the mean squared error of the output of the network at

that point. This is the surface down which the back-propagation algorithm should

descend. This can be done by viewing 2D slices of this field by varying two of

the parameters and holding the rest constant. It should be noted that this can be

deceptive: intuitions from single 2D slices in this sort of analysis often do not apply

to the entire field because the high dimensionality gives more routes around an

apparent local minimum [72].

Slices through the error surfaceweremade by finding a solution and then varying

pairs of parameters around that solution while the other parameters were held

constant. The solution used was a cluster centroid as found in earlier experiments.

For each modified pair of parameter values, the network is run on all four boolean

combinations and the mean of the squared errors of the results evaluated. In the

case of UESMANN this was done twice, for h � 0 and h � 1. Because UESMANN

4.5 The nature of 2-2-1 boolean UESMANN networks 155

effectively follows the sum of the two error surfaces (in the limit as η → 0), we will

show the sum of these two processes.

A large number of plots at various slices through the error surface were made

for both x ∧ y → ¬(x ∨ y) and the easier x ⊕ y → x ∧ y, shown in Figs. 4.44 and

Figs. 4.45 respectively. These were inconclusive: the output layers for both seem to

have smoother gradients, but the hidden layers aremade up of plateaux intercutwith

trenches; there is no obvious difference between the natures of the topography in

each pairing. However, there is a ridge between the start region (marked by a square)

and the solution (the origin) in the plot for w1

10
against w1

00
for x ∧ y → ¬(x ∨ y) (the

top-right plot of Fig. 4.44) which may contribute to its difficulty, although it is quite

possible that there is a way around this ridge which is not apparent from the limited

view provided by the 2D slices.

w200

b2
0

−20

−10

0

0 10 20 30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w201

b2
0

−20

−10

0

−30 −20 −10 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w100

w
10

1

−20

−10

0

10

−10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

w100

w
11

0

−10

0

10

20

−10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

w100

w
11

1

−20

−10

0

10

−10 0 10 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

w101

w
11

0

−10

0

10

20

−20 −10 0 10

0.0

0.5

1.0

1.5

2.0

2.5

w101

w
11

1

−20

−10

0

10

−20 −10 0 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

w110

w
11

1

−20

−10

0

10

−10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b10

b1
1

−20

−10

0

10

−10 0 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

b10

w
11

1

−20

−10

0

10

−10 0 10

0.0

0.5

1.0

1.5

2.0

w200

w
20

1

−30

−20

−10

0

0 10 20 30

0.0

0.5

1.0

1.5

2.0

Figure 4.44: Error volume slices for the successful x ∧ y → ¬(x ∨ y) solution
given by cluster 1, showing the error surface for two weights holding other

parameters constant. Range large to ensure the randomstart range is included,

which is marked by a square. the centre of the surface is the solution.

Noting this ridge and considering that theremay be other similar complexities, an

attemptwasmade to trainmultipleUESMANNnetworks to perform x∧y → ¬(x∨y)
with the same parameters (η � 0.039, 125000 iterations), but with a larger initial

156 Chapter 4. Training UESMANN using back-propagation

w200

b2
0

10

20

30

−30 −20 −10 0

0.0

0.5

1.0

1.5

2.0

2.5

w201

b2
0

10

20

30

−30 −20 −10 0

0.0

0.5

1.0

1.5

2.0

2.5

w100

w
10

1

−30

−20

−10

0

−10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

w100

w
11

0

−30

−20

−10

0

−10 0 10 20

0.0

0.5

1.0

1.5

2.0

w100

w
11

1

−10

0

10

20

−10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

w101

w
11

0

−30

−20

−10

0

−30 −20 −10 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

w101
w

11
1

−10

0

10

20

−30 −20 −10 0

0.0

0.5

1.0

1.5

2.0

w110

w
11

1

−10

0

10

20

−30 −20 −10 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

b10

b1
1

−10

0

10

20

−10 0 10 20

0.0

0.5

1.0

1.5

2.0

b10

w
11

1

−10

0

10

20

−10 0 10 20

0.0

0.5

1.0

1.5

2.0

w200

w
20

1

−30

−20

−10

0

−30 −20 −10 0

0.0

0.5

1.0

1.5

2.0

2.5

Figure 4.45: Error volume slices for the successful x ⊕ y → x ∧ y solution

given by cluster 1, showing the error surface for two weights holding other

parameters constant. Range large to ensure the randomstart range is included,

which is marked by a square. the centre of the surface is the solution.

random parameter range of [−5, 5]. A larger range of starting values may provide

more routes for the network to converge to a solution — usually smaller initial

weights are better to avoid theweights becoming saturated at the start of the gradient

descent, and Bishop’s rule of using [1√
n
, −1√

n
] (where n is the number of inputs to the

node) has been used thus far. Under the [-5,5] regime, the pairing finds a solution

in 19% of networks: a considerably better performance, and one which correlates

better with the Monte Carlo experiments.

This new initial range was used to attempt to generate all possible boolean pair-

ings, as was done for Fig. 4.4 in Sec. 4.3. The same hyperparameters were used

(learning rate η � 0.1, 75000 iterations). The results are shown in Fig. 4.46 with the

new results in red, and the old results (initial weights in [1√
n
, −1√

n
]) in blue. These

results show that networks with a smaller initial value range generally do better,

probably by avoiding saturation as described above, but for a very few pairings the

higher initial value range converges to a solution more often. These pairings are

x ∧ y → ¬(x ∨ y) and its counterpart ¬(x ∧ y) → x ∨ y, and x ∨ y → ¬(x ∨ y) and

4.6 Summary of boolean UESMANN networks 157

its counterpart ¬(x ∨ y) → x ∨ y. These are the four most difficult pairings to train

using back-propagation in a UESMANN network (see Table 4.1), and it now seems

likely that these are caught by local minima between the relatively small starting

range and the solutions. Increasing the initial weight range avoids these minima in

these pairings, but causes problems for other pairings.

●●●●●●● ● ●● ●●

●

●

●

●

● ●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●●
●

● ● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●●

●

●

●

●

●

●

●● ●●● ●●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●● ●
●

●

●

●

●

●● ●● ●● ●●

●

●

●

●

●

●

●

●● ● ●● ●● ●●●●●

●

●
●

●

●● ●●●●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●● ●●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(monte carlo count)

pr
op

. o
f n

et
w

or
ks

 tr
ai

ne
d

to
 c

or
re

ct
 s

ol
ut

io
n

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

initial weight range +/− 0.707
initial weight range +/− 5

Figure 4.46: Proportion of successful convergences plotted against log
10

of

the Monte Carlo count for 2-2-1 UESMANN networks learning the boolean

pairings at η � 0.1 with 75000 iterations. Two different initial weight ranges

were used: the original Bishop’s Rule weight of [-0.707,0.707] in blue, and

an increased range of [-5,5] in red. The points marked with a solid square

indicate the pairings x ∧ y → ¬(x ∨ y) and ¬(x ∧ y) → x ∨ y. There are four
of these, one for each function at both initial weight ranges. They all have a

log
10

count of approximately 5.8; the two blue squares are superimposed.

4.6 Summary of boolean UESMANN networks
Earlier (Sec. 3.1) we asked whether a UESMANN network can represent any pairing

of boolean functions in the same dimensionality as an equivalent multilayer per-

ceptron. The Monte Carlo simulations of Sec. 3.1.4 show that they can, although the

solutions for some pairings are extremely small. A brief study was made in Sec. 3.2

of some other multiplicative global modulation methods with a single parameter,

158 Chapter 4. Training UESMANN using back-propagation

with the conclusion that modulating the weights only (rather than only the biases,

or weights and biases) provided the best distribution of solutions.

We also demonstrated in Secs. 3.1.1 and 3.1.2 that only a small subset of boolean

pairings are representable by a single UESMANN node, and explained why this is

so by deriving a set of inequalities which must be met for a solution to be possible. It

was established that the fundamental operation ofmodulation in aUESMANNnode

is to halve the bias and narrow the unsaturated region of the activation function.

If we attempt to build networks with two hidden layers to perform pairings

by combining nodes which perform boolean operations, there are several pairings

which cannot be generated. These pairings have solutions, so must operate by using

the hidden nodes’ unsaturated outputs. They generally occur less frequently in the

solution space, perhaps because the weights and biases require careful balancing in

order to function correctly.

We noted above that solutions to some pairings are rare, covering small regions of

the solution space. To find these solutions, the back-propagation of errors algorithm

was modified to traverse the error gradient with respect to the modulated weight.

No augmentations (such as momentum or weight decay) were used, in order to

get a better understanding of the underlying behaviour. Tests showed that the

algorithmworkswell on booleanproblems, but that the error surface can be complex:

increasing the learning rate beyond a certain point causes failure. Some pairings also

require an increased range of initial random weights, suggesting that limiting the

search start to a small area around the origin causes problems. This may be due to

complexities in that part of the error space. However, raising the initial weight range

causes problems for other pairings, possibly due to saturation in the nodes causing

small gradients.

A brief comparison of the transition behaviour — how the network behaves as

the modulator varies between 0 and 1 — was made with three other modulation

methods (output blending, weight blending, and h-as-input). This was done for two

pairings (see Figs. 4.32 and 4.43) and shows that

• UESMANN produces a fairly wide transition, weighted towards h � 0;

• output blending produces a symmetrical, wide transition which becomes a

crisp transition on thresholding;

• weight blending produces an unpredictable transition due to competing con-

ventions;

• h-as-input produces unpredictable transitions, whichwerewide in one pairing,

narrow and inconsistent in another.

4.6 Summary of boolean UESMANN networks 159

UESMANN’s transitions were also consistent, in that the same pairing usually pro-

duced one type of transition. This is due to the limited number of solutions which

are available: fewer than 10 for the pairings tested, with many of these being func-

tionally identical. A brief study was made of the symmetries in the solution groups:

pairings of commutative functions will have each solution represented by four areas

in the solution space, while each solution in other pairings will be represented by

two areas.

We will now study the behaviour of UESMANN in more complex classification

problems: recognising line orientations and handwriting recognition. This will

be done with particular reference to the transition region in the handwriting case.

Output blending and h-as-input will be used as comparisons—weight blending can

be discounted because of its competing conventions problem.

160 Chapter 4. Training UESMANN using back-propagation

Part III

UESMANN in Classification

161

Chapter 5

Introduction and methodology

The previous chapter demonstrates that the UESMANN network architecture can

perform well, learning any two binary boolean functions in networks of the same

dimensionality as that required for learning a single function. In this chapter, we

will explore UESMANN’s performance on two classification problems of increasing

complexity. It is possible that such networks may perform well in such problems,

retaining the same interesting transition behaviour. While our eventual aim is to use

the network as a controller in an adaptive system, it is useful to study classification

problems before looking at regression and control problems.

Image classification problems are particularly useful, because in analysing the

problem we can take advantage of the classification properties of the human visual

cortex: we can look at the images ourselves and know how they should be classified,

and compare them with the results of our network. Thus handwriting recognition

is a good test because it is complex, yet easily understood because it is a problem we

can easily perform ourselves. Control problems can be more difficult to understand,

because it can be difficult to visualise what the outputs should be for a given set of

inputs.

Image classification problems also are useful in analysing how a network’s nodes

actually calculate a complex function: we can generate images corresponding to the

weights of the hidden nodes, and relate those to the input images aswe do in Sec. 6.5.

For these reasons, andbecause one of the primary applications of neural networks

is image classification, many of the benchmarks for neural network performance

are based on classifying images. One notable example is the MNIST handwriting

recognition database, which has become a de facto standard in the field [150, abstract]

and which we use in Sec. 7. Indeed, much of the early work in neural networks is

essentially image classification, such as the work of Rosenblatt [236] andMinsky and

Papert [197], and the “T-C” problem in Rumelhart, Hinton and Williams [237].

163

164 Chapter 5. Introduction and methodology

UESMANN was tested on two such problems of increasing complexity: first,

a binary classification problem involving recognising vertical or horizontal lines in

images. This was chosen because it involves binary classification of simple shapes.

As such, it should perform well with a low number of hidden nodes and have

recognisable patterns of weights in the hidden layer, permitting analysis of the

networks’ function.

Following this, thewell-knownMNISTmulti-class handwriting recognitionprob-

lem [168] was used, with networks attempting to learn two distinct labellings of

handwritten digits. This was chosen because it is a standard benchmark in classific-

ation.

For each of these problems we have the following questions:

• Can UESMANN learn to perform two distinct classifications in a single set of

parameters? The previous work on boolean functions gives us confidence that

it will perform fairly well.

• Howwell does UESMANNperform comparedwith output blending and h-as-
input on these problems1? The convergence behaviour and the performances

of the trained networks was compared: from the previous work, UESMANN’s

performance is likely to be comparable to h-as-input and worse than output

blending in terms of both convergence times and trained performance.

• Howdoes the behaviour of the three types of network change as themodulator

h is varied between the extrema 0 and 1? UESMANN should have a wide

transition region, morphing smoothly between the two behaviours. Output

blending and h-as-input are likely to have narrower transition regions.

5.1 Methodology
To answer these questions, the following methodology was used for both problems

(i.e. in both Chapters 6 and 7).

A number of networks were trained at different learning rates and hidden node

counts. Given that the images are 28 × 28 � 784 pixels2, the hidden node counts

1Weight blending was not tested: at the h extrema it is the same as output blending while its

transition behaviour will be unpredictable due to competing conventions, as established by earlier

work.

2This is the size of the images in the MNIST database; the line recognition images were designed

to conform with these.

5.1 Methodology 165

selected should be between 1 and that size. The values

3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700

were selected, very loosely following a log curve: it is likely that adding nodes to

small networks will have a greater effect than adding nodes to larger networks. For

each of these network sizes, three learning rates were used to train ten networks to

evaluate the convergence behaviour. The rates selected were 0.05, 0.2 and 1. Again,

these are on a log curve. Ideally more networks would have been trained at each

rate, but computing resources were limited. For each network, initial weights and

biases were selected randomly using Bishop’s rule, giving the range [− 1

28
, 1

28
] for the

hidden layer and [− 1√
n
, 1√

n
] for the output layer where n is the number of hidden

nodes.

Each experiment used two sets of data, each consisting of a number of labelled

images. One set, used for training, consisted of 60000 images. 10000 images from

this set were held back for validation during training, leaving 50000 training images.

The other set, used for testing of the final network after training, contained 10000

images. These are the sizes of the training and test sets of the MNIST database; the

same amounts of data were generated for the line recognition experiments. Within

the data each class has similar prevalence3. For binary classification, the output

layer was thresholded at 0.5: greater or equal to 0.5 is positive, otherwise the image

is not in the class. The training examples have 0 or 1 outputs accordingly. For the

multiclass handwriting problem, the output encoding is “one-hot”: there is one

output for each class, and in the examples the output whose index corresponds to

the label is 1 while the others are zero [204, p. 215]. When running the network, the

highest output gives the predicted class.

Both experiments’ data sets contain noise. The line recognition data has Gaussian

noise in the background of the images (See Fig. 6.2, p. 170), while theMNISTdata has

no background noise, but is inherently noisy because it contains digits handwritten

by humans.

Each network was trained for 150000 pair presentations, which is a mere three

iterations through the training set of 50000 images. More iterationswere not possible

due to the limited computing resources. During training, the 10000 images held out

from the training set were divided into 50 slices. At regular intervals, the network

was tested against one of these small sets in order to evaluate convergence; this

3The lines data has three classes: horizontal, vertical and blank. The test data does not divide by

three, so these classes are represented by 3333, 3333 and 3334 examples respectively. The variation in

the MNIST data set is slightly higher, as will be discussed in Sec. 7.

166 Chapter 5. Introduction and methodology

avoided testing against the whole set, which was prohibitively expensive. The slices

were rotated through during training. Further details of the training algorithm are

given for each set of experiments.

Following training (during which accuracy was recorded using the validation

slices) the best network found during the training was taken as the result. This is

the network whose sum of squared errors at the outputs, summed for h ∈ {0, 1} and
over training examples, is a minimum. Note that this is not necessarily the network

after the final training iteration — the error does not increase monotonically.

Having evaluated that the networks converge at all training rates, and having

studied the convergence behaviour, the data for all but the lowest rate was discarded

and the best networks taken for each attempt at η � 0.05. This network was tested

using the test set at each h level {0, 1}, generating two confusion matrices for each h
(2 × 2 for lines, 10 × 10 for handwritten digits).

We now wish to compare the performances of the networks. To compare a large

number of networks, a single performance metric is required. The most common

metrics are generated from 2 × 2 tables of confusion giving false positives, false

negatives, true positives and true negatives. In binary classification problems like

line recognition, these are identical to the confusion matrix. However, multiclass

problems like handwriting recognition require the confusion matrix to be processed

further to generate such metrics. We will discuss how this was done in Sec. 7.3,

but the general approach requires generating one table of confusion for each class

from the confusion matrix and either finding the element-wise mean of these tables

and calculating the metrics, or generating the metrics for each table and finding

the metric mean. This process is performed for the results at each h level, and the

minimum found, to find the metric for the network at its worst performance.

Given that TP, FP are the number of true and false positives and TN , FN are the

number of true and false negatives, available metrics include:

• Accuracy — the proportion of correct results, given by (TP +TN)/(TP +TN +

FP + FN)

• Precision (or positive predictive value)— the proportion of positives which are

true, given by TP/(TP + FP)

• True positive rate (sensitivity or recall) — the proportion of true results which

are classified correctly, given by TP/(TP + FN)

• False positive rate (specificity) — the proportion of false results which are

classified correctly, given by FP/(TN + FP)

5.1 Methodology 167

• F1 score — the harmonic mean of precision and sensitivity, given by

F1 �

(
precision−1 + sensitivit y−1

2

)−1

• φ, the Matthews correlation coefficient, given by

φ �
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Accuracy is easily understood, but is known to have problems if the prevalences

of the classes are different (the so-called “accuracy paradox” [285]). Here, the pre-

valences are almost equal for all classes in the lines data, but vary slightly for the

handwriting recognition data. Moreover, accuracy can be slightly deceptive in that

0.5 is the “worst” score, since an accuracy of zero implies a perfectly perverse classi-

fier (i.e. a classifier which misclassifies all items). The F1 score suffers from similar

prevalence problems to accuracy and does not fully deal with true negatives [223].

Also, calculating the F1 score gives a division by zero if the recall (true positive

rate) and precision (positive predictive value) are both zero, which occurs when no

positives were detected (by very poor networks). This can be resolved by assigning

a score of zero to such case: this is a poor result, since we know there are different

classes in the data set [232] but should more correctly be considered undefined.

The Matthews correlation coefficient (φ) is essentially a binary classification ana-

logue of the well-known Pearson’s correlation coefficient, measuring the correlation

between the true-false and positive-negative “axes”. However, if the number of

negatives or positives is zero, it also leads to division by zero. Again, this can be re-

solved by assigning a score of zero, i.e. “no correlation.” In these tests, theMatthews

correlation coefficient was used, despite the division by zero problem, because of its

relationship with the existing Pearson’s-ρ and the varying prevalences of different

labels in the handwriting data set. For each network a value of φ was obtained for

each modulator level h ∈ {0, 1}, we will combine these by finding the minimum,

denoted φmin .

In the lines problem ROC curves for each network were also plotted at each

learning rate, although instead of using a classifier threshold to generate the points

the number of hidden nodes was used. These show the sensitivity and specificity

of the network type as the hidden nodes change. This was not practical in the

handwriting recognition problem, as is discussed in Chapter 7.

168 Chapter 5. Introduction and methodology

With the line recognition experiments, it was possible to generate networks with

sufficiently few hidden nodes to permit analysis of their function. This analysis

demonstrates how each network type works with tasks with many inputs.

Finally, to analyse the transition behaviour, two different strategies were used.

For the binary classification (line recognition) problem, the number of positives

in each class recognised in the test set was plotted over a range of h values. For

the handwriting recognition task, graphs were plotted showing the region of the h
range for which one of the endpoint labellings is being correctly performed — in

other regions, some intermediate labelling function is being performed. To provide

more detail we will show examples of the labellings at the intermediate points for

some of the networks.

In UESMANN, wewould predict that both functions produce intermediate func-

tions which are, in some sense, true intermediates between the end points. For

example, we should be more likely to see “recognise no lines” and “recognise all

lines” as intermediates in the line recognition task, and some form of smooth digit-

by-digit labelling change in the MNIST task, rather than the “nonsensical” functions

which might be produced by the weight blending network. These intermediate

functions are likely to cover wider regions of the h range than in the corresponding

output blending and h-as-input networks.

Chapter 6

UESMANN in line recognition

In these experiments, a large number of monochrome 28 × 28 pixel images were

generated containing near-horizontal lines, near-vertical lines, and blanks, drawn

in white (1) on a black (0) background. All images were overlaid with noise and

a degree of blurring. Each image was labelled with 0 (horizontal), 1 (vertical) or 2

(blank). Some sample images are shown in Fig. 6.1. The endpoint functions should

detect horizontal and vertical images at h � 0 and h � 1 respectively.

Figure 6.1: Example images for the line recognition experiments

6.1 Image generation
Images were generated using Algorithm 6. This uses Bresenham’s line algorithm to

draw the lines (without antialiasing), first generating Gaussian noise using a Box-

169

170 Chapter 6. UESMANN in line recognition

Muller transform [224, p. 364] with µ � 0.4 and σ � 0.15. The resulting image

is blurred by convolution with a 3 × 3 kernel, given in the algorithm. The kernel

was chosen to both dilate and blur the image. The line end points were uniformly

randomly selected fromfixed ranges, which are shown in Fig. 6.2. Thesewere chosen

in an ad-hoc fashion to generate lines whose orientation and length clearly varies,

but which can clearly be called “vertical” or “horizontal.”1

Figure 6.2: Line end-point zones for line generation. Horizontal lines are

drawn between two points randomly selected from each red zone, vertical

lines similarly use the blue zones.

6.2 Network training
The networks were all trained using Algorithm 7, which is essentially identical to

Algorithm 1 with the addition of validation slices. The validation set was divided

into 50 slices, and validation was performed on a slice every 150 pair presentations

in order to evaluate convergence behaviour.

6.3 Convergence behaviour
First, we will examine how the different network types converge at all three chosen

learning rates. This is done to establish that sufficient training iterations have been

1The bottom row and left column are always empty— this was an early programming error which

there was insufficient time to amend.

6.3 Convergence behaviour 171

Algorithm 6 Line data generation
T ← image, 28 × 28 pixels of value 0

fill T with gaussianNoise(µ � 0.4, σ � 0.15)
if not a blank image then

x0 ← U([1, 8])
x1 ← U([20, 27])
y0 ← U([10, 17])
y1 ← U([10, 17])
if line is to be vertical then

x0 ↔ y0

x1 ↔ y1

end if
draw line in T from (x0, y0) to (x1, y1)

end if

I ← 0.25

©«T ∗ ©«
1 2 1

2 4 2

1 2 1

ª®¬ª®¬ (i.e. convolve with 3 × 3 binomial kernel)

output I and associated label (0=horizontal, 1=vertical, 2=blank)

provided, and to compare the numbers of required nodes to converge to a solution

at different learning rates (after this, we will only consider η � 0.05).

6.3.1 Control convergence behaviour

The network type usedhere is output blending: to recapitulate, two separate 784×n×
1 networks are trained to recognise horizontal or vertical lines. The outputs of these

two networks are linearly interpolated between using the parameter h. As such, this

type also serves as a control: the performance at the end points h ∈ {0, 1} is the

performance of a single network trained using plain back-propagation to perform

the horizontal or vertical line recognition task.

6.3.1.1 Convergence periodicity

As noted above, every 150 pair presentations the network was run on a slice of the

validation set. The convergence data for η � 1 for the control with h � 0 is shown

in Fig. 6.3 without smoothing, with all attempts shown (thus there are 10 points at

each iteration for each hidden node count). This plot has a large amount of periodic

noise: every sample is from a different slice of the validation set, with the slices

repeating every 50 samples. Samples are taken every 150 pair presentations, leading

to a periodicity of 7500 pair presentations, which is what the plot shows.

172 Chapter 6. UESMANN in line recognition

Algorithm 7 Learning two different classifiers for vertical/horizontal lines

nvalidationExamples � 10000 {we hold out 10000 validation examples}

ncv � 150 {number of iterations per validation}

ns � 50 {number of validation slices}

N ← new network of 784 × nh × 1 nodes {i.e. nh hidden nodes}

E � full training example set, indices start at 0
ne � |E | − nvalidationExamples {calculate number of training examples}

T � {Ei : 0 ≤ i < ne} {get training set}

V � {Ei : ne ≤ i < |E |} {get validation set}

S0···ns−1 � ns disjoint subsets of V of equal size {the validation set slices}

islice � 0 {the validation slice index}

for allweights i , j and biases bi do
wi j ← U(−1√

d
, 1√

d
)where d is the number ofweights in the node andU(p , q) is a uniformly

distributed random number in the range [p , q]: this is Bishop’s rule.
bi ← U(−1√

d
, 1√

d
{d ,U defined as above}

end for
errmin � −1 {initialise minimum error to rogue value}

for i=0 to 150000 do
(ie , le) ← Ei mod |T | {get the current example: ie is input image for example e, le is the

label}

h ← 0 {set the modulator level of the network for training}

present example (ie , f1(le)) to the backprop algorithm (Algorithm 2 for UESMANN)

and update the weights and biases accordingly; f1(le) is the output of function 1 on that

label for that image, where

f1(x) �
{

1 if x � 0, {0 if line is horizontal}

0 otherwise

err1 ← (N(ie) − f1(le))2 {get squared error of network in this example at h � 0}

h ← 1

present example (ie , f2(le)) to the backprop algorithm and update:

f2(x) �
{

1 if x � 1, {1 if line is vertical}

0 otherwise

err2 ← (N(ie) − f2(le))2 {get squared error of network in this example at h � 1}

err � err1 + err2 {calculate total error}

if err < errmin ∨ errmin < 0 then {If the error is the smallest found, store this best

network}

errmin � err
Nbest � N

end if
if i mod ncv � 0 then {ncv is number of iterations per convergence measurement}

run all examples in Sislice through the network with both h � 0 and h � 1 and record

the number of runs for which either function gave an incorrect classification.

islice � (islice + 1)mod ns {rotate through validation slices}

end if
end for

6.3 Convergence behaviour 173

Figure 6.3: Unsmoothed convergence data for η � 1 in the control for identi-

fying horizontal lines (class 0), showing all attempts, and thus 10 points at

sample point (every 50 pair presentations).

6.3.1.2 Smoothed results

This raw data is hard to read and there is an apparent high error rate at around 0.65:

this is an illusion due to many outliers of similarly coloured nodes. To aid legibility,

themeans of errors for each of the hiddennode countswas taken and smoothedusing

a polynomial spline (using R’s pspline package). Separate splines were generated

for the mean±0.25 standard deviations (this small fraction was chosen for legibility).

This results in the plot in Fig. 6.4a, shownwith the plots for all learning rates, Fig. 6.4.

This shows networks with less than 20 hidden nodes failing, and higher node counts

being more successful with an error rate of less than 0.05. This trend continues

until the node count rises to around 400 (this is the curve which takes some time to

converge to a solution). After this, performance is poor, possibly due to overfitting.

Higher learning rates converge to a solution much more quickly as expected, with

both low and high node counts also converging to solutions. The accuracy of these

solutions is about the same as for η � 1, indicating that all learning rates probably

find the same solutions.

174 Chapter 6. UESMANN in line recognition

This is fairly goodperformance for plain back-propagationwith no enhancements

on a very simple task. We will now analyse the convergence behaviour of the

modulatory network types.

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 h

=
0

fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 h

=
0

fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 h

=
0

fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 6.4: Smoothed convergence data for η ∈ {1, 0.2, 0.05} in the control at

h � 0 for identifying horizontal lines, showing the means of all attempts for

a given node count, with shading delimiting the region within 0.25 standard

deviations of the mean.

6.3.2 Output blending convergence behaviour

In output blending, we are training two networks and switching between them (in

these tests h ∈ {0, 1}) only accepting as “correct” tests those for which both networks

produce the right answer. The control described above tests only one of these

6.3 Convergence behaviour 175

networks. For example, a test image with a horizontal line must generate positive

from the h � 0 network and negative from the h � 1 network in the same pair, while

the control tests only the h � 0 network.

However, the two networks are trained completely independently. If we treat

the error probability of the networks as two independent random variables E0 and

E1, the probability of either network being in error will be E0 + E1 − E0E1 (by the

basic rules of probability). If we assume that E0 ≈ E1, since both line detection tasks

should be of roughly the samedifficulty, then this becomes 2E0−E2

0
. The convergence

of output blending should therefore have this relationship to the convergence of the

h � 0 plain back-propagation control.

Using the same technique as Fig. 6.4 to plot the results for output blending, this

time using as our metric the number of examples in the convergence slices for which

both functions produced the correct classification (i.e. was able to identify horizontal

lines at h � 0 and vertical lines at h � 1), we obtain the convergence behaviour in

Fig. 6.6. This shows roughly the relationship with the control which we describe

above, but with some variation: for example, the model predicts that in the limit as

the control error approaches zero, the output blending error should approach half

the control error. This does not hold, therefore one of our assumptions is wrong.

The incorrect assumption here is that the two functions are converging at an equal

rate. If we plot (without smoothing, for this demonstration) the convergence of the

two different functions (in output blending, the two separate networks) for η � 1

with 100 hidden nodes, we obtain Fig. 6.5. This shows that the h � 1 function has a

higher error rate that h � 0. If the functions are reversed (so that horizontal lines are

recognised at h � 0 rather than vertical lines), we see the opposite pattern: this is not

an artefact of the training system (nor can it be — the two networks are independent

here). It appears that vertical lines are harder to recognise that horizontal lines,

but the reason for this is unknown: they should be equally difficult, given that one

is simply a rotation of the other. This is likely to be due to a problem with the

generation of the training data, which will be investigated as part of future work.

It should be borne in mind when looking at later figures that this error rate is

that for the validation slices and has been smoothed: accuracy figures for the final

network will be calculated on the entire test set, and will not agree. Note that the

validation error drops but then rises towards the end of training for some node

counts: this is likely due to the high learning rate causing the network to overshoot

the solution. Fig. 6.6 shows the convergence plots for all selected learning rates,

showing that at lower learning rates all nodes converge to a solution. At both η � 0.2

and η � 0.05 the best smoothed mean performance is around 0.05, although the

176 Chapter 6. UESMANN in line recognition

●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●●●●

●

●
●

●

●

●

●

●

●
●●●●

●

●●
●

●

●

●●
●
●●
●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●
●
●

●

●
●
●

●●

●
●
●

●
●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●●●●

●

●

●

●

●

●

●

●●●●
●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●●
●
●●
●

●

●
●

●

●

●●
●
●

●

●●
●●

●

●

●●
●●

●●

●

●●●
●
●

●

●

●●

●

●

●●
●

●●

●

●

●

●●

●●●
●●

●

●

●

●●

●
●●

●

●
●
●

●●

●

●

●
●●●●

●
●

●

●●
●

●

●●
●
●

●

●

●

●●
●

●●●

●
●
●

●
●
●

●

●
●
●

●

●
●●●
●

●

●
●

●
●●
●●

●
●●

●
●
●
●
●
●
●

●
●
●

●

●
●

●

●●●

●

●

●●●

●

●●
●●●

●

●

●

●

●
●●●
●●
●●
●
●

●

●

●

●

●

●

●●
●
●●●
●
●
●●

●

●

●
●●
●
●●

●

●

●●●●●
●

●

●

●

●●●●
●

●

●

●

●●●

●

●

●

●

●

●
●
●
●●

●

●

●

●●●●●
●

●

●
●
●

●

●

●

●●

●●
●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●
●
●●

●

●
●●●●●
●●●
●●●●●●●

●

●

●

●

●
●

●

●●

●●●●
●

●

●

●

●

●
●●

●●
●●●●●
●

●

●●●

●

●

●●
●

●

●●●
●
●●

●
●
●

●

●

●●●

●

●
●
●

●
●

●
●
●●

●

●●●

●

●
●●
●
●●●●
●●

●

●

●●
●
●

●

●●

●

●
●

●
●●
●●

●

●
●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●
●
●
●●
●
●●

●

●●

●●
●
●
●●
●●
●
●

●

●

●

●●
●●●●
●

●
●

●

●●●
●

●●
●●●

●

●●●
●
●
●

●●
●
●

●

●

●●●

●●

●

●

●

●
●●●●

●●●

●●
●
●●●
●

●

●●

●●

●

●

●

●●●●
●
●
●●●

●

●●
●●●

●

●●
●●●
●●

●●●

●

●
●

●

●

●●

●

●●

●

●●
●

●

●●
●●●

●●
●
●

●
●
●●
●●
●●

●

●

●
●●●

●

●

●
●

●

●●●
●

●
●●

●

●
●
●●●

●

●

●

●
●
●●●

●

●●

●●
●

●●

●

●●●●
●●
●

●●
●
●

●

●●●
●

●

●●●●
●
●

●
●
●

●
●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●●
●
●
●●

●

●●
●●
●●
●●

●

●

●

●●

●

●●

●

●●●

●

●
●
●●●
●●●
●
●
●
●

●●●
●●
●

●●●

●●●●
●●●●●●

●

●
●
●●

●
●
●
●

●●
●●
●●●●●
●●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●●
●
●

●
●

●
●
●

●

●●
●●●●
●●●●●

●

●
●
●
●●

●●

●
●

●●●

●

●●●
●
●
●
●
●
●
●

●

●
●●●

●

●
●

●

●

●
●●●

0 50000 100000 150000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

pair presentation

pr
op

or
tio

n
of

 e
xa

m
pl

es
 c

or
re

ct
 in

 s
lic

e

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●●

●

●

●

●
●

●

●●

●

●

●
●
●

●●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●●●
●

●

●●

●

●

●

●

●●●

●●

●
●
●

●

●●

●
●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●●

●

●●

●

●

●

●
●

●

●●●●

●

●

●
●

●●

●●

●

●

●●
●
●

●●

●
●●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●●
●●
●●

●●●
●

●

●

●

●●

●

●●

●
●

●
●●

●

●
●
●

●

●
●

●
●
●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●●
●●

●

●

●●●

●

●●
●
●

●

●

●
●
●●
●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●
●

●

●●●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●●●

●
●

●

●
●
●

●●

●
●●●
●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●
●

●

●●
●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●
●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●
●

●
●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●
●

●
●

●

●●
●

●●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●●
●

●

●

●

●
●●

●

●

●

●

●

●●●●
●●

●
●●
●

●

●

●●
●
●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●●

●
●

●
●
●

●

●●
●

●

●●
●

●●

●
●
●●

●

●

●

●●●

●

●●

●
●●
●
●

●●●

●●●

●

●

●

●

●

●●
●●●●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

h=0
h=1

Figure 6.5: Convergence (unsmoothed) of output blending for line recognition

at η � 1 with 100 hidden nodes, showing the two functions separately.

nodes are still converging very slowly when the training completes. Unfortunately

the available resources did not permit a longer training time.

6.3.3 h-as-input convergence behaviour

The convergence behaviour for h-as-input networks of the same topologies as the

previous experiments at the three different learning rates is shown in Fig. 6.7.

At the highest learning rate (η � 1) no nodes converge to a solution. At η � 0.2,

all but the lowest node counts (n ≤ 40) do so, with the rest appearing to overshoot

the solution minima. At η � 0.05 all node counts converge to a mean error rate of

around 0.09. This is poorer than output blending, as is to be expected given that

this is a single network rather than one for each function. Convergence also takes

longer than in output blending, with networks converging to a solution at around

100000 pair presentations (at η � 0.05), and only starting to converge after 25000

presentations in what appears to be a flat region of the error surface. In output

blending, the error rate starts to fall immediately as the training begins: the error

surface is likely to be much simpler in a network learning a single function.

6.3 Convergence behaviour 177

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 6.6: Smoothed convergence data for η ∈ {1, 0.2, 0.05} for output blend-
ing, showing the means of all attempts for a given node count, with shading

delimiting the region within 0.25 standard deviations of the mean.

6.3.4 UESMANN convergence behaviour

The behaviour of UESMANN networks in the same set of 784 × n × 1 topologies at

different learning rates is shown in Fig. 6.8. Across all learning rates the flat region

seen in the h-as-input results is not present, and η � 1 performs slightly better (but

still poorly) in this regime. At η � 0.2, performance isworse, however— this appears

to show a strong local minimum in which this network becomes trapped. At the

lowest learning rate, low node counts (n ≤ 40) converge to poor solutions, while

greater node counts converge to a mean error rate of around 0.09, comparable with

h-as-input (although the latter network type trains better at lower node counts at

178 Chapter 6. UESMANN in line recognition

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 6.7: Smoothed convergence data for η ∈ {1, 0.2, 0.05} for h-as-input,
showing the means of all attempts for a given node count, with shading

delimiting the region within 0.25 standard deviations of the mean.

this learning rate). This lower learning rate permits the system to escape the local

minimumwhich affects η � 0.2; this can be seen in the “kink” in the plots at around

25000 iterations. A similar flat region is present in the h-as-input convergence plots
of the previous section, whichmay indicate similarities in the error surface or at least

the sizes and curvatures of the minima.

UESMANN appears able to learn a solution to recognising two different line

orientations in a single network, although it requires more hidden nodes than h-
as-input to do so reliably. At higher node counts (greater than 50) UESMANN and

h-as-input have roughly the same performance (according to validation).

6.4 Performance of the different networks at η � 0.05 179

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 6.8: Smoothed convergence data for η ∈ {1, 0.2, 0.05} for UESMANN,

showing the means of all attempts for a given node count, with shading

delimiting the region within 0.25 standard deviations of the mean.

6.4 Performance of the different networks at η � 0.05

We have established that all three networks are able to learn how to recognise

horizontal and vertical lines at η � 0.05. We will now examine the performance of

the networks at this learning rate in more detail.

The performance of a binary classifier is often shown as a Receiver Operating

Characteristic, or ROC, curve. This plots the true positive rate against the false

positive rate, resulting in a curve in which a “good” classifier is close to the top

left-hand corner (high TPR, low FPR). In a traditional ROC curve, the threshold of

a single classifier is varied to generate the curve. Here, we instead show multiple

180 Chapter 6. UESMANN in line recognition

classifiers (the networks), changing the hidden node count to create the curve. The

performances of all networks at each hidden node count are plotted.

Plotting an ROC curve is complicated by the fact that we have two different

classification problems in a single classifier. Plotting two curves is misleading,

because networks which perform well in one problem may fail in another. An

alternativewould be to plot each h ∈ {0, 1} pair as a single point, taking theminimum

of the true positive rate and themaximumof the false positive rate to show theworse

performance. However, thiswould fail to showwhichof the two functionsperformed

poorly.

Our solution is to plot both curves side-by-side, and to link the results for the

same network with lines. A network which performs both functions well will be

in the top left-hand corner in both plots. The results for all three network types at

η � 0.05 is shown in Fig. 6.9.

We see that output blending has the most consistently good results, with most

networks achievingperformances close to the optimum(truepositive rate of 1 against

false positive rate of 0) in h � 0 and slightly worse at h � 1 (showing a lower true

positive rate). There appears to be a negative correlation between the performances:

if h � 0 performs well, h � 1 will not perform as well and vice versa. However, this is

illusory: the two networks are completely independent and the strongest correlation

(Pearson’s r � 0.765 at 50 hidden nodes) is not significant at p < 0.05.

The h-as-input networks mostly perform well (we will see more details later) but

with a large number of outliers giving a low true positive rate, and a few with low

node counts giving a high false positive rate at h � 1. Again, the h � 1 performance

is somewhat poorer.

6.4 Performance of the different networks at η � 0.05 181

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
h=0 h=1

False positive rate

●●

●

●

●

●

●●●
●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●

● ●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●●
●

●
●●

●

●

●

●

●
●

●

●●●
●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●●

●●●

●

● ●

●

●
●●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Hidden nodes

3
5
10
20
30
40
50
60
70
80
90
100
200
300
400
500
600
700

(a) output blending

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
h=0 h=1

False positive rate

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●
●

●

●
●
●
●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●
●●

●

●
●

●
●

●

●

●

●

● ●

●●

●

●
●
●

●●
●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Hidden nodes

3
5
10
20
30
40
50
60
70
80
90
100
200
300
400
500
600
700

(b) h-as-input

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
h=0 h=1

False positive rate

●
●
●

●

●
●

●

●
●
●

●●●●●●●●●●

●●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●

●

●
●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Hidden nodes

3
5
10
20
30
40
50
60
70
80
90
100
200
300
400
500
600
700

(c) UESMANN

Figure 6.9: ROC curve (true positive rate against false positive rate) for all

trained networks for each network type at η � 0.05. The left hand shows

h � 0, the right hand side shows h � 1. Each network’s pair of points are

linkedwith a grey line. The dotted line indicates the performance of a random

classifier: below this, the classifier is “perverse”.

182 Chapter 6. UESMANN in line recognition

UESMANN has the poorest results overall, working with a very simple modu-

latory scheme in a single set of weights. Low node counts in particular perform

extremely poorly, particularly at h � 1: the group of networks which fail to find

any true positives at h � 1 are all networks with 10 hidden nodes or fewer. The

solid line along the bottom is formed by all but one of the 3 hidden node networks:

these networks fail to find any positives. Three other classifiers at low node counts

are perverse at h � 1: they predict the wrong class more often than the correct

class. However, individual networks with intermediate counts can performwell (see

below).

The h � 1 (vertical line) examples appear to be slightlymore difficult to learn in all

network types. If this were true only in UESMANNwewould have reason to suspect

the algorithm, but this is not the case. It is particularly interesting that this also

appears in output blending, where the two networks are completely independent.

However, time did not permit further investigation — it may simply be that the

examples provided in the data sets were skewed in some way.

The plots in Fig. 6.9 show general trends for the networks, and show that the

performance at h � 0 and h � 1 does not necessarily correlate. However, it is

hard to see how many individual networks at each node count are performant. We

will therefore combine the plots using a single metric: the Matthews correlation

coefficient described above. This produces two values, one for each network at

h ∈ {0, 1}, which we shall further combine by taking the minimum over h: we are

interested in networks which performwell on both functions. The results are shown

in Fig. 6.10 as a multiple box plot.

UESMANN networks generally converge to reasonable solutions when they con-

tain between 80 and 500 hidden nodes. The h-as-input networks require between

20 and 100 nodes, after which local minima appear. Output blending is performant

over the entire range, because each network of which it is composed is trained to a

single function.

While UESMANN generally performs poorly at fewer than 50 hidden nodes, at

higher node counts networks are generatedwhich perform remarkably well. Even at

the modest count of 30 nodes, the best UESMANN network generated outperforms

the other network types (admittedly, this is from a sample of only 10 of each, and the

worst UESMANN network at this hidden node count is perverse). Indeed, the best

UESMANNnetwork outperforms the best h-as-input and output blending networks

at many node counts (30, 50, 60, 70, 90, 100, 200, 300).

6.4 Performance of the different networks at η � 0.05 183

●

● ●● ●

● ●

●

●

●

●

●

●

●●

●

●●

0.0 0.2 0.4 0.6 0.8

3
5

10
20

30
40

50
60

70
80

90
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Minimum Matthews correlation coefficient

H
id

de
n

no
de

 c
ou

nt

●●●

●

●

●

●

●

●

●

●

●●●
●●●● ● ●●

● ●●●
●● ●●●●

●●
● ● ●● ●●● ●

● ●●
●

●● ●● ● ●

● ●●
● ●

●
●● ●

●

●●● ●●● ●● ● ●

●
●● ●●● ●● ● ●

● ●● ●
●● ●

● ● ●

●● ● ● ●● ●● ● ●

●● ● ● ●
● ●●● ●

●● ● ●●● ●● ● ●

●● ● ● ●● ●●● ●

●● ●
●

●● ● ●●●

● ●● ●
●● ● ●● ●

● ●● ● ●● ●●● ●

● ●●● ●● ● ●
● ●

● ●● ● ●●
● ● ●●

●
●

●●
●● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●●
● ●

●●

●● ●
● ●●● ●●●

●
●● ●●● ●● ●●

●● ● ● ●● ● ●●●

●
●

● ● ●●
● ●●●

● ● ● ●● ● ●● ●●

● ●● ● ●●●●
●●

●●●● ●● ●●●●

●
●● ●●● ● ● ●●

●●
● ●

●● ●
●● ●

●● ●● ●●
●●●●

●● ●● ●● ● ● ●●

●● ●
●

●● ●● ● ●

●● ●● ●●
●● ●●

●● ●● ●● ● ● ●●

● ●● ●●● ●● ● ●

● ●●● ●● ●● ●●

●● ● ●●● ● ●
● ●

●

● ●● ●

● ●

●

●

●

●

●

●

●●

●

●●

●●●●●● ●
●
●
●

● ● ●
●● ●● ●●●

●●● ●●●●
● ●●

●● ●●●● ●●●●

●
● ● ●●

●● ● ●●

● ●
● ●● ●● ● ●●

●
●

● ●● ●● ●● ●

● ●
●

● ●●●●● ●

●●
●

●
●● ● ●● ●

●
●● ● ●●

●
●

●●

●● ●● ●●● ● ●●

● ●● ●● ●● ● ●●

● ●● ●●●● ● ● ●

●●●
● ●●● ● ●●

● ●
●● ●●● ● ●●

●●●● ●●● ● ●●

●●●● ●●● ●
● ●

●●● ●● ●●
● ●●

Network type

UESMANN
h−as−input
output blending

Figure 6.10: Box plot of minimum Matthews correlation coefficient φmin for

all networks of all three network types, across both h � 0 and h � 1. The

actual network points are shown as red dots.

184 Chapter 6. UESMANN in line recognition

Performant networks are achievable at fairly low hidden node counts, but are

rare: work for the next section showed that 100 repeats of the η � 0.05 experiment

for UESMANNnetworks with only 3 hidden nodes generated some networks which

achieved a φmin greater than 0.9. Their rarity is shown in the histogram in Fig. 6.11.

Nevertheless, theymay exist for a given problem and can be found provided enough

Minimum Matthews correlation coefficient

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Figure 6.11: Histogram showing the frequency of minimum F1 score values

in 100 networks generated at η � 0.05 in UESMANN networks performing

line recognition with 3 hidden nodes.

restarts are used. It might be possible to use early stopping to help with this: if the

convergence fails to fall for a suitably long period, restart. However, this might fail

to find solutions. Consider the convergence plot in Fig. 6.8c: the network navigates

two plateaux which might cause an early stopping algorithm to restart too early.

The same applies to other algorithms, of course: Fig. 6.7c shows multiple h-as-input
networks starting in a very large plateau which takes nearly a full iteration through

the data set to escape.

6.5 Analysis of network function
Because successful networks can be quite small in this problem, it may be possible

to analyse the network behaviour for typical solution networks. This can be done

by visualising the weights into each hidden node as a grid of pixels in a Hinton

diagram [122]. This analysis should be tractable in networks with few hidden nodes.

6.5 Analysis of network function 185

Although good solutions are available from the previous experiments for h-as-input
and output blending, Fig. 6.10 shows that training only ten networks generates no

good solution networks for UESMANN at very low node counts. To see if such

networks exist, UESMANN network training was repeated for 100 different initial

weight sets at η � 0.05 with 3 nodes and the same number of training iterations.

Several good quality networks were found as described in the previous section.

6.5.1 Output blending

This is the most straightforward case. Effectively, we are analysing a different net-

work at each extremum of the modulator. Hinton diagrams showing the weights of

both networks are shown in Fig. 6.12. These networks are easy to understand from

the diagram. For the purposes of this discussion, we will number the nodes in the

hidden layer from left to right as 1, 2 and 3.

In the h � 0 network, the weights of node 2 show a pattern of weights which

is inhibited by horizontal lines and excited by vertical lines. The weight for this

node in the output layer is strongly negative, so the end result (combined with the

inverse pattern and corresponding output layer weight of node 3) is to produce high

values when horizontal lines are presented, and low values when vertical lines are

presented. The bias on the output node may counteract the negative effect of the

noise from the middle node.

Note that there is a large amount of redundancy here: a single node (effectively

a Rosenblatt perceptron) could give a similar functionality and performance using a

similar pattern of weights to that of the hidden node.

The h � 1 network, which recognises vertical lines, functions in a similar way.

Here, node 2 is inhibited by vertical lines and excited by horizontal ones (and noise).

In nodes 1 and 3 the pattern is reversed. Node 2 has a negative weight into the

output layer while nodes 1 and 3 have positive weights. This results in excitation by

vertical lines and inhibition by horizontal lines and noise.

6.5.2 h-as-input

The Hinton weight diagrams for this network are shown in Fig. 6.13. Again there is

redundancy — hidden node 3 has very small input weights and a very small weight

into the output layer and so can be discounted. Nodes 1 and 2 both have small

weights, but in the distinctive patterns noted in the output blending networks for

detecting line orientations. Here, the output is pulled down by lines of the right

orientation, but pulled up by noise, more so in node 2. This is slightly unclear in the

186 Chapter 6. UESMANN in line recognition

(a) h � 0

(b) h � 1

Figure 6.12: Hinton diagrams of the weights in the hidden and output layer

of both components of an output blending network with a good solution for

line detection (h � 0 detects horizontal, h � 1 detects vertical). The three large

figures show the input weights into each node in the hidden layer, with each

square representing the weight from the corresponding pixel in the input.

The bias is shown at the top left. The colour of the square is white if positive,

black if negative, and the area of the square is proportional to the magnitude

of the weight. The output layer is shown at the bottom: the three squares to

the right show the weights from each hidden node, and the bias is shown to

the left. All biases andweights within a node are normalised to themaximum

absolute bias/weight within that node.

figures because themodulator weightmagnitudes are so large. This largemodulator

input weight is positive in node 1, which is inhibited by vertical lines; and negative

in node 2, which is inhibited by horizontal lines. Both these nodes have strongly

negative weights into the output node.

Disregarding the modulator, node 1 will produce a negative output when a

vertical line is presented andnode 2will produce anegative outputwhenahorizontal

line is presented. If the modulator is high, node 1 will be pulled high and node 2

will be pulled low. There will be no effect if the modulator is low.

6.5 Analysis of network function 187

Figure 6.13: Hinton diagrams of the weights of an the h-as-input solution to

line detection. The diagram is as described in Fig. 6.13, with the addition of

the weight for the modulator input into the hidden layer. This is shown as an

extra square halfway down the left-hand side of each node, below the bias.

If themodulator is low, horizontal lines are detected because node 2will be pulled

low, with that being negated by the negative weight into the output layer. While

there is a small band of horizontal detection in node 1, it is counteracted by the large

vertical detector overlaying it.

If the modulator is high, the detector in node 2 is inhibited by the large negative

modulator input weight. Horizontal lines will pull node 2 lower, but to no effect.

However, the vertical detector’s output is now higher because of the modulator, but

any vertical line presentwill pull down this node’s output so that it no longer inhibits

the output node, and the output node’s bias will drive it high. Vertical lines are not

detected with the modulator low because of the inhibitory effect of node 2’s many

positive input weights combined with the noise in the image.

It is likely that the learned model at these low node counts is overfitted to the

data, relying on fairly precise amounts of noise in the background and lines which

fall precisely within the areas defined by Algorithm 6.

6.5.3 UESMANN

An example of a good 3 node UESMANN network (the best of the 100 found in the

repeat experiments discussed above) is given in Fig. 6.14, shown as two networks

(weights nominal and weights doubled). The network has a φmin of 0.89. In this

network, nodes 2 and 3 detect horizontal lines and excite the output node. Node

1 detects vertical lines, but using negative weights which inhibit the output when

such a line is detected.

Under modulation, the output threshold is decreased. This will change the

balance between the vertical detector of node 1 and the two horizontal detectors

188 Chapter 6. UESMANN in line recognition

(a) h � 0

(b) h � 1

Figure 6.14: Hinton diagrams of the weights in the hidden and output layer

of a UESMANNnetworkwith a good solution for line detection (h � 0 detects

horizontal, h � 1 detects vertical). The diagrams are as described in Fig. 6.12,

with one showing the network with nominal weight values at h � 0, and the

other showing the weights doubled (but not the biases) at h � 1.

of nodes 1 and 2, causing a change in behaviour. There are also many non-zero

weights which are connected to input pixels outside the line areas — UESMANN

may be using these weights (which modulate) against the biases (which do not). To

understand this better, plots were made of the hidden layer outputs and network

output as the modulator moves from 0 to 1, for examples of the three different image

types. These are shown in Fig. 6.15 for “blank” images (i.e. just noise), Fig. 6.16 for

horizontal line images, and Fig. 6.17 for vertical line images.

6.5 Analysis of network function 189

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(a) Example 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(b) Example 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(c) Example 3

Figure 6.15: Plots of outputs of hidden layer and overall output for a good

3-node UESMANN solution to line recognition against h for three different

blank images

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(a) Example 14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

Node 1
Node 2
Node 3
out

(b) Example 20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(c) Example 21

Figure 6.16: Plots of outputs of hidden layer and overall output for a good

3-node UESMANN solution to line recognition against h for three different

horizontal line images

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(a) Example 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(b) Example 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

h0

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

●

Node 1
Node 2
Node 3
out

(c) Example 5

Figure 6.17: Plots of outputs of hidden layer and overall output for a good

3-node UESMANN solution to line recognition against h for three different

vertical line images

190 Chapter 6. UESMANN in line recognition

Several features are immediately apparent when these plots are read in conjunc-

tion with Fig. 6.14:

• Node 2 appears to be redundant — it never changes under either modulation

or image type, always remaining low due to its negative bias, but is otherwise

similar to node 3.

• Node 1 goes low when vertical lines are detected and the modulator is high,

and has a negative weight into the output.

• Node 3 goes high when horizontal lines are detected and the modulator is low,

and has a positive weight into the output.

With these basic ideas in mind, we will now look in detail at how the network

behaves at the two modulator extrema.

6.5.3.1 Modulator low

• In a “blank” image, the white and black pixels in each hidden node are bal-

anced, but there are more negative weights in every hidden node. All nodes

but node 1 (with a large positive bias) are pulled down: node 2 by its negative

bias and node 3 by the preponderance of negative weights being triggered by

noise. Node 1 has a large negative weight into the output and the other two

nodes have positive weights, so the output is low.

• In a horizontal line image, node 1 is high due to its bias and the positive

horizontal contribution despite the negative vertical pattern, node 2 is still low

because of its bias, but node 3 goes high: although it has an overall negative

weighted input sum because of the negative weights, the horizontal line gives

the positive weights a slightly larger contribution, increased further by the

positive bias. Node 3’s activation now drives the output high, since the output

has a low positive bias.

• In a vertical line image, node 1 is still high because of its bias. The other nodes

will be pulled down even more by the vertical line, so the output will be low

(remembering node 1’s negative weight into the output). This is very sensitive:

if there is too large a vertical line, node 1 will be driven low and detect the

vertical line erroneously at h � 0.

6.5.3.2 Modulator high

Here, as we have seen, the high modulator doubles the weights (or halves the bias)

which changes the balance of the nodes — in particular, there are more negative

6.5 Analysis of network function 191

weights than positive in the weights of each hidden node, leading to a general

decrease in activation relative to the bias.

• In a blank image, node 1’s bias is still high enoughdespite the increasedweights

to drive it high. Nodes 2 and 3 are driven even further down because of the

larger negative weights. The result is a low output.

• In a horizontal line image, node 1 remains high because of the positive weights

on the horizontal line. Node 3 now remains low: the increase inweightsmeans

that the overall negative sum of the weighted inputs is larger, and the positive

bias is no longer sufficient for the node to go high. Node 2 remains low, having

a negative bias. With node 1 high and both nodes 2 and 3 low, the output is

low and the horizontal line is not detected.

• In a vertical line image, node 1 now goes low: the increased contribution of

the larger negative weights combined with the vertical line weights is now

sufficient to overcome the positive bias. Nodes 2 and 3 remain low, being

pulled down by the increased negative weights (some of which are coming

from the vertical line). With all three hidden nodes low, the positive bias on

the output is now able to pull the output high.

Thus the UESMANN solution is a complex balancing act in the biases and weights

of both hidden and output nodes. As noted above, node 2 is indeed redundant. Its

output never contributes to the function of the output node, because it is pulled low

by the combination of its negative bias and negative weights. Therefore a 2 node

solution exists: to obtain it we could simply remove node 2. It is not known how

readily back-propagation would find such a solution; testing this has been left for

future work.

6.5.3.3 Thepossibilityof aUESMANNoutputnode shiftingbetweenperceptrons

The above solution requires that both hidden and output nodes change their beha-

viour under modulation. Is it possible to create a single UESMANN node as an

output layer in an otherwise conventional network which shifts between discrimin-

ation using one perceptron to another? In the lines problem, this would involve two

“normal” unmodulated perceptron networks: one trained to recognise horizontal

lines, the other trained for vertical lines. The outputs of these would feed into a

UESMANN node which switches between them as the modulator varies.

We have already effectively proven that such a node is impossible. Referring

back to the work on boolean functions in Sec. 3.1, we have shown that the pairing

192 Chapter 6. UESMANN in line recognition

x → y and all similar pairings involving a function of a single input to a function of

the other input (such as y → x or x → ¬y) are not possible in a single UESMANN

node (see Fig. 3.5 on page 75). Since our putative node is effectively performing such

a function — the output being a function which relies on only one of the inputs,

different for h � 0 and h � 1 — such a node cannot exist.

6.5.4 Network function on solid colour images in networks with
few nodes

All the images provided in both test and training sets have a noisy background of in-

termediate brightness. It is likely that successful solutions (particularly UESMANN

and h-as-input, which have considerably fewer weights than output blending) will

rely on this background. A simple way to test this is to present the networks with the

highest Matthews correlation coefficient with images which are solid black (0) and

solid white (1), at h ∈ {0, 1}. This should always give a negative result, since there

are no lines in the images. This test was performed on the highest scoring 3-node

networks of each type at η � 0.05, and the results are as follows:

• Output blending correctly gives negative results for both images at both h
values.

• h-as-input detects no line in a black image at both h values, but detects a line

at h � 1 in the white image.

• UESMANN detects a line at both h � 0 and h � 1 in the black image, and

detects a line at h � 1 in the white image.

We can see that both h-as-input andUESMANNhavedevised solutionswhich rely on

a grey background, while output blending appears to have avoided this. Indeed, we

can see from Sec. 6.5.3 that UESMANN relies on the negative weights of background

pixels to keep excitation low. It is also possible that h-as-input and UESMANN

have overfitted solutions: they may be unable to detect lines which are outside the

parameters determined by the line generating algorithm. This is as yet untested.

6.6 Transition behaviour
We will now study the transition behaviour of the 10 networks generated in Sec. 6.3

at η � 0.05. For each network, the modulator was varied between h � 0 and h � 1

and all 10000 examples in the test set were used. The number of positives for each

6.6 Transition behaviour 193

label (horizontal, vertical and blank) wasmeasured. Thus at h � 0, a perfect network

would show 3333 positive horizontal detections, no vertical and no blanks; while

at h � 1 such a network would show 3333 positive vertical, no horizontal and no

blanks. The three network types were run at three different hidden node counts to

examine how the node count affects the transition behaviour. The results are shown

in Fig. 6.18.

As expected from the results of previous boolean experiments, output blending

produces good horizontal detection until h � 0.5, and then switches fairly abruptly

to vertical detection, because the outputs of two detectors are being interpolated

between and thresholded. The actual output of the network, while not shown, will

decrease inmagnitudeuntil 0.5, and then increase again. Positivedetectiondecreases

around 0.5: at this point, marginal examples may not raise the network output over

threshold, given that they are blended with a low result from the other network.

Both h-as-input andUESMANNproduce smoother transitions,moving smoothly

between horizontal and vertical line detection. Interestingly, the h-as-input networks

appear to detect more lines when the modulator is at around 0.2 or 0.8 — the reason

for this is not understood, but may be because detecting some of the other line type

helps in someway. Perhaps amarginal horizontal linemaybedetectedwith the aid of

an element of the vertical line detection. Another feature is that the crossover point

– where vertical detections outnumber horizontal detections – is not symmetrical

around 0.5, except at the lowest node count. In the best performing network (80

hidden nodes) it is closer to to 0.4.

UESMANN itself produces its best performance at h � 0 and h � 1 (ignoring the

poor outliers). Unlike the h-as-input networks, the mean crossover point appears

close to h � 0.5 although there is still asymmetry: the number of vertical detections

risesmore slowly than the number of horizontal detections falls. This effect increases

as the number of hidden nodes decreases, and is likely to be caused the complex

“balancing act” UESMANNuses to construct the transition as described in Sec. 6.5.3.

This contrasts with h-as-input, where the asymmetry is in the crossover point, but

not in the nature of the transition itself — UESMANN’s transition is around 0.5, but

the shape is different.

Fig. 6.19 shows the transition behaviour of the few UESMANN networks which

performed well at 3 hidden nodes (of the 100 attempts at this low node count,

performed separately as described above). This plot shows a degree of asymmetry

not seen at higher node counts, and shows a large amount of variation in the network

behaviour: notably in network 17, the second-best network, whose vertical line

194 Chapter 6. UESMANN in line recognition

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(a) Output blending, 500 hid-

den nodes

0.0 0.2 0.4 0.6 0.8 1.0
0

50
0

10
00

15
00

20
00

25
00

30
00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(b) h-as-input, 500 hidden

nodes

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(c) UESMANN, 500 hidden

nodes

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(d) Output blending, 80 hid-

den nodes

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(e) h-as-input, 80 hidden

nodes

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(f) UESMANN, 80 hidden

nodes

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(g) Output blending, 50 hid-

den nodes

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(h) h-as-input, 50 hidden

nodes

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

horizontal
vertical
blank

(i) UESMANN, 50 hidden

nodes

Figure 6.18: Transition behaviour of the three network types at 50, 80 and 500

hidden nodes, η � 0.05. Each curve is the behaviour of one of the 10 networks

generated previously. The plot shows the number of positives of each class

labelled in the test set which produce an output greater than 0.5 from the

network.

6.7 Summary 195

detection activates rapidly at h � 0.6. It is likely that this network uses a rather

different solution from that described above.

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

modulator

po
si

tiv
e

co
un

t

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●
●

●

● ● ● ●
●

●
●

●

●

horizontal
vertical
blank

● 86 33 17 90

Figure 6.19: Transition behaviour of UESMANN networks with 3 hidden

nodes, η � 0.05. The plot shows the number of positives of each class labelled

in the test set which produce an output greater than 0.5 from the network.

The lines are marked with points according to their network index in the 100

attempts, as shown in the legend above the plot, where they are ordered by

performance (90 has the highest minimumMatthews correlation coefficient).

6.7 Summary
We have established that UESMANN can be trained to perform a simple discrimin-

ation task with three hidden nodes, morphing between vertical and horizontal line

detection. Analysis of that solution shows that the task can also be performed with

two hidden nodes, although it remains to be shown whether the network can be

trained to find such a solution. At low node counts, many restarts of the training al-

gorithmmay be required before a local minimum is avoided. Such solutions require

196 Chapter 6. UESMANN in line recognition

a careful balancing of weights and biases across both the hidden and output layer,

and cannot be achieved by simply modifying the output weights of a single-function

network (see Sec. 6.5.3.3).

At intermediate hidden node counts solutions are readily found, and may out-

perform output blending and h-as-input networks. However, the operation of UES-

MANN requires learning a careful balance between the weights and biases in the

network to perform the desired transition under modulation. This can make UES-

MANN prone to overfitting, exploiting “background” information in the training

data which may not be present in other data to generate this balance.

UESMANN’s transition behaviour (as in the boolean experiments) is smooth,

showing a gradual shift fromhorizontal line to vertical line detection, with a decrease

in sensitivity around 0.5. It appears to be less prone to false positives than h-as-input
or output blending. At intermediate node counts, UESMANN also transitions more

symmetrically than h-as-input (output blending is always symmetrical, but very

sharp in transition).

Theperformance ofUESMANNmaybe improvedby theuse of the enhancements

discussed in Sec. 4.1.6: these include adaptive learning rates and momentum. These

would also improve results for the other modulatory methods.

Chapter 7

UESMANN in handwriting
recognition

Handwriting recognition is an important and difficult problem, and, with the advent

of large databases of examples has become a valuable test case for machine learning

algorithms. The MNIST database is freely available, and has become a de facto
standard among such databases. It consists of 70000 handwritten digits, divided

into a training set of 60000 and a test set of 10000 examples. Each example consists

of a 28 × 28 8-bit monochrome image of a digit, size normalised and centred, with

its associated label (the numerical value of the digit) [168]. The first 64 images in the

training set are shown in Figure 7.1.

Figure 7.1: The first 64 images of the MNIST database

In this set the prevalences of the classes are not equal, as shown in Table 7.1.

However the variation is small. As described in the previous section, this is part

197

198 Chapter 7. UESMANN in handwriting recognition

of our rationale for using the Matthew’s correlation coefficient as opposed to the

simpler accuracy. The variation is sufficiently small that it should only have a small

effect on the training.

Table 7.1: Prevalences of the different digits in the two parts of the MNIST

database, by proportion of the total.

Digit Training set Test set

0 0.099 0.098

1 0.112 0.114

2 0.099 0.103

3 0.102 0.101

4 0.097 0.098

5 0.090 0.089

6 0.099 0.096

7 0.104 0.103

8 0.098 0.097

9 0.099 0.101

Standard deviation 0.054 0.059

7.1 Training
In these experiments, the networks were trained using an analogue of Algorithm 7.

Instead of using a single output, “one-hot encoding” [204, p. 215] was used. In this

scheme, a single categorical variable is replaced with a vector of boolean elements,

one for each category. Each element is true if and only if the original variable has

the corresponding categorical value. In our case, we are using numeric outputs as

boolean values: true is represented by 1, and false by 0. Thus we have the encoded

values in Table 7.2, and our network has 10 outputs.

The generating functions for the outputs were therefore

f1(i, n) �

1 if l � n

0 otherwise

(7.1)

and

f2(i, n) �

1 if alt(l) � n

0 otherwise,
(7.2)

where i is the image, n is the output index, l is the label (an integer in the range [0,9])

and alt(l) specifies an alternate labelling to learn at h � 1. We have specified this

7.2 Convergence behaviour 199

Table 7.2: One-hot encoding for numeric digits, showing the corresponding

encoding as a vector of values x for each digit.

Digit x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1

labelling as switching adjacent digits: that is,

alt(l) � (1, 0, 3, 2, 5, 4, 7, 6, 9, 8)l , l ∈ {0, 1, 2 · · · 9}, (7.3)

where the notation (a · · · b)i indicates the selection of an element of a vector (a · · · b)
with zero-based index i. This provides a maximal Hamming distance between the

two encodings: no output has the same value for the same digit across the two

encodings. In other respects the algorithm is identical, and uses the same number

of training and test examples and validation slices.

7.2 Convergence behaviour
As before, we will first examine the convergence behaviour at all three learning rates

and for all hidden node counts. The values chosen are the same as those in the line

recognition experiments.

7.2.1 Control convergence behaviour

Again, we are actually looking at the h � 0 accuracy for the output blending experi-

ment, which is effectively a single network trained to recognise the nominal MNIST

labelling. The accuracy on the validation slices during training is shown in Fig. 7.2,

smoothed using splines as in the line recognition experiments. At η � 1, all but

the very highest and lowest hidden node counts converge to solutions. The lowest

counts perhaps have too few hidden nodes to represent a solution, while the highest

are unable to find the small minima given the high learning rate. At the two lower

200 Chapter 7. UESMANN in handwriting recognition

learning rates these high counts learn good solutions. However, from both these

plots it is clear that training has stopped while the solution networks have not yet

entirely converged. Unfortunately there were insufficient resources to complete the

experiment to convergence: judging from the curve, an order of magnitude more

iterations might be required to ensure this. However, the solution networks are

clearly close to a solution.

It is noteworthy that the oscillatory behaviour due to the cyclic nature of the

validation is stronger here than in the line experiments: there is more variation in

how a given network performs on different parts of the validation set. This is likely to

be due to increased variability within the slice — some examples are simply harder

to classify than others.

7.2.2 Output blending convergence behaviour

Fig. 7.3 shows the convergence of the output blending networks. If the difficulty of

the two functions is the same, we should see the relationship described in Sec. 6.3.2:

if the error for the plain back-propagation control is Ec , then the output blending

error is Eob � 2Ec − E2

c . This holds in some cases as we would expect, because the

two functions are simply different permutations of the output. Where it does not,

this is probably because the variation is wide, there are too few samples, and these

samples do not follow a normal distribution, making the mean misleading.

The convergence plots show that a hidden node count above 30 will converge

to a solution at the two lower learning rates, but that more nodes are needed at

lower rates. At η � 1, higher node counts fail to converge. Initial convergence

toward solutions is rapid, taking place within 50000 pair presentations, although the

networks continue to converge slowly throughout the run. Unfortunately there were

insufficient computing resources to run the training further.

7.2 Convergence behaviour 201

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 h

=
0

fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 h

=
0

fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 h

=
0

fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 7.2: Smoothed convergence data for η ∈ {1, 0.2, 0.05} for plain back-

propagation learning the nominal MNIST labelling, showing the means of all

attempts for a given hidden node count, with shading delimiting the region

within 0.25 standard deviations of the mean.

202 Chapter 7. UESMANN in handwriting recognition

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 7.3: Smoothed convergence data for η ∈ {1, 0.2, 0.05} for output blend-
ing on MNIST, showing the means of all attempts for a given hidden node

count, with shading delimiting the region within 0.25 standard deviations of

the mean.

7.2 Convergence behaviour 203

7.2.3 h-as-input convergence behaviour

Convergence plots for h-as-input are shown in Fig. 7.4. Here, all networks converge

to solutions at all but the very lowest hidden node counts, but this convergence

takes considerably longer and (in the case of η � 0.05) involves navigating at least

one plateau. This is better behaviour than that for the line recognition experiment,

where higher learning rates cause the networks to skip over the solution minima

(compare Fig. 6.7).

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 7.4: Smoothed convergence data for η ∈ {1, 0.2, 0.05} for h-as-input
on MNIST, showing the means of all attempts for a given hidden node count,

with shading delimiting the region within 0.25 standard deviations of the

mean.

204 Chapter 7. UESMANN in handwriting recognition

7.2.4 UESMANN convergence behaviour

Convergence plots for UESMANN are shown in Fig. 7.5. The η � 1 networks per-

form poorly, converging to local minima at different performance levels for different

hidden node counts. The higher node counts perform poorly. This indicates that the

error surface is complex, particularly with higher dimensions, and routes into good

minima cannot be found. Interestingly, the number of networks which converge to

a solution is higher than that for line recognition, although those solutions may be

worse (compare Fig 6.8). This seems to suggest that although the solution minima

are worse than those for line recognition, the error surface topography is simpler

(but still complex).

At lower learning rates the higher node counts perform better than the lowest

node counts. Performance at η � 0.05 and η � 0.2 is similar, with mid-range

node counts performing best at η � 0.2 and highest node counts performing best at

η � 0.05. This indicates that the low learning rate is able to find routes down the

complex surface. However, the highest node count performs poorly, perhaps finding

its way into a local minimum.

7.3 Performance of the different networks at η � 0.05

7.3.1 Generating a metric

As discussed in Sec. 5.1, generating a single performance metric for a multiclass

classifier presents some difficulties. The metrics described in Sec. 5.1 require a table

of confusion rather than a 10×10 confusionmatrix. We are able to generate a table of

confusion for every class, and once we have these tables two methods for obtaining

the metrics are available:

• find the element-wise mean of the ten class tables, and find the metric on the

result;

• calculate the metric for each of the class tables, and find the mean of the

resulting values.

Data will be lost, however, since the classifier may perform differently on different

classes. This is inevitable with any givenmetric. If we use bothmethods to find φmin

(our metric of choice, used in the previous section) for all networks of a particular

type, and plot the difference between them against the secondmethod, we obtain the

7.3 Performance of the different networks at η � 0.05 205

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(a) η � 1

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(b) η � 0.2

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Index

pr
op

or
tio

n
of

 te
st

s
w

ith
 e

ith
er

 fu
nc

tio
n

w
ro

ng

nodes=3
nodes=5
nodes=10
nodes=20
nodes=30

nodes=40
nodes=50
nodes=60
nodes=70
nodes=80

nodes=90
nodes=100
nodes=200
nodes=300
nodes=400

nodes=500
nodes=600
nodes=700

(c) η � 0.05

Figure 7.5: Smoothed convergence data for η ∈ {1, 0.2, 0.05} for UESMANN

on MNIST, showing the means of all attempts for a given hidden node count,

with shading delimiting the region within 0.25 standard deviations of the

mean.

plot in Fig. 7.6. This shows that the difference between the two methods is usually

small, rising to approximately 0.09 when the performance of the network is poor.

Also, if we were to use the mean table method of deriving metrics, F1 would

always be equal to PPV . This is because every false positive is a false negative for

another class, so FN � FP in the mean table. This leads to PPV � TPR, and the F1

score is the harmonic mean of those two values.

Feeling intuitively that it is better to generate the metric as late in the processing

as possible, we have elected to find the tables of confusion for each class, calculate

206 Chapter 7. UESMANN in handwriting recognition

●

●

●

●

●
●● ● ●

●●●● ●
●●●●

●

●

●

●
●

●
●

●● ●●●●●●

●

●

●

●

●

●●
●

●
● ●● ●●●

●
●●●●●

●

●

●● ● ●
●

●●
●

● ●●●●
● ●●

●

●

●

● ●●● ●●
●●●● ● ●●●●

●

●

●
● ●●

●
●●● ●●●● ●●●

●

●

●

● ● ●● ●● ●
●
●

●
●

● ●●●

●

●

●

●

● ● ●
● ●● ●●●●● ●● ●

●

●

●

●

●

●
● ●●
●●●●

●
●●

●●

●

●

●

●
● ●●

● ●● ● ●●●●●
●●●

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
00

0.
02

0.
04

0.
06

0.
08

φ (mean metric)

φ
(m

ea
n

m
et

ric
)

−
 φ

 (
m

ea
n

of
 ta

bl
es

)

Figure 7.6: Difference between two different methods of calculating the Mat-

thews correlation coefficient for all network results. Here, φ (mean of metric)

is themean of the coefficient for each table; φ (mean of tables) is the coefficient

of an element-wise mean of all tables.

the metric of each table (the Matthews correlation coefficient φmin as with the line

recognition experiments) and find the mean of the results.

If wewere free to use anymetric, not one of those given in Sec. 5.1, one possibility

would be the trace of the confusion matrix, which gives the number of correct

classifications1: the true positive count. This may be useful in the multiclass case,

but is equivalent to the simple accuracy (once division by the number of examples

is factored in) in the binary case. In the multiclass case, it is sensitive to the class

prevalences in the data. To ameliorate this, the values can be normalised by dividing

by the sum of their columns (the class prevalences), although this makes every class

equally important to the metric, even if extremely rare. We do not have this problem

in theMNIST data set. Performing this operation will produce the true positive rate,

TPR.

Another possibility is the minimum of the TPRs for all classes: this will give a

figure for the worst performance, so that a network which recognises most classes

perfectly but completely fails on one will give a poor result. This is useful in con-

1If the classes were ordered such that similar classes were adjacent, the “earth mover” distance

between the matrix and the “perfect” confusion matrix could be used.

7.3 Performance of the different networks at η � 0.05 207

junction with the minimum Matthews correlation coefficient φmin , which gives an

average of the worst performances. We will refer to this metric as the minimum true

positive rate, TPRmin .

7.3.2 ROC curves

ROC curves are not shown. This is because when aggregated across the classes there

are nine true negatives for every true positive (since there are ten classes). Thus

TPR � 9TNR (7.4)

where TPR is the false positive rate and TNR is the true negative rate. Since the

false positive rate FPR is equal to 1 − TNR,

TPR � 1 − (9FPR). (7.5)

If we calculate the ROC curve using the element-wise mean of the class tables, all

networks must fall on this line (because we are finding the total of all false positives

and true negatives). We have already established that finding the mean of the metric

for all class tables will be very close to this line, particularly for good networks.

Exploratory plots showed little deviation from the line of Eq. 7.5. Thus it is unlikely

the ROC curve will provide useful information.

7.3.3 Performance overview

If the data from the tables of confusion are combined into a single metric using the

mean metric method described above, and the result plotted as was done for the

line experiments in Fig. 6.10, we obtain Fig. 7.7. This clearly shows the difference in

performance, and an increase in consistency over the line experiments within each

network type, although this may be an artefact of the processing used to collate

multi-class data into single tables of confusion. We would expect output blending

to perform best, but h-as-input appears to outperform it once the hidden node count

passes 80. The reason for this is not understood, and is not the focus of this thesis,

but would be interesting to study in the future. UESMANN does not perform as

well, but still achieves a φmin of 0.906 and an minimum accuracy of 0.983. The best

h-as-input network achieves φmin � 0.949, accuracy 0.991; while the best output

blending network achieves φmin � 0.942, accuracy 0.990. These latter values are

quite close, but well outside the variation within the networks as the box plot shows.

208 Chapter 7. UESMANN in handwriting recognition

The results for best networks (in terms of the minimum φ) are in Tables 7.3, 7.4 and

7.5.

A notable feature is the rapid drop in mean performance for UESMANN at 700

hidden nodes, with the networks falling into a bimodal distribution. It appears

that at this higher node count there are local minima which claim about half the

initial networks. This explains the poor convergence behaviour observed for these

networks in Fig. 7.5.

Table 7.3: Output blending best networks, sorted by φmin . See Table 7.9 for

the row header meanings.

Hidden nodes run NPV PPV Accuracy F1 TPRmin φmin

80 7 0.994 0.948 0.990 0.948 0.918 0.942

90 0 0.994 0.947 0.990 0.947 0.912 0.941

70 8 0.994 0.947 0.990 0.947 0.918 0.941

90 3 0.994 0.947 0.989 0.947 0.904 0.941

70 1 0.994 0.947 0.989 0.946 0.909 0.941

80 4 0.994 0.946 0.989 0.946 0.914 0.941

Table 7.4: h-as-input best networks, sorted by φmin . See Table 7.9 for the row

header meanings.

Hidden nodes run NPV PPV Accuracy F1 TPRmin φmin

300 1 0.995 0.954 0.991 0.954 0.920 0.949

600 7 0.995 0.954 0.991 0.953 0.913 0.948

300 6 0.995 0.953 0.991 0.953 0.925 0.947

300 8 0.995 0.953 0.991 0.953 0.928 0.947

300 5 0.995 0.953 0.991 0.953 0.926 0.947

300 0 0.995 0.953 0.991 0.952 0.919 0.947

Table 7.5: UESMANN best networks, sorted by φmin . See Table 7.9 for the

row header meanings.

Hidden nodes run NPV PPV Accuracy F1 TPRmin φmin

600 3 0.991 0.916 0.983 0.915 0.853 0.906

700 4 0.991 0.915 0.983 0.914 0.850 0.905

500 6 0.990 0.913 0.983 0.911 0.821 0.902

400 4 0.990 0.913 0.982 0.911 0.843 0.902

400 7 0.990 0.911 0.982 0.910 0.843 0.900

300 9 0.990 0.910 0.982 0.909 0.835 0.899

7.3 Performance of the different networks at η � 0.05 209

●

●

●

●

●

●

●

●●

0.2 0.4 0.6 0.8

3
5

10
20

30
40

50
60

70
80

90
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Minimum Matthews correlation coefficient

H
id

de
n

no
de

 c
ou

nt

●

●

●

●
● ● ●

● ●● ●● ●

●● ● ●●● ●● ●●

●●●
●●● ●●●●

●●●●●●●●●●

●●●
●●●●●●●

●●●●●●●●●●

●●
●

●
●●●●●●

●
●●●
●●●●●
●

●
●

● ●●
●

●●
●●

●●●●
●●● ●●●

●●● ●●●
●●●●

● ●●●●
●●●●
●

● ● ● ●●●●●●●

● ● ● ●
● ●
●
●● ●

● ●
●

● ●●
● ●● ●

●● ●● ●●
● ●

●
●

●● ●
●

●● ● ●
●●

●●●
● ●● ●●● ●

●

●

●

●●

●●
●● ● ● ●

●
●●

●● ●● ● ●●●● ●

● ●
● ●● ●●● ●●

●●●● ●●● ●●●

● ●●● ●● ●●●●

●● ●●●●●●●●

● ●●●●●●●● ●

●●
● ●● ●●●●●

●●●●●● ●●●●

●
●●●●●●●●

●

●●●● ● ●●●●●

● ●●
●●

●●
●● ●

●●●●
●

●
●

●
●●

●●
●●●●●●●●

●●●●
●●●●●●

●● ●●●●●●●●

●●●
●●

●●
●●●

●●●
●
●●●●●
●

●

●

●

●

●

●

●

●●

●●● ●● ● ●●● ●

● ● ●●● ●●●● ●

● ● ● ●● ●
● ●

●
●

● ●● ●● ●● ●●
●

●● ● ● ● ●●
●● ●

●●● ●●
●

●
●

● ●

●● ●● ●
● ●●

●
●

●●●● ●●●●●
●

●●● ● ●● ●●● ●

●● ●● ●●● ●
● ●

●●●
● ● ●

● ●● ●

● ●● ●●●
● ●● ●

● ●
● ●● ●● ●● ●

●●● ●●● ● ●● ●

●●●● ●● ● ●● ●

●● ●● ●●
●●

●
●

●● ● ●●●●●● ●

●
● ●●

●● ●● ● ●

Network type

UESMANN
h−as−input
output blending

Figure 7.7: Box plot of minimum Matthews correlation coefficient for all

networks of all three network types at η � 0.05, across both h � 0 and h � 1.

The actual network points are shown as red dots.

210 Chapter 7. UESMANN in handwriting recognition

7.3.4 Some example UESMANN confusion matrices

In this section, examples of confusion matrices will be shown from UESMANN

networks with both good and bad performances, at different hidden node counts.

All networks were trained at η � 0.05.

7.3.4.1 Five hidden nodes: a poor result

The value of theMatthews correlation coefficient was plotted at both h � 0 and h � 1

for this node count (Fig. 7.8), showing no significant difference between the two

modulator levels (confirmed with a Wilcoxon rank-sum test: p > 0.1). Network run

3 (of 10) was selected for more detailed examination because it lies near the mean at

both levels.

●

●

0 1

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Modulator level

φ

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

Figure 7.8: Box plot showing the value of theMatthews correlation coefficient

φ for all UESMANN networks trained for MNIST at η � 0.05 with 5 hidden

nodes. Network 3 is shown as a black dot, other networks are shown as circles.

Tables 7.6 and 7.7 show the confusion matrices for run 0 (of ten) of UESMANN

at η � 0.05 with only five hidden nodes. Of the two modulation endpoints, the

performance is best at h � 0, particularly for recognising “1” and “4”. It is poor

for the digits “5” and “8”, however, with “5” often mistaken for “2” and “8” in

particular mistaken for “9”, probably due to the similarity in the shapes, while “1”

7.3 Performance of the different networks at η � 0.05 211

has no similarly shaped digits. Note also that “8” is never predicted, and “5” only

three times (only two of which are correct).

Table 7.6: MNIST UESMANN 5 hidden nodes at η � 0.05, run 3, confusion

matrix at h � 0

Actual

0 1 2 3 4 5 6 7 8 9 Total

P
r
e
d
i
c
t
e
d

0 864 59 37 14 0 35 12 22 30 13 1086

1 24 989 5 4 1 38 25 6 5 1 1098

2 43 18 784 419 18 305 99 12 77 11 1786

3 17 3 119 471 4 103 2 19 35 9 782

4 2 20 19 7 911 143 19 18 88 129 1356

5 0 1 0 0 2 2 0 0 1 0 6

6 3 1 11 4 11 4 421 61 4 4 524

7 17 4 27 36 0 34 374 804 7 18 1321

8 0 0 0 0 0 0 0 0 0 0 0

9 10 40 30 55 35 228 6 86 727 824 2041

Total 980 1135 1032 1010 982 892 958 1028 974 1009 10000

TPR 0.882 0.871 0.760 0.466 0.928 0.002 0.439 0.782 0.000 0.817

Table 7.7: MNIST UESMANN 5 hidden nodes at η � 0.05, run 3, confusion

matrix at h � 1

Actual

0 1 2 3 4 5 6 7 8 9 Total

P
r
e
d
i
c
t
e
d

0 964 13 0 10 23 0 19 9 8 18 1064

1 66 879 18 28 34 2 3 22 3 8 1063

2 7 48 789 834 221 10 16 81 9 32 2047

3 0 0 2 1 0 0 2 0 0 0 5

4 0 0 0 0 0 2 0 1 0 0 3

5 3 1 7 20 77 754 1 7 22 19 911

6 0 1 12 14 14 12 796 66 24 9 948

7 4 15 27 20 18 0 66 726 3 2 881

8 26 18 111 78 260 26 80 39 78 128 844

9 65 5 44 27 245 176 45 7 862 758 2234

Total 1135 980 1010 1032 892 982 1028 958 1009 974 10000

TPR 0.849 0.897 0.781 0.001 0.000 0.768 0.774 0.758 0.077 0.778

For h � 1 we need to swap adjacent columns to find the actual digit being

recognised given the alternative labelling described in Eq. 7.32. We can see that the

digit “1” (now labelled as “0”) still has the best performance. The digit “5” (labelled

“4”) is the worst performer, and other digits with similar shapes (“2”, “5” and “9”)

are also rarely classified correctly.

2Compare the column totals in Tables 7.6 and 7.7 to get a visual “handle” on the alternative

labelling.

212 Chapter 7. UESMANN in handwriting recognition

Informal experimentationwith other networks at this node count shows a similar

pattern, where digitswhich have distinct shapes are easily distinguished, while those

which do not, fail.

The individual class confusionmatrices for the h � 0 table are shown for reference

in Table. 7.8.

Table 7.8: MNIST UESMANN 5 hidden nodes at η � 0.05, run 3, class

confusion tables at h � 0

(a) Class 0
Actual

0 not 0 Total

Predicted

0 864 222 1086

not 0 116 8798 8914

Total 980 9020 10000

(b) Class 1
Actual

1 not 1 Total

Predicted

1 989 109 1098

not 1 146 8756 8902

Total 1135 8865 10000

(c) Class 2
Actual

2 not 2 Total

Predicted

2 784 1002 1786

not 2 248 7966 8214

Total 1032 8968 10000

(d) Class 3
Actual

3 not 3 Total

Predicted

3 471 311 782

not 3 539 8679 9218

Total 1010 8990 10000

(e) Class 4
Actual

4 not 4 Total

Predicted

4 911 445 1356

not 4 71 8573 8644

Total 982 9018 10000

(f) Class 5
Actual

5 not 5 Total

Predicted

5 2 4 6

not 5 890 9104 9994

Total 892 9108 10000

(g) Class 6
Actual

6 not 6 Total

Predicted

6 421 103 524

not 6 537 8939 9476

Total 958 9042 10000

(h) Class 7
Actual

7 not 7 Total

Predicted

7 804 517 1321

not 7 224 8455 8679

Total 1028 8972 10000

(i) Class 8
Actual

8 not 8 Total

Predicted

8 0 0 0

not 8 974 9026 10000

Total 974 9026 10000

(j) Class 9
Actual

9 not 9 Total

Predicted

9 824 1217 2041

not 9 185 7774 7959

Total 1009 8991 10000

The metrics for this network are given in Table 7.9. The low TPRmin shows that

the network performs very badly on some classes, completely failing to detect some

digits, as we have seen. The other metrics show the poor average performance at

both modulator levels: three hidden nodes is insufficient to learn all digits reliably,

7.3 Performance of the different networks at η � 0.05 213

although we have seen that digits with distinctive shapes, such as “1” and “4”, can

be learned, and that the modulation functions even at this very low node count.

Table 7.9: Performance metrics for MNIST UESMANN 5 hidden nodes at

η � 0.05, run 0, showing the performance at both modulator levels and

the minimum performance. The metrics are the positive predictive value

TP/(TP + FP), the negative predictive value TN/(TN + FN), the accuracy,

the F1 score, the minimum true positive rate (see Sec. 7.3.1) and the Matthews

correlation coefficient φ.

Modulator h NPV PPV F1 TPRmin φ

0 0.958 0.556 0.538 0.000 0.520

1 0.954 0.524 0.520 0.000 0.495

min 0.954 0.524 0.520 0.000 0.495

7.3.4.2 40 hidden nodes: a better performance

Fig. 7.9 shows the box plot for UESMANN network performance 40 hidden nodes at

both modulator levels. Network 2 was selected for confusion matrix analysis given

its proximity to the mean at both modulator levels. At this hidden node count, the

h � 1 result is significantly better than the h � 0 result (p < 0.01, Wilcoxon rank-sum

test).

Tables 7.10 and 7.11 show the confusion matrices for the best network with 40

hidden nodes. The performance here is better, with a true positive rate of at least

72% on all classes (this is still a poor performance compared with other modulation

methods at this node count). At h � 0, the network performs well on “0”, “1” and

“4”, and poorly on “5”, which is now mistaken for “4” — interestingly, given that

“4” is recognised successfully. At h � 1 the performance is a little better (as can

be seen in Fig. 7.9), with the worst performances again on digit “5” (labelled as

“4”). The metrics are shown in Table 7.12: the higher TPRmin shows that the worst

performance of the network is much higher than that of the network with only 5

hidden nodes, as we should expect.

214 Chapter 7. UESMANN in handwriting recognition

0 1

0.
84

0.
85

0.
86

0.
87

0.
88

Modulator level

φ

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7.9: Box plot showing the value of theMatthews correlation coefficient

φ for all UESMANN networks trained for MNIST at η � 0.05 with 40 hidden

nodes. Network 2 is shown as a black dot, other networks are shown as circles.

Table 7.10: MNIST UESMANN 40 hidden nodes at η � 0.05, run 2, confusion

matrix at h � 0

Actual

0 1 2 3 4 5 6 7 8 9 Total

P
r
e
d
i
c
t
e
d

0 924 30 10 0 0 4 6 1 5 5 985

1 19 1083 9 5 5 4 5 17 6 6 1159

2 3 3 883 142 4 8 5 37 6 7 1098

3 3 4 64 812 0 27 1 3 35 8 957

4 4 1 21 7 929 158 19 13 27 43 1222

5 6 1 6 15 14 643 17 0 15 6 723

6 10 2 15 1 9 9 849 91 16 0 1002

7 5 0 14 12 2 12 50 847 7 13 962

8 6 9 9 9 5 17 5 1 789 57 907

9 0 2 1 7 14 10 1 18 68 864 985

Total 980 1135 1032 1010 982 892 958 1028 974 1009 10000

TPR 0.943 0.954 0.856 0.804 0.946 0.721 0.886 0.824 0.810 0.856

7.3 Performance of the different networks at η � 0.05 215

Table 7.11: MNIST UESMANN 40 hidden nodes at η � 0.05, run 2, confusion

matrix at h � 1

Actual

0 1 2 3 4 5 6 7 8 9 Total

P
r
e
d
i
c
t
e
d

0 1047 14 0 4 2 1 6 3 4 4 1085

1 62 934 1 6 7 2 3 11 6 4 1036

2 5 4 887 73 44 0 9 0 14 20 1056

3 3 2 70 885 3 9 23 3 3 10 1011

4 1 6 31 12 761 63 4 24 14 33 949

5 1 2 1 10 31 871 0 9 28 3 956

6 1 7 12 18 11 9 935 48 15 17 1073

7 3 9 0 16 11 5 39 851 4 14 952

8 0 0 2 4 5 17 7 1 870 25 931

9 12 2 6 4 17 5 2 8 51 844 951

Total 1135 980 1010 1032 892 982 1028 958 1009 974 10000

TPR 0.922 0.953 0.878 0.858 0.853 0.887 0.910 0.888 0.862 0.867

Table 7.12: Performance metrics for MNIST UESMANN 40 hidden nodes at

η � 0.05, run 2. See Table 7.9 for more details.

Modulator h NPV PPV F1 TPRmin φ

0 0.985 0.865 0.860 0.721 0.846

1 0.988 0.888 0.888 0.853 0.875

min 0.985 0.865 0.860 0.721 0.846

216 Chapter 7. UESMANN in handwriting recognition

7.3.4.3 600 nodes: the best UESMANN performance

Although someUESMANNnetworks achieve a goodperformancewith fewer nodes,

the networks with 600 hidden nodes are consistent. The performance at the different

modulator levels is shown in Fig. 7.10, which again shows a higher performance at

h � 1 (p < 0.01, Wilcoxon rank-sum test). We will examine the confusion matrices

for network 6, again because both performances are close to the means.

●

●

0 1

0.
89

0.
90

0.
91

0.
92

0.
93

Modulator level

φ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7.10: Boxplot showing the value of theMatthews correlation coefficient

φ for all UESMANN networks trained for MNIST at η � 0.05 with 600 hidden

nodes. Network 6 is shown as a black dot, other networks are shown as circles.

Tables 7.13 and 7.14 show the confusion matrices. These show the poorest

performance is once again on the digit “5” at both modulator levels, and the best

on the digit “1”. Once again, this is likely to be because “5” is too similar to other

digits, while “1” is distinctive. The metrics are shown in Table 7.15, with a TPRmin

showing the worst performance — the 77.8% accuracy on “5” at h � 0. The other

metrics are also higher, as expected.

7.3 Performance of the different networks at η � 0.05 217

Table 7.13: MNISTUESMANN600 hidden nodes at η � 0.05, run 6, confusion

matrix at h � 0

Actual

0 1 2 3 4 5 6 7 8 9 Total

P
r
e
d
i
c
t
e
d

0 963 2 13 2 2 10 11 5 7 11 1026

1 0 1098 5 0 2 1 5 7 1 5 1124

2 0 1 803 31 1 4 1 19 0 0 860

3 1 8 154 940 5 19 0 16 11 9 1163

4 0 0 6 1 849 41 4 3 9 11 924

5 5 1 2 10 43 775 11 0 9 7 863

6 6 6 11 0 23 6 883 20 6 1 962

7 3 2 14 10 3 9 35 937 6 8 1027

8 2 17 18 10 10 18 8 3 901 53 1040

9 0 0 6 6 44 9 0 18 24 904 1011

Total 980 1135 1032 1010 982 892 958 1028 974 1009 10000

TPR 0.983 0.967 0.778 0.931 0.865 0.869 0.922 0.911 0.925 0.896

Table 7.14: MNISTUESMANN600 hidden nodes at η � 0.05, run 6, confusion

matrix at h � 1

Actual

0 1 2 3 4 5 6 7 8 9 Total

P
r
e
d
i
c
t
e
d

0 1089 29 0 2 2 0 2 3 5 1 1133

1 22 933 0 6 3 1 2 6 4 6 983

2 2 0 902 22 14 0 1 1 8 5 955

3 7 3 84 982 6 7 34 1 4 7 1135

4 1 1 9 2 802 14 1 3 1 9 843

5 1 1 1 3 37 920 2 2 11 4 982

6 0 4 5 7 4 6 939 24 5 6 1000

7 4 7 1 5 9 2 33 912 2 11 986

8 0 1 3 2 7 28 12 1 945 39 1038

9 9 1 5 1 8 4 2 5 24 886 945

Total 1135 980 1010 1032 892 982 1028 958 1009 974 10000

TPR 0.959 0.952 0.893 0.952 0.899 0.937 0.913 0.952 0.937 0.910

Table 7.15: Performance metrics for MNIST UESMANN 600 hidden nodes at

η � 0.05, run 6. See Table 7.9 for more details.

Modulator h NPV PPV F1 TPRmin φ

0 0.990 0.907 0.904 0.778 0.895

1 0.992 0.932 0.931 0.893 0.923

min 0.990 0.907 0.904 0.778 0.895

218 Chapter 7. UESMANN in handwriting recognition

7.3.4.4 700 hidden nodes: a bimodal performance at h � 0

Asnoted above theperformance ofUESMANNfalls at 700hiddennodes. To examine

this behaviour further, the performances of the networks were plotted separately for

h � 0 and h � 1 as for previous node counts. This gives the plot in Fig. 7.11, which

shows that the bimodal performance in Fig. 7.7 comes from a bimodal distribution

in φ at h � 0 only: at h � 1 the network performs well, achieving a mean of 0.929.

While the h � 1 performance of the 600 hidden node network has a mean φ of 0.924,

the difference is not significant (Wilcoxon rank-sum test, p > 0.01). However, this

shows that at 700 hidden nodes good performances are achievable, but about half

the networks are finding a local minimum at h � 0.

0 1

0.
75

0.
80

0.
85

0.
90

Modulator level

φ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7.11: Boxplot showing the value of theMatthews correlation coefficient

φ for all UESMANN networks trained for MNIST at η � 0.05 with 700 hidden

nodes.

7.3.4.5 Summary

The failure mode of UESMANN networks with low node counts is to confuse digits

with common shape features: evenwithout examining theweights and activations of

the network, we can say that the shapes “5” and “2” have features in common, as do

the shapes “3” and “8”. Certain digits become activated by a larger range of features

than they should be, because of the low number of feature detectors available: for

7.3 Performance of the different networks at η � 0.05 219

example, Table 7.6 shows “2” “2”, “3”, and “5”; “9” being activated by “8” and “9”;

and “5” and “8” receiving no (or very little) activation. This is a similar mode of

failure to that seen in plain back-propagation: consider the confusion matrix for

a typical (near-mean performance) plain back-propagation network with 3 hidden

nodes shown in Table 7.16. We see here that “2” is strongly activated by “2”, “3”,

“5”, “6” and “8”, while “4” and “8” receive no activation. More feature detectors

become available at higher node counts, so this failure mode disappears and the

system improves by combining the hidden nodes in more complex ways.

Table 7.16: Confusionmatrix for plain back-propagationwith 3 hidden nodes

at η � 0.05, run 1, nominal labelling

Actual

0 1 2 3 4 5 6 7 8 9 Total

P
r
e
d
i
c
t
e
d

0 968 0 21 13 3 31 31 2 12 7 1088

1 0 1107 6 0 2 3 3 7 6 7 1141

2 4 21 864 723 16 552 798 3 668 10 3659

3 0 3 33 106 31 78 54 5 143 5 458

4 0 0 0 0 0 0 0 0 0 0 0

5 4 1 49 82 93 140 53 7 79 36 544

6 0 0 0 0 0 0 0 0 0 0 0

7 4 1 16 15 78 11 2 960 8 309 1404

8 0 0 0 0 0 0 0 0 0 0 0

9 0 2 43 71 759 77 17 44 58 635 1706

Total 980 1135 1032 1010 982 892 958 1028 974 1009 10000

TPR 0.988 0.975 0.837 0.105 0.000 0.157 0.000 0.934 0.000 0.629

One interesting feature of the final metrics is that the h � 0 performance is

worse than the h � 1 performance, most noticeably at higher node counts where

the metrics are more consistent (see Table 7.15). This was tested for all hidden

node counts, with the differences shown in Fig. 7.12. The reverse holds for the line

recognition experiments. The reason for this consistent but different performance

at the different modulator levels is not understood, given that the two modulator

functions are (in a sense) equivalent, and requires further study. It may be related to

the finding in Sec. 7.2.2, that one of the two functions appears to be harder to train

(although this should not be the case).

However, UESMANN is clearly able to learn to recognise handwritten digits in

this simple experiment, using a very simple back-propagation algorithm with no

enhancements.

220 Chapter 7. UESMANN in handwriting recognition

●

●
●
●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

0.
2

0.
4

0.
6

0.
8

Hidden node count

φ

3 5 10 30 50 70 90 200 400 600

Modulator

0
1

Figure 7.12: Values of φ for UESMANN MNIST at all hidden node counts at

η � 0.05, plotted separately for h � 0 and h � 1.

7.3.5 Transition behaviour

A plot of how all outputs change as the modulator varies, as was done for the line

recognition experiments, would be difficult to read. Here a different approach is

used:

• For all ten networks trained of each type, hidden node count, and learning rate,

100 examples were passed to the network at 100 different values of h, and both

the label and the network output (i.e. the index of the most strongly activated

output node) were recorded.

• Within this data, the mode of the predicted digit at each value of h was found

for each network. This gives the most common digit output from the network

for examples with a given label at a given h value. In other words, it gives how

the network tends to predict each digit at each h value.

7.3 Performance of the different networks at η � 0.05 221

• These labels are then pasted together to form a ten-digit “function signature”

describing themost common functionperformedby thenetwork at that h value.

We now have a table which gives the function most commonly performed by

each network at each h value.

• Two function signatures are special: those which are given in the problem

specification. They are “0123456789” which should be generated at h � 0, and

“1032547698” which should be generated at h � 1. We have, at each h value,

a value representing the function which is most commonly performed by each

network. We now append a numeric value to each row in the table, which is 1

if each network performs one of these two end-point functions at that h value,

and 0 otherwise.

• We aggregate the table by the network number (there are ten for each network

type and hidden node count), finding the mean of the “is end-point” value

at each modulator level — this will be 1 if all networks produce an end-point

function, and zero if none do so.

We can now plot the proportion of networks for each hidden node count which are

performing either of the two end-point functions at each h level. The width of the

region in which non-end-point functions are being performed will be the size of the

transition from one function to another. Plots for the three network types are shown

in Fig. 7.13.

The narrow transition region for output blending is consistent with previous

experiments. The UESMANN region is wider than that of h-as-input, which is also

similar to transition behaviour we have seen before. There is a slight tendency for

networks at lower node counts to have a wider transition region, but this generally

occurs where the network is performing poorly. UESMANN’s wide transitions also

occur at node counts where the network is performing well.

To show the transition behaviour of an individual network, a similar technique

was used. At each h value, the full 10000 example training set was presented to the

network. Each example’s label and the index of the highest output (i.e. the predicted

label) were recorded. The mode of the predicted label for each example label was

calculated at each h value. For these examples, networks with 60 hidden nodes

were used: this is the lowest node count which produces consistent performance.

Table 7.17 shows the output blending result, which shows a sharp transition from

the h � 0 to h � 1 function. Only h � 0.5 shows an intermediate response, as we

might expect: the two network outputs are precisely balanced here.

222 Chapter 7. UESMANN in handwriting recognition

h

H
id

de
n

no
de

s

3

5

10

20

30

40

50
60
70
80
90

100

200

300

400

500
600
700

0 1

(a) Output blending

h

H
id

de
n

no
de

s

3

5

10

20

30

40

50
60
70
80
90

100

200

300

400

500
600
700

0 1

(b) h-as-input

h

H
id

de
n

no
de

s

3

5

10

20

30

40

50
60
70
80
90

100

200

300

400

500
600
700

0 1

(c) UESMANN

Figure 7.13: Transition region tendencies for the three network methods

trained for MNIST, running on the first 100 examples in the held-out test

set. White denotes that an end function (i.e. one of the two functions for

which the networks were trained) is being performed, while black denotes

that some other function is being performed. See Sec. 7.3.5 for details of how

these plots were constructed.

Table 7.17: Most common output given the test MNIST examples passed to

a typical 60 hidden node output blending network at each value of h. The

transition region is delineated by vertical lines.

h

0
.
0
0

0
.
0
5

0
.
1
0

0
.
1
5

0
.
2
0

0
.
2
5

0
.
3
0

0
.
3
5

0
.
4
0

0
.
4
5

0
.
5
0

0
.
5
5

0
.
6
0

0
.
6
5

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0
.
9
5

1
.
0
0

Label 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Label 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Label 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Label 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

Label 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5

Label 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4

Label 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7

Label 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6

Label 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9

Label 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8

Table 7.18 shows the transition of a typical h-as-input network. This shows a

narrow transition region, with three h values showing an intermediate response.

Bold numerals indicate the network is outputting the h � 0 labelling, while normal

numerals indicate the h � 1 labelling.

Table 7.19 shows the transition for a UESMANN network. In this particular

network, the transition is wide but is complete at h � 0.45. Table 7.20 shows the

7.3 Performance of the different networks at η � 0.05 223

Table 7.18: Most common output given the test MNIST examples passed to a

typical 60 hidden node h-as-input network at each value of h. The transition
region is delineated by vertical lines. Bold numerals indicate the network

is outputting the h � 0 labelling, while normal numerals indicate the h � 1

labelling.

h

0
.
0
0

0
.
0
5

0
.
1
0

0
.
1
5

0
.
2
0

0
.
2
5

0
.
3
0

0
.
3
5

0
.
4
0

0
.
4
5

0
.
5
0

0
.
5
5

0
.
6
0

0
.
6
5

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0
.
9
5

1
.
0
0

Label 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Label 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Label 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

Label 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

Label 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5

Label 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4

Label 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7

Label 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6

Label 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9

Label 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8

transition for a different UESMANN network: the transition is slightly wider and

more central. Transition regions for different networks trained with the same para-

meters are not necessarily the same (as also shown by the grey regions in Fig. 7.13).

Table 7.19: Most common output given the test MNIST examples passed to

a 60 hidden node UESMANN network (attempt 2) at each value of h. The

transition region is delineated by vertical lines.

h

0
.
0
0

0
.
0
5

0
.
1
0

0
.
1
5

0
.
2
0

0
.
2
5

0
.
3
0

0
.
3
5

0
.
4
0

0
.
4
5

0
.
5
0

0
.
5
5

0
.
6
0

0
.
6
5

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0
.
9
5

1
.
0
0

Label 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Label 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Label 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Label 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Label 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5

Label 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4

Label 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Label 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Label 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Label 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8

224 Chapter 7. UESMANN in handwriting recognition

Table 7.20: Most common output given the test MNIST examples passed to

a 60 hidden node UESMANN network (attempt 7) at each value of h. The

transition region is delineated by vertical lines.

h

0
.
0
0

0
.
0
5

0
.
1
0

0
.
1
5

0
.
2
0

0
.
2
5

0
.
3
0

0
.
3
5

0
.
4
0

0
.
4
5

0
.
5
0

0
.
5
5

0
.
6
0

0
.
6
5

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0
.
9
5

1
.
0
0

Label 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Label 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Label 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Label 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

Label 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5

Label 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4

Label 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7

Label 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6

Label 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9

Label 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8

7.4 Conclusion
The experiments above show that UESMANN is able to learn two different labellings

in a classification problem using simple back-propagation, which we have already

shown requires a careful balancing of weights and biases across the network, not

just in the output layer (see Sec. 6.5.3.3). The performance of UESMANN on this

problem is not as good as output blending or h-as-input. While it should be noted

that these two methods require many more parameters at the same hidden node

count (particularly output blending) the UESMANN performance is still noticeably

weaker and requires more hidden nodes, removing the parameter count advantage.

However, it may be possible to improve the performance by using some of the

many enhancements to back-propagation which have not been used here (such as

the various types of momentum and weight decay). It should also be borne in

mind that there was insufficient time to run the training to convergence in all cases:

given the extra training time required for UESMANN networks, it may be that the

performances of the three networks types are considerably closer when given more

time to converge. The best performances are shown in Table 7.21.

Table 7.21: Performances of the best networks of each type on the MNIST

handwriting recognition problem.

Type hidden

nodes

run NPV PPV Accuracy F1 TPRmin φmin

h-as-input 300 1 0.995 0.954 0.991 0.954 0.920 0.949

Output blending 80 7 0.994 0.948 0.990 0.948 0.918 0.942

UESMANN 600 3 0.991 0.916 0.983 0.915 0.853 0.906

7.4 Conclusion 225

In comparison with the line recognition problem, UESMANN performs worse

than its counterparts here. In those experiments, UESMANN’s performance was

comparable to h-as-input at intermediate to high hidden node counts. However, the

convergence behaviour is different at higher learning rates: in the line experiments,

UESMANN failed to converge to solutions at η � 1 and η � 0.2, requiring the lower

η � 0.05 to find a solution. In the MNIST experiments, η � 0.2 was able to find

solutions comparable to those at η � 0.05. This suggests that the error surfaces in

the line experiments had a more complex topography (for the same hidden node

count) which required that the algorithm find narrow routes to the solution, while

in MNIST routes to the solution (however poor) were easier to find. It may also be

the case that better solutions exist, and that a lower learning rate (or some of the

enhancements to back-propagation mentioned in Sec. 4.1.6) might find them.

There are two unexplained features of the results which require more study:

firstly, the h-as-input behaviour is consistently (if only slightly) better than that of

output blending at higher node counts. This was not predicted: output blending

learns the two problems independently in two separate networks, and so should

perform better than trying to learn two functions in a single network with an extra

“pixel” of data identifying the function. While this behaviour is interesting (and

potentially useful), it is not within the scope of this thesis.

The second unexplained feature is the propensity for UESMANN to consistently

perform better at one modulator level than the other — in this case, h � 1 has a

better performance. This may be related to the finding that the output blending con-

vergence and control (i.e. single function) performances do not follow the expected

relationship Eob � 2Ec − E2

c , which appears to suggest that the two functions are

not equally difficult to learn. This should not be the case, given that the difference

between the two functions is a simple transformation of the output layer. Again, we

must leave this for future work.

The transition behaviour of the three network types is consistent with that seen

in previous experiments: output blending produces a crisp transition, h-as-input
produces a narrow transition region, and UESMANN produces a wide transition.

This may be useful in certain applications, such as control: rather than having a

“hard switch” between two behaviours, it may be beneficial for some features of one

behaviour to gradually give way to those of another. This may avoid (or at least

damp) oscillations between the behaviours. We will investigate this possibility in

the next part of this dissertation.

226 Chapter 7. UESMANN in handwriting recognition

Part IV

UESMANN in a Homeostatic Control
Problem

227

Chapter 8

We have seen that it is possible to train a multilayer perceptron with a sigmoid

activation function to perform two different functions using back-propagation of

errors, performing the second function when the weights are doubled. Thus far,

we have studied the properties and performance of such a network in classification

problems, yielding either a boolean result by thresholding at 0.5 (in the case of

training for boolean functions and line recognition) or a classification (by selecting

the highest output). This novel network, UESMANN, is able to learn such function

pairings, but may not perform as well as naïvely interpolating the outputs or using

an extra input to carry the modulator. However, it shows interesting behaviour in

the transition when the modulator is between the two endpoints (0 and 1).

We can therefore answer two of our original research questions on p. 9: it is

possible to build such a system, and it can be made considerably more simple than

existing systems (ofwhich theNeal/Timmis systemdescribed in Sec. 2.5.6 is perhaps

the most simple). Our remaining questions ask what engineering advantages such

a system might have, and what we might learn about biology from it. Leaving the

latter question for the time being, we have seen a possible answer to the former: the

transition region between the two modulator extrema might have some interesting

properties. The output blending method shows (indeed, is comprised of) a linear

interpolation between the outputs of the two networks of which it is composed:

in classification problems this tends to manifest as a sharp transition, because a

perfectly trained network will output 0 and 1 at its extrema1. A h-as-input network

will tend to produce a wide transition which is fairly predictable, but UESMANN

produces the widest transition of the three with different initial weights leading to

correct behaviour at the end points but sometimes quite different transitions (see

Figs. 4.43, 6.18, and 7.13). However, these transitions vary less than those for weight

blending. This is partly because there are usually fewer solutions for a UESMANN

1If the networks are imperfectly trained and produce different values, we might obtain a more

complex transition but it is likely to be narrow.

229

230 Chapter 8. Introduction

network than for the two independent networks used in weight blending, but also

may be because the network is, in itself, a unitary object which is (in some sense) a

compromise between the two solutions.

This transition behaviour might be useful in a control problem, providing a

graded (but non-linear) response to a graded stimulus. This might prevent oscillat-

ory behaviour: in a system with a narrow or hard transition, if the process variable

(to use the control systems theory terminology) crosses the threshold a large change

will be seen in the output, which is likely to cause the process variable to cross the

threshold again in the other direction. Too wide a transition may also cause prob-

lems: consider a robot whose h � 1 is phototaxis. If the transition encompasses the

entire modulatory range, such a robot would exhibit a slight amount of phototaxis

with even a small amount of modulator. This might cause a nominally straight

path (perhaps to explore or obtain resources) to become curved towards the light,

leading to inefficiency. Naturally, this could be “fixed” with some form of non-linear

mapping (such as a sigmoid), but the underlying nature of the transition remains.

Traditional control systems, such as PID control, ameliorate oscillatory beha-

viour with graded changes but require design by hand. “Traditional” artificial

endocrine systems (such as the Neal/Timmis AES) are also typically designed by

hand, although their constituent networks may be trained2. UESMANN uses a

global modulator to switch gradually from one learned behaviour to another in a

simple network.

We noted above that different networks trained on the same input might produce

different transition behaviour, finding different solutions because of the stochastic

initial parameters. We may find useful non-linearities for a given problem in the

transition behaviours of some of these networks.

This work is largely motivated by the same problem domain as most AES work:

adaptive behaviour in robotic systems. The key adaptive behaviour is homeostasis:

maintaining essential variables within a fixed range. We will therefore test UES-

MANN in a homeostatic robotic problem, to assess whether the wide transition

range (and its variability in different networks trained with the same hyperparamet-

ers) produces useful behaviour, and whether unforeseen emergent behaviours from

non-linearities in the transition can be adaptive.

2There are exceptions: in some AESs, such as the Timmis/Neal/Thorniley system described in

Sec. 2.5.6.4, the hormone response can be learned — unlike UESMANN, however, these systems are

complex.

8.1 Methodology 231

8.1 Methodology
The primary motivation for neuromodulatory systems (and artificial endocrine sys-

tems in particular) is the achievement of adaptive behaviour: behaviour which

changes according to the environment, in order to permit more useful work to be

done. In the context of biology, this is the “useful work” of continuing the species;

in robotic systems it is whatever the engineer requires.

In the simple neuromodulatory systems under study (UESMANN, output blend-

ing, and h-as-input), our adaptive behaviour consists of switching between two be-

haviours for which the network has been trained using a large number of examples

(i.e. supervised learning). Our control problem is therefore a regression problem, or

rather two regression problems (given that we have two functions) combined into

one. In the case of output blending, we solve the two problems separately and inter-

polate between their results; in the case of h-as-input we create a single regression

problem using which of the two problems we are solving as an extra input; and in

the case of UESMANN we attempt to find a solution to both problems in which

a global multiplicative parameter interpolates (non-linearly) between the two solu-

tions. This is not a completely “adaptive” system, in that the two sub-problems have

fixed solutions which have already been found by other means (in order to generate

the training examples). It is, however, a similar approach to that of Neal and Timmis

[209] and Sauzé and Neal [243]. The adaptation is in the transition between the two

modes of operation.

Aswas noted above, a key feature of adaptive behaviour is homeostasis. A typical

homeostatic problem is the maintenance of available energy (in robots, typically

battery charge) — this is referred to as energy homeostasis both within biology [202]

and in the SYMBRION and REPLICATOR projects [147, 128].

Balancing the need to perform a task and the need to recharge or refuel is a basic

problem in self-sufficient autonomous robots [192]. A good example is the robotic

vacuum cleaner: thismust clean effectively, while also returning to a charging station

regularly. If it remains close to its charging station, it will not clean a large area; while

if it ventures too far, it will discharge and require rescue [141, 291, 306]. We can refer

to the work to be done (cleaning in this example) as the “primary” task, while

maintaining energy levels is the “secondary” task.

In our experiments a task loosely termed “exploration” — simply heading away

from obstacles while maintaining as much speed as possible — was chosen as the

primary task for several reasons:

232 Chapter 8. Introduction

• TheUESMANNarchitecture and the othermodulatorymethods used for com-

parison are designed to transition between two behaviours — recharging and

exploration are two very different behaviours.

• Often the primary task requires covering a wide area by some exploratory

algorithm [128]: robot vacuum cleaners are the prototypical example [98, 306].

Other applications include search and rescue [104] and planetary explora-

tion [250].

• Avoiding areas already explored was thought to add too much complexity

which might confound the results, although this could be achieved with ap-

proaches such as stigmergy [68].

• The two tasks (recharging by phototaxis and the primary exploration task) are

easily defined and it is straightforward to produce examples from which the

networks can be trained.

• The tasks are conceptually similar to the robot sailing problem used by Sauzé

and Neal [243] and Neal and Timmis [208] (which use the Neal/Timmis AES).

• Both tasks are very simple and are intended to provide a basis of comparison

for future studies. More complex tasks might introduce factors which might

complicate analysis of the results.

Our secondary task, maintaining power levels, is achieved by phototaxis — moving

towards a light source — when charge is low. Other ways of achieving energy

homeostasis could have been used: consider the sailing powermanagement problem

of Sauzé andNeal [243]describedabove. Inorder to recharge, their robotmust simply

use its actuators less. However, we elected to use a conventional land-based robot

for convenience, with phototaxis as the recharging task. This is a more complex

behaviour than simple down-regulation of the actuator change, chosen because it

is of roughly the same complexity as the primary exploration task. Additionally,

Sauzé and Neal use a waypoint following primary task: the network inputs are the

rudder actuator position and heading error, and the output is the desired change in

rudder actuator. We elected to use exploration as the primary task for its simplicity

and parallels with phototaxis: in the former, we turn away from close obstacles; in

the latter we turn towards the light.

Other tasks which do not involve energy homeostasis could be attempted: these

include navigational safety and fault mitigation in a search and rescue setting [275],

and temperature management [10, 87].

8.1 Methodology 233

Thus the robot has two behaviours: “exploration”, in which the robot moves in

straight lines but turns away from obstacles; and “phototaxis”, in which the robot

moves towards the light source to recharge. At modulator h � 0 (see previous

sections) the exploration behaviour is used, while at h � 1 the robot uses phototaxis.

The modulator h is determined by

h � 1 − C (8.1)

where C is the simulated battery charge, so the behaviour is selected by the level of

charge3. This charge is reduced by both a base power usage value and some factor of

the added motor outputs, and replenished by some factor of the light level given by

summing the light sensors. The charge is in the range [0, 1]: it is clipped if it exceeds

1, and if it reaches zero the simulated battery is flat and the run ends prematurely.

In this regime, “good” behaviour is to explore the arena asmuch as possiblewhile

avoiding obstacles, returning to the power source when the charge is low. Once

charge is replenished, the robot should return to exploration. Thus the behaviour

is homeostatic, keeping the charge within a given range (although this range is

somewhat wide).

8.1.1 The robot

The problem described above requires a wheeled or tracked robot, preferably with

differential steering for ease of control. It also requires omnidirectional4 detection of

a light source (for phototaxis) and obstacle detection (for exploration). Many robots

have obstacle detection with infra-red, laser or sonar range finding, but light source

detection is rarer.

AnActivMedia Pioneer 2-DX [2] fittedwith an omnidirectional camerawas avail-

able, and fitted the requirements well. This robot, shown in Fig. 8.1, has two drive

wheels and a rear caster which allows it to be controlled by two outputs: one for

each drive wheel. The robot is shown in the test arena in Fig. 8.2 for scale. One

disadvantage of the Pioneer is its large size, which made running the experiments

difficult and time-consuming. Another is the low CPU specification, which is insuf-

ficient to run the Robot Operating System (ROS). This required development of a

3The behaviour is this way round (rather than h � 0 selecting phototaxis and h � 1 selecting

exploration, which would give h � C) to reflect the idea that h � 0 is the “normal” behaviour, with

the modulator becoming non-zero as an exception (corresponding to a notional “hunger hormone”).

4The experiments could be performed with a simple front-facing light sensor, but this would

complicate the phototaxis behaviour.

234 Chapter 8. Introduction

“bridge” to interface between ROS on a separate machine and the Pioneer’s native

ARIA API (see Appendix A).

Figure 8.1: “Bart”, the Pioneer 2-DX robot used in the experiments. Note the

camera, which is pointing upwards into a parabolic mirror mounted in an

acrylic tube.

Other robots could have been used — any wheeled robot with a simple control

system, an omnidirectional light sensor or camera, and a good number of front-

facing range finding sensorswould have been suitable. For example, the experiments

would have been considerably more convenient to run on the much smaller e-Puck

or Khepera with an omnidirectional camera5. However, the large number of front-

facing sonar sensors on the Pioneer robot (and its availability) gives it an advantage

over the smaller robots.

The omnidirectional camera was used as an 8-direction array of light sensors by

radial sampling through the image. This is described further in Sec. 10.1.2. There is

a light source in the arena, which acts both as a power source for a simulated battery

and a beacon to the power source. The light sensors also act as “charge receptors,”

with a function of the sum of their values being used to increment the simulated

charge (see Sec. 9.1.4).

5although the Khepera KD2-360 camera appears to be discontinued, and the e-Puck omnidirec-

tional camera extension would have required a considerable amount of manufacturing and develop-

ment [96].

8.1 Methodology 235

Figure 8.2: The robot inside the experimental arena, which is bounded with

sonar-opaque mesh. The mesh in the left of the image was positioned slightly

differently in the experiments as shown in Fig. 10.1, andwas held taut by clips

during the runs.

In addition to the omnidirectional camera, the robot also has 16 sonar sensors

for range finding, divided into two arrays, of which the only front was used. The

positions and angles of the front array relative to the centre of the robot are shown

in Fig. 8.3.

90o

50o

30o
10o-10o

-30
o

-50o

-90o
10cm

Forwards
0

1

2
3 4

5

6

7

Figure 8.3: Sonar positions on both the simulated and real robot, after [2].

The centre of the robot’s frame of reference is marked with a cross and circle.

Each sensor is markedwith its normal angle and (in the black circle) the sonar

number.

The robot was simulated both in a simple simulator (used for generating training

sets and initial testing) and in the Gazebo simulator [151]. Given that the robot has

eight (active) sonar sensors and a light sensor with eight outputs as described above,

this gives a total of 16 inputs to the neural network under test. There are two outputs

from the network, one for each drive wheel.

236 Chapter 8. Introduction

8.1.2 Metrics

While typical runs of each network will be described in some detail, it would be

useful to have a singlemetric to compare the performance of several networks against

each other. This is particularly true in simple simulation runs: because these are

inexpensive to perform, we will train several networks and simulate them, choosing

which to carry forward into the Gazebo and robot simulations on the basis of this

metric. In the Gazebo/robot experiments themselves, the metric will not be used:

the behaviour of the real robot is best described qualitatively, particularly given

the limited number of runs, and the Gazebo simulations are used as a basis for

comparison.

A “good” network is one which survives for a long time (achieving homeostasis),

and covers a large area of the test arena (exploration). Some work was done with

occupancygridmetrics, but thesewere found to bedeceptive in our test environment:

firstly, a robot could achieve high occupancy by simply running itself at full speed in

random directions, covering a large area (but not the arena edge) but not achieving

homeostasis. Secondly, two similar networks could give different occupancy counts:

onenetwork couldgive a lowcount byproducing a simple elliptical repeating “orbit”,

while the other could give a high count by rotating the path slightly on each orbit.

This would tell us little about the underlying performance.

Disregarding (for now) the homeostatic survival aspect, we define a “good”

network as one which moves the robot around the arena space, varying between

near and far from the power source, while moving as far as possible from the power

source to the edges of the arena. While this does not directly take into account the

possibility that the robotmight only occupy one segment of the arena, this is unlikely

to result in a good score because the robot will not spend much time near the arena

edge by so doing. Including the survival time, we can now construct three metrics.

8.1.2.1 Distance variation metric

Given that we can obtain a log of the robot’s position and we know the position

of the light, we can calculate the robot’s distance from the light over time. We

can then use a measure of variation in this distance — the population standard

deviation was selected in these experiments. However, the plots in Fig. 8.4 reveal a

problem with this approach. The second plot has a larger standard deviation than

the first (correctly so) but shows no variation over the short term: there are large

sections of the run in which the robot is not moving. Ideally, a useful measure of

variation would show the distance varying throughout the run to demonstrate good

exploratory behaviour.

8.1 Methodology 237

0 200 400 600 800 1000

0
1

2
3

4
5

6
7

t

di
st

(a) σ � 2.292

0 200 400 600 800 1000

0
2

4
6

8

t

di
st

(b) σ � 3.608

Figure 8.4: Plots illustrating the problems with using the standard deviation

as measure of distance variation (from simulated robot runs).

To deal with this, each run was divided into slices and the standard deviation

found for each slice. The result is the mean of the standard deviations for all slices:

md �

n∑
i�1

σ
(
d(i−1)s<t≤is

)
n

, s � tmax/n (8.2)

where md is the metric, n is the number of slices, dt1<t≤t2
is the set of distances from

the power source recorded between times t1 and t2, and tmax is the maximum time.

It should be noted that despite the slicing operation, it is still possible that a runwith

a long unchanging distance could outperform a constantly changing distance if the

slice boundaries coincide with behaviour changes or the number of slices is poorly

chosen. For these experiments n � 10, which seems a good compromise between too

many slices, which would result in very rapid moves to and from the power source

being highly scored; and too few slices, which would result in the same problems

seen in Fig. 8.4.

8.1.2.2 Edge-weighted distance traversed metric

The idea of “moving far from the power source” can be split into two components:

“moving” can be measured by adding together the distances between successive

positions in the log, and “far from the source” can bemeasured by using the distance

238 Chapter 8. Introduction

of each position from the source. These two measures are combined by multiplying

the distance travelled in each log segment by the distance of the first point in that

segment from the source, giving an “edge-weighted distance” measure:

mT �

n−1∑
j

(√
(x j − x j+1)2 + (y j − y j+1)2

√
x2

j + y2

j

)
(8.3)

where n is the number of points in the log and (x j , y j) is the position of point j
relative to the power source.

8.1.2.3 Survival time metric

The most straightforward metric is the survival time

mt � max t (8.4)

where t is the time of each point in the log: the experiment terminates when the

robot’s simulated battery charge reaches zero, or after a fixed time if this does not

occur.

8.1.2.4 The combined metric

We now have three metrics measuring three different aspects of the robot/network

performance, which we need to combine into a single metric. To achieve this, we

use the method of Rodriguez andWeisbin [233] used by Tunstel [282] for calculating

Mars Exploration Rover performance metrics. This method compares each metric

against a reference value and calculates the ratio of the metric to this value. How-

ever, it expresses these ratios in information-theoretical terms as bits, by using the

expression

log
2

(m
r

)
, (8.5)

where m is the value of the metric in question and r is the reference value. Thus,

if the metric performs twice as well as the reference the result is 1 bit, and if it

performs half as well the result is -1 bit. These metrics are combined additively (that

is, multiplicatively in the underlying ratios) thus:

mc �
1

2

∑
i

log
2

(
mi

ri

)
2

. (8.6)

8.1 Methodology 239

In our system, this becomes

mc �
1

2

(
log

2

(
md

rd

)
2

+ log
2

(
mt

rt

)
2

+ log
2

(
mT

rT

)
2

)
. (8.7)

In this metric, multiplication is used for the same reason that multiplication is used

in combining the probabilities of independent events: we require a metric which

shows how well the system performs at all tasks[233]. Of course, there is likely to

be a complex interdependence between all the metrics in our case. Rodriguez and

Weisbin [233] briefly discuss possibilities for dealing with such dependencies, but

we shall ignore them for now—weneed a simplemetricwithwhichwe can compare

performances taking into account asmany requirements as possible. Calculating the

dependencies between the metrics would be a very complex task.

This combination method has the advantage of converting metrics with different

units and scales to dimensionless values (ratios), while using the binary bit expresses

the result in a convenient and well-understood way.

8.1.3 Generating examples and training

UESMANN and the other network types use supervised learning paradigms: they

are trained from examples of correct behaviour. As noted in the introduction to this

chapter, this means that we are not learning what the sub-behaviours (phototaxis

and exploration) are, but are instead constructing a single system incorporating

both behaviours which will switch between them. To generate the large numbers of

training examples required, the simple simulator (see Sec. 9.1) was used to run two

rule-based controllers, switchingbetween themperiodically to change the behaviour.

The inputs, outputs and modulator level (0 or 1) for the current behaviour were

recorded andprovide the examples for network training. Moredetails on the training

regime are given in Sec. 9.2. Once trained, the networks were carried forwards into

the experiments.

8.1.4 The experiments

Experiments were performed using two different simulators and an actual robot.

For some initial experiments the same simple simulator as that used in generating

training examples was used, which has a very basic differential steering model with

perfect sensors and actuators, and simulates robots in a simple enclosed square

arena.

240 Chapter 8. Introduction

Multiple networks with different initial weights and biases were trained for each

network type using the same power management constants (rate of charge, motor

power expenditure, etc.) to provide a basis for comparison. Whilemany experiments

could have been performed with this simulator at different power expenditure and

charge rates, it was decided to evaluate the networks using a single set of these

parameters. This would allow us to see how well the networks behaved when these

parameters were varied from in the real robot.

The best networks (i.e. those with the highest combined metric) of each type

were carried forwards into a set of experiments using the Gazebo simulator, which

has perfect sensors6 but a more complex and realistic physics simulation. These

experiments used a more accurate model of the final arena. The same networks

were carried over onto the real robot and the runs compared with their Gazebo

counterparts: it was predicted that the physical and sensor responses of the robot

and its simulated Gazebo counterpart would differ in important ways, leading to

differences in behaviour.

Studying the differences between the noise-free simulations and the real robot

might provide useful insights into how well each network architecture is able to

bridge the “reality gap” (see Sec. 2.4, p. 41): the difference between simulation and

physical robot, which presents the control system with noisy, inaccurate data and

imperfect actuators with complex responses.

In these experiments the performance of the networks was compared between

Gazebo and the actual robot, using two different initial poses and two different

power expenditure settings. Only one Gazebo run was made for each pose/setting

combination in each network, since theGazebo performancewas deterministic given

the small amount of sensor noise added: all Gazebo runs with the same parameters

would be the same. Several runs were made for each set of robot settings.

To summarise:

• Ten networks are trained for each network type, each with different train-

ing data generated by the simple simulator with random course and position

changes.

• These are tested in the same simulator (without the random changes), and the

best network of each type is carried forward.

• These networks are evaluated in both Gazebo and on the real robot.

6A very small amount of noise was added to the sonar sensors (see below). No noise was added

to the simulated light sensor, although Gaussian blurring was performed.

Chapter 9

Training and the simple simulator

9.1 The simple simulator
This simulator was developed primarily to provide a large set of training examples.

It was was deliberately very simple, both to execute quickly and and to generate

“low-fidelity” training examples which (it was hoped) would nevertheless be able

to function in a real robot, crossing the “reality gap.” Overfitting the networks to a

complex simulation which did not resemble reality in important ways was deemed

more of a risk than overfitting to a naïve simulator.

9.1.1 Kinematics

The kinematics of the simple simulator is described by Eqs. 9.1 and 9.2 which im-

plement a simple differential steer system, giving a linear relationship between

requested motor speeds and speed along the ground [178]:

dθ
dt

�
sl − sr

b
(9.1)

d ®p
dt

�
sl + sr

2

(
cos(−θ)
sin(−θ)

)
(9.2)

where

• ®p is the position,

• θ is the orientation,

• sl and sr are the speeds of the two wheels (i.e. their speeds along the ground),

• b is the distance between the two wheels.

241

242 Chapter 9. Training and the simple simulator

9.1.2 Sonar

The sonar sensors have simulated positions and angles equivalent to those on the real

robot, as shown in Fig. 8.3. In this simulation (and also in Gazebo) the sensor returns

a distance by ray-casting along its normal, finding the nearest obstacle (linear object

in the world). Because the training and test area are enclosed, an obstacle is always

found. The eight return distances form the first part of the input to the network (and

rule system, when this is used).

9.1.3 Light sensor

The omnidirectional light sensor is simulated by using linear elements in the world

which act as notional emitters. The sensor traverses the world objects and calculates

the angles of the ends of each emitter as viewed from its frame of reference. These

angles are converted into indices into a buffer of 16 luminance values. Pixels in the

buffer which encompass the emitter angles are set to the emitter colour, while the

others are set to zero. This buffer is then blurred with a Gaussian kernel, with the

blurring algorithm processing the pixels modulo 16. The resulting buffer is added to

the global buffer, which is set to zero at the start of processing. This is described in

Algorithm 8, and shown in Fig. 9.1. While the sensor is linear, it was found during

initial testing that blurring in conjunction with using the floor and ceiling operators

effectively widened the pixel coverage in the luminance buffer enough that a circular

emitter was not required1.

1m

+

=
Global buffer

Emitter buffer

Emitter buffer

BLUR

BLUR
8

0

Emitter

Emitter

Robot

Figure 9.1: Operation of the simulated light sensor, showing how emitter end-

point angles are converted into buffer pixels, which are blurred and summed.

In the left-hand view of the arena, the robot is shown as a black dot with

a dotted black line for each sensor ray (showing ray indices 0 and 8). The

emitters are shownas solid thick lines. The angles to the emitter end-points are

shown as dotted grey lines. The operations of the floor and ceiling operators

to produce ray indices are shown as grey arcs. The figures to the right show

the generated pixel buffers.

1In retrospect, a circular emitter would have been easier to implement!

9.1 The simple simulator 243

Algorithm 8 Light sensor algorithm for the simple simulator

®b ← buffer of 16 real light values, initialised to zero

for e ∈ Emitters do
®t ← buffer of 16 real light values, initialised to zero

θ1 ← angle of emitter e start in robot frame

θ2 ← angle of emitter e end in robot frame

(Ensure θ1 < θ2, and that θ1 to θ2 covers the emitter extent.

This may result in either being greater than 2π.)
p1 �

⌊
16

2πθ1

⌋
mod 16 {Convert to 0-15 using floor operator}

p2 �
⌈

16

2πθ2

⌉
mod 16 {Convert to 0-15 using ceiling operator}

for i � p1 to p2 do
ti ← luminance {Add the emitter’s contribution to the luminance buffer}

end for
®t ← ®t blurred with a Gaussian kernel of size 3, with σ � 1

®b ← ®b + ®t
end for

At each iteration, the sumof the luminance buffer values

∑
bi is used to increment

the simulated battery charge as described below. The buffer is then downsampled

by selecting every other value, and the resulting 8 values provide the second part

of the input to the networks. Note that in the simulation, emitters do not act as

obstacles, because the real emitter is not an obstacle.

9.1.4 Power

The power simulation described here is used by all the experiments, including the

Gazebo and robot experiments, but is described here as part of the initial simple

simulator experiments. The robot’s battery has a charge in the interval [0,1]. We

assume that the power usage is proportional to the commanded motor speed, plus

some base usage. If the charge is C, the commanded speeds are sl and sr , the power

input is p, the time step is ∆t , the base usage is kbase and the motor power factor is

km , then

Ct � clamp

(
Ct−1 + ∆t

(
p − (kbase + km(sl + sr))

))
(9.3)

where clamp(x) � max

(
0,min(1, x)

)
. (9.4)

That is, the charge increases linearly with the power input, and decreases linearly

with the sum of the motor power outputs and base power usage, with multiplicative

constant factors determining by how much. A more realistic model might use a

saturation model rather than hard clipping at full charge, such as making the power

244 Chapter 9. Training and the simple simulator

added proportional to the difference between the maximum and the current power,

but that was deemed an unnecessary complication at this stage.

Thepower input p is obtained from the sumof the inputpixel values run througha

simple low-pass filter (using Brown’s simple exponential smoothing, an exponential

weighted moving average[39]):

p0 � 0 (9.5)

pt � kLαkpower

∑
i

bi + (1 − kLα)pt−1, (9.6)

where
®b is the light sensor output (see Algorithm 8), kpower is the light power factor

determining how light is converted to power, and kLα is the smoothing constant (set

to 0.99).

9.2 Training
As noted above, all networks are trained using examples generated by the simple

simulator (described above) using a virtual robot with two rule-based controllers,

which we shall refer to as exploration and phototaxis. While each controller has access

to all inputs, in practice exploration only uses the sonars and phototaxis only uses the

light sensor. Italics will be used throughout to emphasise that these are labels for the

behaviours described by the controllers rather than the English terms: for example,

the phototaxis behaviour consists ofwhat is commonlymeant by “positive phototaxis”

— moving towards the light — but also includes a stop behaviour when the light is

close, to permit recharging without using the motors (which drain charge).

Training is done as follows for for each individual network:

• The simple simulator, described in Sec. 9.1 (p. 241), is run for 200000 simulator

ticks in the training arena2, which is rather different from the simple test

arena3, with internal walls to ensure a wide variety of training examples. It

is also different from the final arena4, which has more corners, each of which

is less acute. This was partly due to operational difficulties, but also would

expose any networks which overtrained on the examples such that they would

only operate in an arena of similar geometry to the training arena.

2Fig. 9.2 (p. 247)

3Fig. 9.9 (p. 255)

4Fig. 10.1 (p. 274)

9.2 Training 245

• In each tick, either the phototaxis or exploration rule-based controller runs. The

sensor inputs and motor outputs are logged as training examples, with a mod-

ulator value: h � 0 if the controller used is exploration and h � 1 if phototaxis is
used. These controllers are described in Sec. 9.2.1, and the process for generat-

ing the examples is given in more detail in Sec. 9.2.3.

• The simulator switches between the two controllers every 1000 ticks to ensure

there are an equal number of training examples for each.

• The simulator has a small chance of randomly changing course or position each

tick, to ensure loops are avoided.

• Thenetwork is then trainedusing the logged controller output described above,

using the parameters given in Sec. 8.1.3 (p. 239).

Note that each individual network of the ten trained for each network type has a

different set of training data, because the random position and course changes will

be different in each run of the simulator. This random behaviour is disabled during

the experimental runs of Sec. 9.4.

9.2.1 The rule-based controllers

The exploration controller is shown in Algorithm 9: if any sonar returns a distance

less than 0.5m, find the smallest sonar distance on the left and right sides, and turn

right if the left side value is smaller and right otherwise. The two front sonars are

ignored for the purposes of determining turn direction, but are taken into account

for the initial obstacle detection.

Algorithm 9 Exploration controller: dn are front sonar bank distances, indexed 0-7

from left to right, s̄ is a tuple of motor outputs (le f t , ri ght). See Fig. 8.3 for the sonar
numbers.

if min d0···7 < 0.5 then
if min(d0, d1, d2) < min(d5, d6, d7) then

s̄ ← (1,−1)
else

s̄ ← (−1, 1)
end if

else
s̄ ← (1, 1)

end if

The phototaxis controller is shown in Algorithm 10. Here, the pixels are processed

to produce a value v indicating how far left or right the robot should turn: negative

246 Chapter 9. Training and the simple simulator

for left and positive for right. This is scaled by kLs (whichwill depend on the number

of pixels in the image) to produce the turn value. This value is added to 1 for the

left motor and subtracted from 1 for the right motor to give the basic speed. The

total number of pixels illuminated by the emitter is also taken into account so that

the robot will slow down when it is close. This speed factor is a linear ramp from

1 when the total input light is KLmax to 0 when it is KLmin . To produce the motor

speeds, the basic speeds are multiplied by this factor, and clamped to [0,1]. These

motor speeds are then multiplied by kLspeed to give the values sent to the simulation.

Algorithm 10 Phototaxis controller: l is a vector of input pixels, v is the “direction”

in which to move, t is the total light, sl ,r is a tuple of motor outputs (le f t , ri ght).
The clamp[a ,b] operator clamps the value to [a , b]. Constants: kLmax is the number

of fully illuminated pixels which will cause the motors to stop (by setting d � 0; d
ramps down from 1 at no light to 0 at kLmax). kLs is the strength of the steering –

higher, the turns will be tighter. kLspeed is a final speed multiplier to counteract the

slowdown: note that the actual motor speeds are still subject to [-1,1] clamping.

v , t ← 0

C � N/2 {Centre pixel, as float}

for i � 0 to N − 1 do
p ←

(
(i + C) mod N

)
− C {p is pixel number with 0 as centre}

v ← v + pli {add to steer value}

t ← t + li {add to total light value}

end for
d � clamp[0,1]

(
1 − t−kLmin

kLmax−kLmin

)
{get max speed}

sl ← kLspeed clamp[−1,1]
(
(1 + kLs v)d

)
sr ← kLspeed clamp[−1,1]

(
(1 − kLs v)d

)
9.2.2 The training arena

Fig. 9.2 shows the simulated arena used for training. There are two internal walls to

provide situations where the robot has obstacles on both sides, which have caps to

help provide an obstacle when the robot has an “end-on” view of a wall. The light

source here is a linear emitter in one corner. In exploration, the robot will avoid all

the walls (including the internal walls) using the sonars. In phototaxis the robot will

move towards the emitter using the light sensor, ignoring all walls— it will not leave

the arena because both robot and emitter are containedwithin the square outer wall,

but it will pass through the internal walls. The purpose of the internal walls is to

provide more variety in the sonar training data.

9.2 Training 247

1m
Figure 9.2: The arena used with the simple simulator to generate training

examples using the two rule-based controllers. The red line is light-emitting

and not an obstacle, and the initial position of the robot is indicated with a

circle of the radius of the robot body,with a line showing the initial orientation.

9.2.3 Generating training examples

Examples are generated using a special version of the simple simulator, a screenshot

of which is shown in Fig. 9.3. This shows the arena and emitter, the robot and

sonar rays, and the light sensors in a ring around the centre – both the full set and

the downsampled eight inputs sent to the networks. Various monitoring values are

also shown. This program is typically used without a visual display, and halts after

a fixed number of ticks have been output (200000 in our experiments). As stated

above, it runs either the exploration or phototaxis controllers, switching between the

two every 1000 ticks.

If permitted to run normally the simulator will fall into a simple looping course.

This will not provide a varied enough set of examples for training; therefore a

degree of randomness is incorporated externally into the simulation during example

generation:

• Every tick there is a 1% chance that the robot will turn by a random value in

the interval [-0.5,0.5] radians (28.6◦).

• Every tick there is a 0.143% chance (1 in 700) that the robot will turn 180
◦
.

248 Chapter 9. Training and the simple simulator

Figure 9.3: Ascreenshot of the recordctorprogram,which generates training

examples. The partial circle of white dots shows the 16 “raw” light sensor

pixels in a robot-centric visualisation, the three red dots outside show the

corresponding decimated pixels for feeding into the network.

• Every tick there is a 0.143% chance that the robot will be “teleported” to a

random location in the arena.

9.2.4 Training and network hyperparameters

Training was performed in a similar way to previous experiments, with the proviso

that a fresh set of training data was generated for each attempt in addition to starting

with a different set of initial weights and biases5. A set of 10000 examples of val-

idation data was also generated: this amount was found to be sufficient to provide

examples of most situations for validation purposes. As before, all examples were

shuffled before each iteration through the training set.

In these experiments, 15 hidden nodes were used: this is a number between the

number of inputs and the number of outputs, but at the high end of the range, and

was chosen to provide a reasonable number of “feature detectors.” The learning rate

η was set to 0.1, based on earlier experiments and some informal experimentation

5This was done in order to provide more variety given the limited number of networks, but may

introduce problems: see Sec. 11.5 (p. 313)

9.3 Convergence behaviour 249

at this hidden node count. The number of pair presentations was 3 × 10
7
giving

150 iterations through the training set of 200000 examples: this high count was

intended to provide enough time for networks to converge, and was again based on

informal experimentation. The initial weights were selected using Bishop’s rule, as

in previous experiments.

9.3 Convergence behaviour
For each network type (output blending, h-as-input and UESMANN), 10 networks

were trained using random initial weights/biases and a different training set gener-

ated using the simple simulator, using the parameters given in the previous para-

graph. All networks were expected to converge, given the large number of pair

presentations, and overfitting was considered unlikely given the number of ex-

amples and therefore the number of iterations through the sets. To give an idea of

the final performance in terms of mean squared error, box plots of the the mean of

the MSE of the outputs of all networks for the last 10 validation passes are shown in

Fig. 9.4.

250 Chapter 9. Training and the simple simulator

●

●

●
●

explore photo mean(e,p) OB hin UESMANN

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

M
S

E
 a

t c
om

pl
et

io
n

of
 tr

ai
ni

ng

Figure 9.4: The means of the MSEs of all networks of each type over the last

10 validation passes during training, giving an indication of the converged

performance. The plots are overlaid with the points, with those from the

same network given the same colour. There are ten points from each of the

ten networks. Also shown are the means of the exploration and phototaxis
networks.

9.3.1 Plain back-propagation

Networks were also trained with plain back-propagation on examples of just the

exploration and phototaxis controllers: these are shown in Fig. 9.5 both as points over

the entire training run and splines fitted to the first portion. These show that the

networks do converge, and there is no subsequent rise in error as might be seen with

overfitting. The noise seen in both plots for each network is likely to originate in the

validation process: each validation is on a difference slice (of 10) of the test set.

It is clear that the explorationbehaviour is considerablymoredifficult to learn,with

a much slower convergence and higher final error. The phototaxis networks converge

to solutions within 200000 iterations. This is as expected: learning to avoid walls

with multiple sonars is a much more complex task than simply heading towards the

light and then stopping, which can be achieved with a simple Braitenberg vehicle.

9.3 Convergence behaviour 251

(a) exploration, all

0 50000 100000 150000 200000

0.
0

0.
1

0.
2

0.
3

0.
4

pair presentation

M
S

E
 o

f o
ut

pu
t l

ay
er

(b) exploration, partial and smoothed

(c) phototaxis, all

0 50000 100000 150000 200000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

iteration

M
S

E
 o

f o
ut

pu
t l

ay
er

(d) phototaxis, partial and smoothed

Figure 9.5: Convergence behaviour for plain back-propagation trained on

exploration and phototaxis data sets. To obtain the error values, slices of a

separately generated training set were run through the network and the mean

of the mean squared errors at the output found. The point plot shows the

different networks in different colours, while the line plot fits a polynomial

spline (using R’s pspline package) to each network’s points and shows only

the beginning of training.

9.3.2 Output blending

The performance of output blending should be halfway between that of the two

separate networks in the previous section, since we are effectively training two

252 Chapter 9. Training and the simple simulator

such networks. Given that the final MSEs of exploration-only and phototaxis-only are

approximately 0.1 and 0.01 respectively, we would expect a final performance of

about 0.055. The mean is shown in the box plot in Fig. 9.4, and should represent

the performances of output blending networks formed from the networks generated

for each sub-task. The errors we see for the actual output blending networks are

significantly higher than 0.055 (p < 0.001, Wilcoxon rank-sum test) for reasonswhich

are not fully understood. It may be that this test of significance is invalid because

there are only ten networks, and we are including ten values for each network (the

ten final validation passes) in the comparison. Thus the values for each network are

not independent of each other. If we were to assume only ten samples (because there

are ten independent networks), then the threshold for a significant difference would

be much higher.

(a) all

0 50000 100000 150000 200000

0.
0

0.
1

0.
2

0.
3

0.
4

pair presentation

M
S

E
 o

f o
ut

pu
t l

ay
er

(b) partial and smoothed

Figure 9.6: Convergence behaviour for output blending explora-
tion→phototaxis. See Fig. 9.5 for details.

9.3.3 h-as-input

Fig. 9.7 shows that this network trains more slowly than output blending, and

achieves a slightly worse final performance. This is as we would expect: we are

now training a single network to perform two tasks, rather than two separate net-

works.

9.3 Convergence behaviour 253

(a) all

0 50000 100000 150000 200000

0.
0

0.
1

0.
2

0.
3

0.
4

pair presentation

M
S

E
 o

f o
ut

pu
t l

ay
er

(b) partial and smoothed

Figure 9.7: Convergence behaviour for h-as-input exploration→phototaxis. See
Fig. 9.5 for details.

9.3.4 UESMANN

As shown in Fig. 9.8, UESMANN converges faster than h-as-input initially (although

not as fast as output blending), but converges to a higher mean error. There is still

some overlap: some UESMANN networks outperform some h-as-input networks.

Note, however, the “spikes” in the convergence plots in Fig. 9.8, even after a large

number of training iterations: UESMANN has a larger error on certain slices of the

validation set, although the MSE here is still only ∼ 0.1.

254 Chapter 9. Training and the simple simulator

(a) all

0 50000 100000 150000 200000

0.
0

0.
1

0.
2

0.
3

0.
4

pair presentation
M

S
E

 o
f o

ut
pu

t l
ay

er

(b) partial and smoothed

Figure 9.8: Convergence behaviour for UESMANN exploration→phototaxis.
See Fig. 9.5 for details.

9.3.5 Discussion

All three network types converge to solutions, with the solutions for output blend-

ing better than those for h-as-input and those for h-as-input better than those for

UESMANN. However, the differences between the final solutions are small with all

networks giving a final MSE between 0.05 and 0.1. This is better than the final MSE

on networks trained on exploration only, which achieve a final MSE of 0.1: this is

clearly a more difficult task to learn than the phototaxis task. We will now look at

how the final trained networks perform in the simple simulator.

9.4 Simple simulator experiments
In this first set of experiments, the simple simulatorwas used to run the best networks

(in terms of final MSE) trained in the previous section. The runs were analysed

qualitatively from the point of view of the paths traversed both in physical space

and phase space (distance against charge), and also quantitatively using the metric

developed in Sec. 8.1.2.4 above. We will later compare these results with those from

both Gazebo simulation and the real robot, to see how the networks cope with the

“reality gap.”

9.4 Simple simulator experiments 255

Because the simple simulator does not incorporate any form of path finding or

collision detection, the internal walls shown in Fig. 9.2 were removed. The light

source was moved to the centre, and the arena was made much larger to give the

robot enough space to move away from the light to lose significant charge: while the

training arena is a 6m × 6m square, the test arena is four times larger at 12m × 12m.

This new test arena is shown in Fig. 9.9. This arena also differs from the Gazebo and

final physical robot arena, which is an irregular shape.

1m

Figure 9.9: The arena used with the simple simulator to test the behaviour of

the networks. The red line is light-emitting and not an obstacle.

In these tests, the power model described in Sec. 9.1.4 is active and feeds into the

networkmodulator with h � 1−C where C is the charge (i.e. Eq. 8.1). The simulation

is run for 1000 simulated seconds oruntil the charge reaches zero,whichever happens

first. In each run the robot is started from a random position near the centre (x , y ∈
[−2, 2]) with a random orientation. The constants for these experiments are given in

Table 9.1.

9.4.1 Control experiments: exploration and phototaxis only

To determine how well exploration and phototaxis were learned in the plain back-

propagation experiments, the networks with the lowest final MSE were taken and

run five times from random initial poses. Position plots for the results are shown

in Fig. 9.10. The exploration runs avoid the borders of the arena, but run out of

charge after less than a minute of simulated time. The phototaxis runs move towards

the light and then stop, surviving the full 1000 seconds by remaining close to the

256 Chapter 9. Training and the simple simulator

Table 9.1: Constants used in the simple simulator

constant description value

b wheelbase 0.35m

∆t time step 0.01s

km motor power usage 0.01

kbase base power usage 0.005

kpower light power factor 0.0025

kLs light steer factor 0.2

kLα light smoothing factor 0.99

kLmin light slowdown brightness 5

kLmax light stop brightness 7

kLspeed light speed factor 1

power source. Thus the two controllers have been successfully learned by the plain

back-propagation networks, and the power simulation works as expected: exploring

without regard to charge maintenance leads to a rapid demise.

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x

y

●

●54
●

●56 ●

●55

●

●57

●

●54

run 0 run 1 run 2 run 3 run 4

(a) exploration

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x

y

●

● 1000
●

● 1000

●

● 1000 ●
● 1000

●
● 1000

run 0 run 1 run 2 run 3 run 4

(b) phototaxis

Figure 9.10: Paths of the best networks trained on exploration and phototaxis
showing different runs in different colours. The start points are marked with

an open circle, the end points with a dot and the time the run ended, either

due to charge depletion or reaching the maximum time of 1000s (simulated).

9.4 Simple simulator experiments 257

9.4.2 Modulatory network results

This section will present the results for the three modulatory network types in the

simple simulator, firstly using the combined metric (which will be used to select

networks for the robot and Gazebo experiments) and then showing selected runs in

more detail.

9.4.2.1 Comparison using the combined metric

Fig. 9.11 shows the values of all metrics for all runs, and box plots combining those

results for each network type. The control runs of the previous section are not

included here, because those runs are not attempting to achieve homeostasis while

exploring, which is what the metric is designed to measure.

In these runs, the performance of output blending is consistent: all runs of all net-

works achieve roughly the same performance. While all runs achieve homeostasis,

surviving the full duration, the amount of distance variation and the edge-weighted

travel metric are all low. This indicates that these networks probably circle around

the light/power source without much exploration.

The h-as-input experiments show a significantly higher combined metric than

output blending, but a good deal of internal variation in performance both between

different networks and within individual networks. Consider network 1, which

always completes the runs but has a wide variation in edge-weighted travel and

distance variation.

There is no significant difference between the mean performances of UESMANN

and h-as input in anymetric, althoughUESMANN ismore consistent, having a lower

variance in most metrics. In order to compare the performance of the networks in

the simple simulator, it is necessary to examine individual runs of the networks

qualitatively.

9.4.2.2 Output blending results

In Fig. 9.11, all output blending networks have near-identical levels of performance.

A pair of typical runs of the best network are shown in Fig. 9.12, with phase (dis-

tance/charge) and variable plots for run 0 shown in Fig. 9.13. After an initial long

excursion, the robot orbits the emitter in a series of tighter loops until the loops

stabilise at a maximum distance of around 0.8m. These loops have a figure-of-eight

appearance oriented to the linear emitter’s axis, which leads to variation in the power

input: when the robot is on the emitter axis (i.e. x ≈ 0) it receives less power than

when it is not aligned, notwithstanding the blurring in the light sensor simulator.

258 Chapter 9. Training and the simple simulator

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●

●●

●
●

●
●

OB h−in UESMANN

0.
0

1.
0

2.
0

3.
0

di
st

an
ce

 v
ar

ia
tio

n

●

●

●●●

●

●

●

●●

●

●●●

●

●●●

●

●

●●●●●●●●●
●

●

●

●●●●

●

●

●●

●●●●●●●
●●● ●●●

●
●●
●●●
●

●●●●●
●●●●● ●●

●●●●●●●●●●●●
●●●●●● ●●●●●●●●

●●

●●
●
●●●●●●●

●●●●●●●
●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●●

●●

●

●

●●●

●
●

●

●
●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●●●
●●

●●●

●
●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●●

●

●

●

●

●

●●●●●

●●●

●

●

●

●●
●●

●●
●●●●●●●
●●

●●

●

●
●●●
●● ●●

●

●

●

●

●

●
●●

●●●

●

●
●●●●●

●

●●●
●

●

●

●

●

●

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

●

●

●●

●

●●
●
●
●
●●●●●●●●●●

●

●

●
●

●●●●●●●●

OB h−in UESMANN

0
40

0
80

0
12

00

m
ax

im
um

 ti
m

e ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●

●

●
●

●

●●

●

●

●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●

●

●

●

●

●

●●●●●●

●
●●●

●

●

●

●

●●●●●●

●

●

●

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

●●●●●●●●

●●●●
●●●●●●

●●●●●●●●●●

●

●
●

●
●
●●

OB h−in UESMANN

0
50

0
15

00

ed
ge

−
w

ei
gh

te
d

tr
av

el

●●●●●●●●●●
●
●●●
●

●●●
●
●

●●●●●●●●●
●

●
●
●●●●
●
●
●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●

●●
●●●●●●●●●● ●●●●●●●●●●

●●
●
●
●●●●●●

●●●
●●●●
●●●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●●●

●

●●
●
●

●

●

●●●

●●

●
●●●●
●●

●

●

●

●

●

●

●●

●
●
●

●
●
●
●

●
●●
●

●●

●●●●●●●
●
●●

●●●●●
●●●●●

●●
●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●●
●●
● ●

●

●

●

●

●●●●●
●●●

●

●

●
●●
●●●●

●●●●●●●
●

●
●●

●

●
●●●●●

●
●
●
●
●
●
●
●●●

●
●
●

●
●●●

●

●

●

●

●
●
●●

●

●
●●●

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

●●●●●●●

●

●

●●●●●●●●●●
●●
●●●●

●
●●
●●●●
●
●●
●●

OB h−in UESMANN

−
15

−
5

0
5

co
m

bi
ne

d
m

et
ric

●
●
●●●
●

●

●

●●

●

●●●

●

●●●

●

●
●●●●●●●●●
●

●

●

●●●●

●

●

●●

●●●●●●●
●●● ●●●

●
●●
●●●
●

●●●●●
●●●●● ●●

●●●●●●
●●●●●●

●●●●●● ●●●●●●●●
●●

●●●●●●●●●●
●●●●●●●●●●●

●
●
●

●

●

●
●

●

●

●●●●
●

●
●●●●

●

●●
●●

●

●

●●● ●
●

●
●●●
●
●●

●
●

●

●

●

●

●●
●●

●

●

●

●
●

●
●●

●

●●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●

●
●

●
●

●

●●●●●●●●●●

●
●
●

●

●
●

●

●

●

●

●●●●●●●●
●
●

●
●

●

●

●

●●●●●

●●●

●

●

●

●●
●●

●●
●●●●●●●
●

●
●●

●

●
●●●
●●

●●

●

●

●

●

●

●●●
●●●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Figure 9.11: The values of the different metrics and the combined metric for

all runs in the simple simulator. The box plots are for all networks of each

type,while individual dots show theperformances of each individual network

within the type. The axis labels [0, 9] indicate the network numbers, with each

column of dots representing the experimental runs for each network. Near

the top of the plot are brackets: these link network types whose means are

significantly different (Wilcoxon rank-sum test, p < 0.05).

The charge reaches a minimum of 0.34, and the robot never stops moving. The

maximum distance from the emitter centre is 5.93m on the initial excursion, but the

mean is 0.52m. Although the robot achieves homeostasis, it does so by staying close

to the emitter. Because it does not stop (whichwould lower the power consumption),

it does not build up sufficient charge to move far.

9.4 Simple simulator experiments 259

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

(a) Run 0

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

(b) Run 4

Figure 9.12: Two position plots for different runs of the best output blending

network according to the combined metric. The start position is shown by a

circle, while small dots are equal times apart.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

(a) Phase

0.340 0.345 0.350

0.
0

0.
2

0.
4

0.
6

0.
8

charge

di
st

●

(b) Phase detail, t > 500

0

10
di

st
an

ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(c) Variables

Figure 9.13: Phase and variable/time plots for run 0 of the best output blend-

ing network according to the combined metric. In the phase plot, the dots

are spaced at equal times and the start position is shown by a larger dot. In

the variable plots, the upper part of the velocity plot shows left/right motor

difference and the lower part shows the combined motor velocity magnitude;

a dotted line separates the two. The dotted line in the charge/h plot is the

modulator h.

9.4.2.3 h-as-input results

Position plots for two runs of the best network (number 8) are shown in Fig. 9.14,

with the corresponding phase and variables plot for one of these runs in Fig. 9.15

(the other is similar). From the position plot, it is clear that the robot is rather more

260 Chapter 9. Training and the simple simulator

successful in exploring the arena, although the arena’s regular nature and the lack of

noise in the simulation leads to it falling into loops. Run 2 appears more successful,

starting at an angle which leads it to explore more of the arena before looping.

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

(a) Run 0

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

(b) Run 2

Figure 9.14: Twopositionplots fordifferent runsof thebest h-as-inputnetwork

according to the combined metric. The start position is shown by a circle.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●
●

●

●

●

● ● ● ●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Phase (run 0)

0

10

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(b) Variables (run 0)

Figure 9.15: Phase and variable/time plots for run 0 of the best h-as-input
network according to the combined metric.

9.4 Simple simulator experiments 261

Comparing the velocity plot with the modulator, there is a clear transition: above

a certainmodulator level the velocity drops to zero. This allows the robot to recharge

until the modulator falls again. Other velocity spikes are due to the exploration

behaviour reducing one motor velocity in order to turn.

After the first few passes, the phase plot settles into what appears to be a limit

cycle, which would likely be triangular were it not for the arena boundaries. This

starts at the bottom-left with low charge and distance, the robot remaining stationary

and charging until just over 0.6. It thenmoves away from the emitter, until the charge

falls to around 0.3, when it returns to the emitter. Once at the emitter it recharges

again.

Fig. 9.11 shows that the h-as-input networks are less consistent than the output

blending networks. To illustrate this, plots from the second-best network (number 6)

are shown in Figs. 9.16 and 9.17. The behaviour here is similar to the best network,

but the transition points are different: Fig. 9.17a shows that the system moves away

from the emitter once the charge reaches 0.5. This small difference has a large effect

on the system: the excursions are shorter because the systemdoes not build sufficient

charge to explore far before returning.

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Run 0

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

(b) Run 2

Figure 9.16: Two position plots for different runs of the second-best h-as-input
network according to the combined metric. The start position is shown by a

circle.

Other more serious failure modes exist. A run of a network near the mean,

network 7, is shown in Fig. 9.18. Here, after the charge has fallen below the initial

high level, the robot circles slowly around the emitter while still avoiding walls. In

network 3, shown in Fig. 9.19, the robot rapidly spirals away from emitter andmoves

262 Chapter 9. Training and the simple simulator

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Phase (run 0)

0

10

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(b) Variables (run 0)

Figure 9.17: Phase and variable/time plots for run 0 of the second-best h-as-
input network according to the combined metric.

towards a wall. This is not a smooth motion: consider the velocity plot. Once the

charge begins to decrease it stops, surviving by not moving.

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Position

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

●

●

●
●

●
● ● ● ● ● ●

●

●

●

(b) Phase

0

10

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(c) Variables

Figure 9.18: A run of network 7 of h-as-input

9.4 Simple simulator experiments 263

●●

●

●●

(a) Position

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

(b) Phase

0

10

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(c) Variables

Figure 9.19: A run of network 3 of h-as-input

9.4.2.4 UESMANN results

The position plots of two runs of the best UESMANNnetwork (number 9) are shown

in Fig. 9.20, with the phase and variable plots for one of the runs.

The performance is comparable with that of Fig. 9.16 (the second-best h-as-input
network), with the edge-weighted distance and distance variation slightly better in

that network. In the phase plot, the robot remains static at the emitter until the

charge reaches 0.6 when it excurses. The excursion continues until charge 0.5, when

the robot begins to return to base resulting in a minimum charge of 0.4. This result

is more conservative than both h-as-input networks, in which the charge drops to

below 0.2.

Two networks whose performances are closer to the overall mean are shown in

Figs. 9.21 and 9.22. These both show an initial excursion followed by a tight loop

around the centre of the emitter.

A poor UESMANNnetwork is shown in Fig. 9.23, in which back-propagation has

converged to a local minimum. Here, the robot moves at a constant but slow speed

with a degree of phototaxis at the start but not towards the end of the run. This is

not the behaviour required; we would prefer the phototaxis to be evident when the

charge is low. The network successfully avoids the walls, but because there is no

phototaxis as h increases, the run terminates in less than a minute of simulated time.

264 Chapter 9. Training and the simple simulator

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Run 0

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

(b) Run 2

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

(c) Run 0 phase

0

10
di

st
an

ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(d) Run 0 variables

Figure 9.20: Two position plots for different runs of the best UESMANN

network according to the combined metric.

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

(a) Position

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

(b) Phase

0

10

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(c) Variables

Figure 9.21: A run of network 2 of UESMANN

9.4 Simple simulator experiments 265

●●

●

●

●●

●● ●●● ●
●

●
●●

●●●●●●●●●●●
●●●●

●
● ●●● ●●● ●●● ●●

●
●

●●
●●● ●●●●●●●●

●●●●

●●●●
●● ●●● ●●

●
●

●
●

●

●
●

●
●

●●● ●●●●●●●

●

●

●● ●● ●●

(a) Position

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

●

●
●

●

●●

●●

●

●
●

●●
●

●
●
●

●

●●●●

●

●
●●
●●
●

●

●●
●

●●●

●

●●

●
●

●●●●

●
●

●

●

●●

●
●
●

●
●

●●●
●●

●
●

●

●
●

●●●

●

●

●

●

●
●

●
●●
●

●

●

●●

●

● ●

●●
●

●

● ●

●
●

●●
●●

(b) Phase

0

10

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(c) Variables

Figure 9.22: A run of network 3 of UESMANN

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

(a) Position

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

charge

di
st

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Phase

0

10

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge
/h

time

ve
l

0
1

0 10 20 30 40 50

−1

1

ve
l d

iff
 (

l−
r)

(c) Variables

Figure 9.23: A run of network 1 of UESMANN

266 Chapter 9. Training and the simple simulator

9.4.3 Discussion

The run plots above show that output blending is a poor choice for this problem.

Output blending has a smooth, linear transition between the two networks because it

is a simple linear interpolation of the networks’ outputs. In theprevious classification

experiments, this leads to a sharp transition under thresholding as has previously

been explained (see Sec. 4.5, p. 121).

Here, this smooth interpolation between the two behaviours and the linear re-

lationship between charge and modulator results in a small amount of phototaxis

when the charge is not exactly 1. This causes the robot to always curve towards the

light even when the charge is high. This can be demonstrated by taking the best

output blending network and running it at a fixed modulator level, as shown in

Fig. 9.24. Here, even a modest h � 0.1 provides enough phototaxis to keep the robot

away from the walls in most cases. The h � 0.2 case shows a fairly tight loop around

the emitter.

h=0.00

y

h=0.10

y

h=0.20

y

h=0.30

y

h=0.40
y

h=0.50

h=0.60

y

h=0.70

y

h=0.80

y

h=0.90

y

h=1.00

Figure 9.24: Position plots for output blending network 1 run for 1000s with

different fixed modulator levels.

The h-as-input and UESMANN networks perform better because they have a

non-linear transition in their behaviours: at modulator values close to zero they

will (ideally) perform the exploration behaviour, while at values close to one they

will perform phototaxis. The exact nature of this transition constitutes the difference

between those networks of each type which are not local minima. In both networks,

the transitions between the two behaviours follow the general scheme shown in the

distance/charge phase diagram in Fig. 9.25. Here, the initial maximum charge leads

to an excursion. Once the charge drops below a certain level, the robot returns to the

emitter and a cycle begins, which consists of a stationary recharging phase, followed

by an excursion and return.

There are three distinct points of transition in each network:

9.4 Simple simulator experiments 267

in
iti

al
 r
et

ur
n

High start
charge

initial excursion

recharge at emitter

excursion

re
tu

rn

Charge

D
is

ta
n
ce

Point 1 Point 2

Point 3

asPoint 3a

Figure 9.25: Distance/charge phase diagram showing the typical robot be-

haviour in h-as-input and UESMANN experiments. The labelled transition

points are discussed in the text.

• Point 1: transition from moving to stationary at the emitter under phototaxis.

This occurs as a consequence of the phototaxis behaviour and is not a switch

between behaviours: in the rule-based controller from which the network is

trained (Algorithm 10) the robot comes to a halt as the total light input rises

from kLmin to kLmax .

• Point 2: transition from recharging to exploration. This switch is from the

phototaxis behaviour back to exploration and occurs once the modulator drops

below (i.e. the charge rises above) a certain level.

• Point 3: transition from exploration to return. This is a switch from the explor-
ation behaviour to phototaxis, which occurs when the modulator rises above a

certain level.

Note that the output blending network does not have this kind of behaviour: here,

the behaviour passes smoothly through the four phases shown diagrammatically in

Fig. 9.26.

• Phase 1: the charge is relatively high, so exploration exceeds phototaxis — the

robot moves forwards with only a slight tendency to turn to the light.

268 Chapter 9. Training and the simple simulator

Charge

D
is

ta
n
ce

Phase 1:
exploration exceeds
phototaxis

Phase 2:
charge falling,
exploration turns
to phototaxis

Phase 3:
charge falling,
phototaxis exceeds
exploration

Phase 4:
phototaxis, charge may
be increasing.

Figure 9.26: Distance/charge phase diagram showing the predicted beha-

viour in output blending experiments.

• Phase 2: as the charge falls, the robot’s tendency to move forwards decreases,

and it begins to turn towards the light. The distance is still increasing, however,

because the turn will be gradual.

• Phase 3: the charge has fallen sufficiently and the robot has turned enough in

the previous phase that it is now moving towards the light.

• Phase 4: the robotwill slow as it approaches the light, but it may gather enough

charge that exploration causes it to pass through the light without stopping. In

this case, the transition between phases 4 and 1 will be sharp.

This can be seen in the detail of a run of the best output blending network in the

simple simulator, Fig. 9.13b (p. 259), showing a very tight cycle around the emitter.

9.4.3.1 Discrepancy between transitions at different light levels (UESMANNand
h-as-input)

We can see from Figs. 9.15a and 9.20c that the charge values are not the same for

points 2 and 3 in both h-as-input and UESMANN. If they were, the system would

constantly oscillate between the two behaviours once point 3a was reached. Instead,

the robot remains stopped at the emitter until the charge is fairly high. This wide

9.4 Simple simulator experiments 269

separation between points 2 and 3 on the charge axis is likely to be desirable: a

large reservoir of charge built up during this part of the cycle will lead to longer

excursions.

It may be that the behaviour “zero motors when light input is very high”, which

is part of phototaxis, dominates the learned solutions such that it manifests when the

modulator is further away from the phototaxis end of the modulator range than the

rest of that behaviour. This may be because it is a simple rule to represent in either

network. As such, minima may be learned which perform this rule over a wider

range of modulator values than the elements of phototaxiswhich perform phototaxis

per se. Fig. 9.27 shows this behaviour in schematic form.

M
o
d

u
la

to
r

Light level

Exploration

Phototaxis

(true phototaxis:
move towards light)

(stop at light)

Figure 9.27: A possible explanation for the discrepancy between transitions

at different light levels between exploration and phototaxis. The transition

between the two behaviours may not occur at the same modulator level for

different light levels, because of the two sub-behaviours of phototaxis. The

region boundaries are indicative only — their relative positions may be quite

different (or indeed non-linear).

This may be a natural outcome of a network transition based on changing the

behaviour of the network itself, rather than interpolating between two networks.

Consider the MNIST transitions in Sec. 7.3.5, particularly Table 7.19 showing the

mode of the transition behaviour for UESMANN (p. 223): we see that certain digits

change their output label quickly, while others take longer. Note in particular the

difference between digits zero and one: a one is recognised as its nominal label until

h � 0.6, while the label for most zeroes transitions at h � 0.25. Thus in MNIST,

the “rule” for labelling “one” as 1 persists through the transition, while the “rule”

for labelling “zero” as 0 changes very quickly. Similarly, in the robot, the “rule” for

270 Chapter 9. Training and the simple simulator

“stop when the light input is high” may hold for more of the modulator range than

the rule “drive as fast as possible avoiding walls.”

It is worth noting that the best UESMANNnetwork shows a very small excursion

and return during the recharge cycle, at a charge of about 0.48. This may be an

attempt to return to exploration at point 3a, as would be the case if the network did

not have the transition discrepancy highlighted above. However it is significantly

below the charge at point 3, so it is more likely to reflect some underlying complexity

in the transition between behaviours.

9.4.3.2 Performance effect of charge at transition

Perhaps the most significant value to affect the relative performances of h-as-input
and UESMANN is the charge at point 3: the transition from exploration to phototaxis
at which the robot begins to return to the emitter. In the best h-as-input network

this is 0.43, while in UESMANN it is 0.58. Thus h-as-input permits the charge to

fall to a lower level before a return to recharge is necessary, allowing more time for

exploration. UESMANN is more conservative in its power use.

9.4.3.3 Overall nature of the transitions

It is possible to gain some insights into the transition behaviour for the different

networks by forcing them to run at a given modulator level with no charging model

(and thus no termination due to discharge). By allowing them to run for a long

simulated time and plotting the mean distance from the emitter, we should see a

high distancewhen exploration is being performed and a lowdistancewhen phototaxis
is being performed.

In Fig. 9.28, 50 runs (each starting from a random position and orientation) were

performed for 1000 simulated seconds over a large range of modulator values. The

large variation within each plot is because we are measuring the mean distance of

a number of robots which are moving around the arena. Output blending shows

a smooth transition between the two behaviours which appears to follow an expo-

nential curve: most of the modulator range shows low distance, resulting in poor

performance for reasons detailed above. The h-as-input network shows explorat-

ory behaviour for most of the modulator range, sharply transitioning to phototaxis
between h � 0.6 and h � 0.7 (i.e 0.3 < C < 0.4), which corresponds with the phase

plot in Fig. 9.15a. UESMANN follows an irregular curve with a high degree of “non-

monotonicity”6 indicating a complex transition: this is perhaps not surprising, given

6We shall use this term in a loose sense, to describe the property some networks have of moving

between the two behaviours several times throughout the modulator range rather than performing

9.4 Simple simulator experiments 271

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Hormone

M
ea

n
di

st
an

ce

OB
UESMANN
h−in

Figure 9.28: Mean distance from the emitter over 50 runs of the best network

of each type (according to the combined metric) with the modulator fixed at

various levels, with no charging model. The shaded area shows the mean ±1

standard deviation.

the underlying complexity of the transition function shown in simpler problems (see,

for example, Sec. 6.5). Themean distance is slightly higher over the modulator range

than output blending, but lower than h-as-input aswewould expect from the relative

performances.

It is worth noting that much of the difference in performance between the net-

works is due to the overall shape of the transition curve, which affects the modulator

levels at which the behavioural transitions occur. Naturally, this is easy to modify

by passing the modulator through a suitable non-linear function before applying it

to the network. It would be straightforward, for example, to pass the modulator

through a sigmoid such that the transition region for UESMANN occurred over

a lower modulator (higher charge) range, which would increase the performance

significantly7.

one behaviour at h � 0 and moving smoothly to the other at h � 1. Strictly speaking, a behaviour is a

complex function and not a value, so “monotonicity” is perhaps not a term which should be applied

to it.

7It should be borne in mind that this would not affect the training or the network solution: this

procedure would be applied to the modulator during network operation, and does not refer to the

sigmoid activation function of the network nodes themselves.

272 Chapter 9. Training and the simple simulator

However, if this were applied to output blending to remove most phototaxis from
the low modulator range and exploration from the high modulator range, we would

lose the potentially useful difference on the charge axis between the charge leaving

the emitter and the charge arriving at it, described in Sec. 9.4.3.1, which seems to be

unique to h-as-input and UESMANN.

The correctness of the behaviours themselves (both at the extrema and in trans-

ition) is more of interest here, and the nature of the transitions. The simulations

have shown that UESMANN and the other network types are capable of learning

the rule-based controller behaviours with enough accuracy to perform well in a per-

fect simulation (i.e. the same simulation with which the controllers were trained).

Also, while it has been shown that the natures of the transitions differ –UESMANN’s

transition is considerably more non-monotonic and “spiky” than the other networks

– the simple simulator does not show the effect this might have on a real robot. The

next chapter will address this.

Chapter 10

Robot and Gazebo experiments

The previous experiments demonstrate that all three networks are capable of learn-

ing the two behaviours well and transitioning between them. If we compare the

transition regions with those for the MNIST experiments in Sec. 7.3.5, we see similar

behaviours with UESMANN producing a wider transition than h-as-input (output
blending produces a sharp transition in those experiments because of the threshold-

ing at 0.5 for classification).

In these simple simulator experiments, h-as-input shows a higher level of per-

formance due to the overall shape of its transition curve. UESMANN ismore conser-

vative in nature. As stated above, it would be trivial to change the charge/modulator

mapping from the current linear function to a sigmoid, to optimise the performance

of each network. However, we will continue to use the mapping h � 1 − C, while

recognising that the transition shape is less important than the correct functioning

of the network throughout the modulator range.

The simulation used in the above experiments is extremely simple: the sensors

and actuators are “perfect” and there are are no complex physical interactions with

the world. Robotic controllers developed in simulation often fail when incorporated

into real robots: the so-called “reality gap” discussed in Sec. Sec. 2.4 (p. 41). To study

how well the various networks developed bridge this gap, the most performant

networks were carried over into experiments using the Gazebo simulator for initial

evaluation, before being moved onto a real robot.

10.1 The robot and the arena
The real robot used in the experiments was a Pioneer 2-DX, as described in Sec. 8.1.1

above. The experiments were performed indoors in a large, irregularly shaped arena

formed by a sonar-opaque mesh, which is shown approximately in Fig. 8.2 (p. 235).

273

274 Chapter 10. Robot and Gazebo experiments

Note that this image does not accurately show the positioning of themesh during the

run: this is shown in plan form in Fig. 10.1. Modificationswere required for practical

and logistical reasons. The light source was an incandescent lamp suspended from

the ceiling, as shown in Fig. 10.2. The lamp illuminated an area of the floor which

was clearly visible in the omnidirectional camera. The red LED on the camera is a

visual tracking aid, as will be discussed later.

−4 −3 −2 −1 0 1 2 3

−2
0

2

x

y

door

start position

emitter

Figure 10.1: A plan of the final real-world arena. A red circle and cross mark

the position of the lamp and the rough extent of the circle of light it casts,

while a black cross marks the robot starting position. The text refers to the

positive y axis as “north.” Axis units are metres.

10.1.1 System architecture

The system uses the Robot Operating System (ROS) [225] to run the neural network

and communicate with either the robot or the Gazebo simulator. This allows the

same software to run the network in both environments, while using different sensor

inputs and actuator outputs. Full details of the system are given in Appendix A.

In brief, the neural network is always run on a host computer (not the robot) and

communicates with either Gazebo (also running on the host) or the robot.

10.1 The robot and the arena 275

Figure 10.2: The robot and its light source during an experimental run. The

red LED is used for tracking.

10.1.2 Light sensor

The networks have been trained using a simulated emitter as their light sourcewhich

subtends an angle in the sensor’s view. All pixels within the angle are white, all

others are black. In the experiment, the real sensor should produce similar values.

This is done by taking the image from an omnidirectional camera and summing

pixels along radii in the image. To generate hard black and hard white values in the

resulting vector, and to permit the “pool of light” projected by the lamp to subtend

at the camera similar angles to the simulated emitter, a series of Gaussian blurs

and threshold operations are used. The design was chosen to keep the light sensor

system generic and flexible for future use, while providing the required light pattern

to the network. In robot experiments components of this system run on both the

Pioneer and the host as described in more detail below.

10.1.2.1 Light sensor components on the robot

The light sensor used by the robot converts an omnidirectional camera view into

an array of pixels. On the Pioneer, this is from a camera pointing upwards at

a hyperbolic reflector. The frame grabber used (an Arvoo Picasso) is very slow,

reading a 550 × 550 pixel image every ∼ 0.3s, but adequate given the slow speed of

the robot (for safety reasons). Using OpenCV, this image is resized to 100 × 100 and

a Gaussian blur applied. This is to ensure that the next stage – radial summing of

276 Chapter 10. Robot and Gazebo experiments

pixels to produce a vector of pixels around the camera – will capture bright regions

of the image which are between two sampling radii (see below). Two typical images

(before blurring) are shown in Figure 10.3.

(a) Image of the lab with ambient lighting (b) Experimental image near the light source

Figure 10.3: Images from Pioneer omnidirectional camera (dots in (a) added

indicate the light value along each of 32 radii)

RGB values are then sampled along 32 radii from the centre of the image, one

for each element of the output array (these are downsampled later to 8 for input

to the network). The samples are summed, and then normalised to the range [0,1]

(each colour channel being processed separately). The three colour channels are

multiplied by 255, clamped and composed into a vector of 32 8-bit RGB triples which

is then sent from the robot to the host. The process is shown in Algorithm 11.

10.1.2.2 Light sensor components on the host

Once on the host computer, each colour channel in the resulting linear array of RGB

values – representing a circle around the robot – is processed according to the al-

gorithm inAlgorithm 12. This blurs each channel and renormalises it independently,

giving a similar effect to the morphological dilate operator, “spreading out” the lit

region. This is necessary because the angle subtended by the light source is smaller

than in the simulation. The result is then thresholded to reduce noise, because the

network was trained on clean images.

These 32 pixels are then sent to the ROS “node” which runs the network (see

AppendixA). In that node, the RGB channels are averaged into a singlemonochrome

10.1 The robot and the arena 277

Algorithm 11 Light sensor algorithm used on Pioneer. The clamp(x , a , b) operation
limits x to the interval [a , b].
Require: Im g � image from camera

Ensure: (red , green , blue) = three channel 1D image

Im g ← GaussianBlur(Im g) {kernel size=31, σ � 2}

w ← 100 {w is image size}

step ← 2π/OutputSize {OutputSize = 32}

θ← 0

for i � 0 to OutputSize − 1 do
redi ← 0, greeni ← 0, bluei ← 0

{use pixels 0.16 to 0.5 times the image width along each radius}

for r � 0.16w to 0.5w do
x ← r sin θ + 0.5w
y ← r cos θ + 0.5w
p̄ ← Im g(x , y) {read pixel from image}

redi � redi + pr
greeni � greeni + pg
bluei � bluei + pb

end for
θ← θ + step

end for
red ← clamp(255 · normalise(red), 0, 255)
green ← clamp(255 · normalise(green), 0, 255)
blue ← clamp(255 · normalise(blue), 0, 255)
return (red , green , blue)

channel and the resulting monochrome pixels are decimated down to 8 by applying

a further Gaussian blur (σ � 1, kernel size 5) to the vector and downsampling. These

are then sent to the neural network under test, having been converted from [0,255] to

[0,1] in range. This is shown in Algorithm 131. Figure 10.4 shows the various stages

of signal processing.

10.1.2.3 Gazebo simulated light sensor

The purpose of the simulated light sensor is to match as closely as possible the

actual sensor on the robot, rather than the very simple simulation used in training.

However, by necessity it uses a similar strategy to the simple simulator. The sensor is

written as a plugin for Gazebo which traverses the objects of the simulated world at

10Hz. If the plugin encounters an objectwith a name of the form lightrgbXXXwhere

XXX is a hex triple, it converts the triple into RGB values and calculates the angle in

1Note that this was later found to introduce a bug, in that the ceiling and floor operators, intended

to expand the emitter when linear (as in the training arena), reduce the possible set of outputs from

the sensor ring to a discrete set of integer rotations. See Sec. 10.2.2.4 for details of the effects.

278 Chapter 10. Robot and Gazebo experiments

Algorithm 12 Light sensor algorithm in the bridge client node on the host.

Require: Im g � linear image vector from server, as 3 channels of RGB

Ensure: Im g � blurred, normalised and thresholded linear image

thresh � 0.3 × 255 {assign threshold level}

for all c ∈ Im g do {for each channel}

c ← GaussianBlur(c) {kernel size 7, σ � 1.2}
c ← normalise(c) {normalise to range [0,255]}

for all x ∈ c do {for each pixel}

x ←
{

0, x < thresh
x , otherwise

{threshold the values, replacing them in c and thus in

Im g}
end for

end for
return Im g

(a) Raw camera image, down-

sampled to 100 × 100

(b) Image after Gaussian blur

with σ � 2, with dots showing

sampled values

(c) Sensor values received by

bridge (channel sum)

(d) After Gaussian blur with

σ � 1.2
(e) After thresholding at

b0.3 × 255c � 76

(f) After decimation: input to

neural network

Figure 10.4: Light sensor processing

10.1 The robot and the arena 279

Algorithm 13 Light sensor algorithm on the host, producing a vector of neural net

inputs.

Require: outsize = output buffer size (8), Im g = linear input image from bridge

node

Ensure: out = output buffer, decimated to outsize pixels, total = total brightness of

image

{Create mono image m by averaging channels and converting range to [0,255]}

total ← 0

for all p(i) ∈ Im g do {for each pixel}

m(i) ← (p(i)r + p(i)g + p(i)b)/(255 ∗ 3)
total ← total + m(i)

end for
{Decimation consists of Gaussian blur followed by linear interpolative down-

sampling}

m ← GaussianBlur(m){kernel size 5, σ � 1}

step ← size(Im g)/outsize
pos ← 0

for i ← 0 to outsize − 1 do
i1 ←

⌊
pos

⌋
, i2 ←

⌈
pos

⌉
mod size(Im g)

t ← pos − i1

out(i) ← (1 − t)m(i1) + tm(i2)
pos ← pos + step

end for
out ← out/255

return out, total

the x y-plane subtended by the object’s axis-aligned bounding box at the camera. It

then adds these RGB values to a circular array of size 100, and applies a Gaussian

blur (σ � 1, kernel size 5) before sending the array to the control node. Once on the

host, the array is decimated down to 8 pixels in the samemanner as on the real robot.

While the array is larger than the 32 element array from the robot, more granularity

here provides smoother edges after the blur: the edges which result from the initial

pass through the objects are very crisp.

In the simulated arena used, the emitter was simulated as a white cylinder

roughly the same size as the circular pool emitted in the real arena. Given the

use of the axis-aligned bounding box, this becomes a cuboidal emitter in the sensor

code.

10.1.2.4 Simulated power input from light

In the real robot, the power input value is calculated from the sum of the light

inputs. It proved difficult in the simulator to use this data to generate values to

provide to the charging model: the simulator generates a simple blurred image of

280 Chapter 10. Robot and Gazebo experiments

a circular emitter, while the real emitter is a diffuse reflection of a point light with

some specular elements. To solve this, a number of runsweremade on the real robot,

recording the light sensor sum and the distance from the emitter. These were used

to construct a lookup table of emitter distance to light sensor sum. The simulator

plugin uses this to generate a “bright” value which it publishes to the control node,

which (when running in simulator mode) uses it to generate the power input.

10.1.3 Sonar sensors

In initial testing on the real robot, it was found that the networks behaved erratically

due to occasionally receiving extremely long distances from the sonars. Because the

sonar return times are fed directly into the network, these very high values had a

disproportionately large effect on networks which had been trained on completely

enclosed arenas.

It might have been more principled to apply an inverse transformation to the

values (e.g. v′ � a
v+b). This would mean that short distances would produce a

high value, while values given by longer distances would asymptotically approach

zero, thus minimising the noise at longer distances. It would also fit the problem:

short distances are those at which avoidance should be performed, so a non-linear

mapping in which close distances occupy more of the mapping’s range would be

useful. However, this would have required completely retraining the networks and

repeating all the simple simulator experiments. Instead, therefore, a 5m cap was

imposed on all sonar readings from the robot.

10.1.4 Actuators

The left and right motor values are taken from the network outputs and clamped

to the range [−1, 1] for safety. They are then multiplied by a constant due to the

simulated robot speeds being different in the two simulators, and different from

the motor speeds on the robot. On the robot, this constant was 0.05 while on the

simulator it was 0.499. These values were established by finding a safe speed for

the robot and then calibrating the simulator to move at the same speed for the same

motor output values.

There is no guarantee that the motor control values coming from the network

are smooth: it may be that a small variation in input or modulator produces a large

change in output. These were found to cause stalls in the low-level motor control

systems which required a manual reset. To avoid this, a degree of smoothing using

10.2 Experiments 281

an exponential weighted average is applied separately to each motor channel:

mt � (1 − α)xt + αmt−1, (10.1)

where mt is the motor control value at time t, xt is the output from the network

at that time, and α is the smoothing constant. This smoothing runs every 0.2s in

a separate thread on the bridge server node, which with the smoothing constant

α � 0.8 provides a half-life of around 0.6s.

10.1.5 Localisation

Robot localisation was performed visually using a commodity webcam connected

to the host computer, with a view of the entire arena. The camera is in an enclosure

bolted to a high beam to the bottom right of Fig. 10.1. An OpenCV application

detects a bright red blob in the image (produced by a diffused red LED on top of

the robot), finds the centroid, and performs a perspective transform to get world

coordinates. These are then published and read by the ROS node running the

network and incorporated into its logs. The tracking system is described in detail

in Appendix B. Near the camera the tracker is accurate to 1cm, while far from the

tracker the accuracy falls to 10cm. There is a “dead zone” in which the LED is

occluded by the lamp hood; this is towards the top left of Fig. 10.1.

10.2 Experiments
The networks which achieved the highest combined metric in the simple simulator

experiments of Sec. 9.4were initially run using theGazebo simulator, in order both to

confirm that the assumptions made in developing the architecture described above

were correct, and to explore the behaviour of the networks with a more realistic

physics model in an arena the same shape as the real arena.

The behaviour of the system should be similar in both simulators, but the smaller

size of the arena used in Gazebo was expected to cause differences which should be

accounted for in the results. For example, a long excursion in the simple simulator

may lead to failure of homeostasis because the robot starts the return to the emitter

too late to recharge; while in Gazebo the robot may start to return during exploration

because of a fortuitous “bounce” from the closer arena walls. However, the positive

y direction from the start point (see Fig. 10.1) provides a long run into darkness,

sufficient for failure.

282 Chapter 10. Robot and Gazebo experiments

10.2.1 Methodology

In all experiments, runs were made starting from the point given in Fig. 10.1 with

the robot facing “north” (along positive y) or “south” (along negative y). The

constants were as in Table 9.1, but kpower — the amount of simulated power from

the light source —was set to two different values: 0.0025 (as in the simple simulator

experiments) and 0.003.

Thus for each network we have four experiments, using different starting orient-

ations to show the effect of different encountered topography, and different charging

levels to show the effect of available power on homeostasis. Five runs were made of

each experiment on the robot, because the complexity of real-world physics creates

differences between runs with identical starting conditions. This was not the case in

Gazebo (notwithstanding the tiny amount of Gaussian noise in the simulated sonar

sensors), where only a single run was made of each experiment.

Due to the low number of runs and the variation between them within each

experiment, the results of the robot runs were compared qualitatively with the

corresponding Gazebo run and with the simple simulator runs. The analyses con-

centrate onwhether homeostasis was achieved, butmore importantly (given that the

network transition region could be moved by conditioning the input as discussed

above) how well the networks performed the end-point behaviours and how they

transitioned between them.

Each run was performed for at least 1000 seconds if the robot did not discharge,

collide or come to a stop before that time. This was an arbitrary time limit, determ-

ined by the experimental time available and the need to maintain the charge in the

real battery.

10.2.2 Output blending

The results of the experiments for the best output blending network (according to

the combined metric in simulation) are shown in Figs. 10.5 (for kpower � 0.0025, the

lower charging level) and 10.6 (kpower � 0.003). The constant kpower determines how

efficiently the simulated charger converts light to charge (see Sec. 9.1.4).

It is immediately obvious that the relatively small difference in kpower — a factor

of 1.2 — makes a significant difference to the outcome. All “north-facing” runs (i.e.

those which start with the robot moving along positive y away from the light source)

run out of charge rapidly at the lower charging level, while at kpower � 0.003 all but

one achieve at least 1000s. Of the south-facing runs, only the simulator and one

10.2 Experiments 283

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●

●●

SIM
maxt=110

x
y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●●●
●●●
●●●●●●●●●●

●●●

RUN 1
maxt=125

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●●
●●●

RUN 2
maxt=122

x

y ●●●
●●●
●●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●
●●

RUN 3
maxt=122

x

y ●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●

●●●
●●●●●●

●●

RUN 4
maxt=125

x

y

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●●●●●
●●●●●●●●●

●●

RUN 5
maxt=120

●●●
●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●●●●●

●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●
●●●●●●
●●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●●●●●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●

SIM
maxt=2116

y

●●
●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●
●●●

●●●●●
●●●●●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●

●●●

RUN 1
maxt=649

y

●●
●●●●
●●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●
●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●

●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●

●●
●●●●
●●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●

●●
●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●●●

●●

RUN 2
maxt=1335

y ●●
●●●●●

●●●●
●●●●●●
●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●
●●●●●●●

●●
●●●●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●
●●●
●●●
●●●
●●●
●●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●
●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●

RUN 3
maxt=596

y

●●
●●●●

●●●●
●●●●

●●●●
●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

RUN 4
maxt=639

y ●●
●●●●
●●●●
●●●●

●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●

●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●●●●●
●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●
●●●●●
●●●●●●

●●●●●
●●●●

●●●●●●●●●●●●
●●

●●●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●
●●●●
●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●
●●●
●●●●
●●●●
●●●●
●●●●●●●

●●●

RUN 5
maxt=619

Figure 10.5: Output blending best network runs at kpower � 0.0025. The

simulator runs are shown on the left, the remaining runs are robot runs.

The position of the robot over time is shown, with the robot starting at the +

symbol. The emitter position is marked by the× symbol. The colour indicates

the charge: blue is high and red is low. The maxt value is the maximum time,

with experiments terminated either by zero charge or due to time constraints.

In the zero charge case the maxt value is given in red.

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●

●●●●●●●
●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●●●●●●●●
●●

●●●●●●
●●●●●●
●●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●
●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●

●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●●
●●●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●●
●●●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●●●
●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●SIM

maxt=2287

x

y

●●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●
●●●●●
●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●

●●●●●●●
●●●●●

●●●●●
●●●●●●●●

●●●
●●●●
●●●●
●●●●
●●●●●●
●●●●●

●●
●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

RUN 1
maxt=946

x

y

●●●
●●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●●●
●●●●●
●●●●

●●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●
●●●●●●

●●●●●●●
●●

●●
●●●●
●●●●
●●●●

●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●●●

●●●●●
●●●●

●●●●
●●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●

RUN 2
maxt=1121

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●
●●●

●●●
●●●
●●●●
●●●●
●●●
●●●●
●●●
●●●●
●●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●
●●●●

●●●●●
●●●●

●●●
●●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●●
●●●

●●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

RUN 3
maxt=1007

x

y

●●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●●
●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●●

●●●
●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●
●●●●●

●●●●
●●●●

●●●
●●●●●●

●●●

●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●

●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●●●
●●●

●●●
●

●●

RUN 4
maxt=1001

x

y ●●●
●●●
●●●
●●
●●●●
●●
●●●
●●●
●●
●●
●●●●
●●●
●●●●
●●
●●●●
●●●
●●●
●●●
●●●●
●●●
●●●●●●
●●●●●●●

●●
●●●

●●●
●●●
●●●●
●●●
●●●●
●●●●●
●●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●

●●●●●
●●●

●●●●●
●●●

●●●●
●●●

●●●●●●
●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●

●●●●
●●●

●●
●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●
●●●
●●●
●●●

●●●●
●●●

●●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●●

●●●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●● ●●RUN 5

maxt=1000

●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●

●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●●●●
●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●
●●●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●

●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●
●●●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●

●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●

●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●
●●●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●SIM
maxt=2080

y ●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●

RUN 1
maxt=167

y

●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●●
●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●

●●●●●●●●●
●●●●

●●●●●●
●●●●●●●●●●●●●●●●●

●●●

RUN 2
maxt=383

y

●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●

●●●●
●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●

●●●●
●●●●●●●

●●●●
●●●●●●

●●●
●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

RUN 3
maxt=392

y ●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●
●●●●

●●●●●
●●●●●

●●●
●●●●

●●●●●
●●●●●

●●●●●
●●

●●●●
●●●●●

●●●●
●●●●●

●●●
●●●●●●●

●●●
●●

●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●●●

●●●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●

●
●

●
●●

●●●
●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●

●●●

RUN 4
maxt=1421

y

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●●

●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●●
●●●●●

●●

●

RUN 5
maxt=779

Figure 10.6: Output blending best network runs at kpower � 0.003. South-

facing run 1 stops indefinitely facing into the wall (see Sec. 10.2.2.3).

robot run achieve a time of 1000s at the lower charging level. Run 2 succeeds, but

loops tightly around the illuminated, narrow southern end of the arena.

10.2.2.1 Runs at kpower � 0.0025

The north-facing Gazebo simulation at kpower � 0.0025 is shown in more detail in

Fig. 10.7. As stated above, this is a non-homeostatic run, with charge exhausted after

110s. As expected, the robot smoothly begins to increase its turn as the charge falls,

but the turn is still too late to permit survival. Robot run 3 is shown in Fig. 10.8.

Here, the position plot shows the robotmoving in a straight line, despite the network

outputs requesting a slight turn. The robot does not turn until a time of 50s, despite

a significant difference between the left and right motor outputs (as shown by the

motor velocity difference in the variables plot). Wewill examine this behaviour later.

284 Chapter 10. Robot and Gazebo experiments

●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●●
●●●●●●

●●●

maxt=110

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 20 40 60 80 100

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.7: Simulated north run of output blending, kpower � 0.0025.

●●●
●●●
●●●
●●
●●
●●●●
●●
●●●
●●
●●●
●●
●●
●●●
●●
●●
●●●
●●●
●●●
●●
●●●●
●●
●●●●
●●●●

●●●●●●
●●●

maxt=122

50

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 20 40 60 80 100 120

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.8: Robot run 3 (north) of output blending best network, kpower �

0.0025. Here, the point at time 50s is labelled in the position plot: see the text

for details.

The south-facing simulator run at kpower � 0.0025 achieves homeostasis, as shown

in Fig. 10.9. Once again, the robot’s behaviour moves smoothly between exploration
and phototaxis over the entire modulator range, as expected. In this run, however,

the first excursion is into the narrow end of the arena. The robot loses less charge

due to the proximity of the emitter, and performs two loops through this area due

to “bounces” from nearby walls. The next “bounce” takes it into the wider arena,

but the return phase starts earlier than in the corresponding north run because the

charge is now lower. The robot is able to return, and settles into a loop roughly

following the pattern in Fig. 9.26.

This behaviour is at first sight different from the simple simulator results shown

in Fig. 9.12. However, both exhibit a long initial run (curtailed in the new arena by

10.2 Experiments 285

●●
●●●●

●●●●
●●●●

●●●
●●●
●●●
●●●
●●●●
●●●●
●●●

●●●
●●●●

●●●●
●●●●●●

●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●●●

●●
●●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●

●●●
●●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●●●

●●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●

●●●
●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●

●●●
●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●

●●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●

●●●
●●
●●
●●
●●●
●●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●

maxt=2116

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 500 1000 1500 2000

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.9: Simulated south run of output blending best network, kpower �

0.0025.

the walls) followed by tight loops. In both the Gazebo simulation and robot runs this

long initial run is often too long for the robot to return to recharge. If the robot does

return, however, it settles into a tight loop similar to that seen in the simple simulator,

where it appears much tighter because of scale: the simple simulator arena is much

larger. The tight loops are caused by the constant presence of phototaxis behaviour
across the entire modulator range, as discussed above.

10.2.2.2 Runs at kpower � 0.003

These are shown in Fig. 10.6. Here, the north-facing runs perform rather better,

achieving several loops with all but run 1 achieving 1000s. However, these runs may

not be indefinitely homeostatic: the runs have sections with very low charge, and it

is possible that the robot’s course will eventually cause it to fail.

The simulator run settles into a tight loop, similar to that in Fig. 10.9, but with

straighter segments because the robot’s charge is higher. However, in the robot

experiments the course is typically straight, which was not predicted: as before,

there should be an element of phototaxis unless the charge is at maximum.

North-facing runs 2 and 3 on the robot are nearly identical, with both resulting

in a long run through the bright region which (due to the robot not slowing down)

does not recharge the robot sufficiently. The robot then turns too late and fails.

The long, straight sections here are unexpected and similar to the brief run seen in

Fig. 10.8: again, given the smooth nature of the network transition the robot will be

performing some degree of phototaxis and so should be turning.

Run 4 achieves homeostasis, fortuitously arriving on a looping pathwhich passes

into the dark northern region with a sufficiently low charge to permit it to return.

286 Chapter 10. Robot and Gazebo experiments

Run 5 nearly achieves this, but ends on a long run into the north, with similar results

to those seen previously.

In the south-facing runs, the simulator quickly settles into a homeostatic figure-

of-eight pattern similar to the simple simulator experiments of Fig. 9.12. In the robot,

however, the performance is varied. Run 1 stops indefinitely, facing into the wall

at full charge; we will look at this anomaly in the next subsection. Runs 2 and 3

again show the distinctive straight runs, which appear to cause the robot to turn too

late. Run 4 achieves homeostasis, having taken a slightly different route from the

previous runs such that it is low on charge but still close enough to the emitter to

return. Run 5 takes a route somewhere between the extremes of runs 2 and 3 and

run 4, which allows it to complete two loops, but then moves into the dark part of

the arena and turns too late.

10.2.2.3 Anomalous stopping behaviour

South-facing run 1 at kpower � 0.003 is an anomaly: the robot simply stops moving,

facing directly towards themesh. Both network outputs are near zero, and the charge

remains high due to the proximity of the emitter. All the networks were trainedwith

examples provided by the simple simulator, which has perfect sonars with no noise:

here, it may be that noisy sonars are providing an input for which the system has not

been trained and forwhich it has not generalised. However Fig. 10.10a, showing heat

maps of the network inputs over time for the period leading up to the stop, shows

that when the robot stops it is receiving close and clean echoes for all but the far left

sonar: the robot should turn left. Note that at the stop the charge is at maximum, so

only the exploration network is being used.

Similar situations can occur in the training arena, so examples with similar sonar

values should be present in the data set. When a simple simulator using the same

network is started with similar values in an emulation of the final arena, the results

are correct: the robot turns left, away from the walls.

Consider the network inputs at at t � 134.6 in the robot and at t � 1.0 in the

simulator: they are similar, as is shown in more detail in Fig. 10.11. However, the

network output is different at these points: both motors are slowing down on the

robot, but only the left motor is slowing in the simulation. There is a slight difference

in the modulator level, but this would result in a very small difference in the outputs

given that we are using output blending.

The only significant differences are that sonar s0 is larger in the simulation and

that s0 to s5 in the robot showmore variation, with the corresponding values almost

10.2 Experiments 287

s0
s1

s2
s3

s4
s5

s6
s7

l0
l1

l2
l3

l4
l5

l6
l7

133 133.8 134.6 135.3 136.1 136.9

0
0.

2
0.

4
0.

6
0.

8
1

time

ne
tw

or
k

in
pu

t

m
ot

or
 o

ut
pu

t (
re

d=
le

ft,
 g

re
en

=
rig

ht
)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Robot

s0
s1

s2
s3

s4
s5

s6
s7

l0
l1

l2
l3

l4
l5

l6
l7

0.1 1 1.8 2.7 3.5 4.4

0
0.

2
0.

4
0.

6
0.

8
1

time

ne
tw

or
k

in
pu

t

m
ot

or
 o

ut
pu

t (
re

d=
le

ft,
 g

re
en

=
rig

ht
)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Simple simulator

Figure 10.10: Network inputs leading to the erroneous stop in output blending

robot south run 3, and the corresponding situation in the simple simulator.

The heat map shows the sonar inputs (scaled down by 8) and light inputs,

while the superimposed lines show the network outputs (red is left, green is

right).

equal in the simulation. It may be that these differences constitute a situation for

which the network has not been trained.

10.2.2.4 Why does the robot turn the wrong way?

One obvious feature not described above is the wrong direction of the phototaxis
turn in Fig. 10.7 (and all other north-facing runs). This is due to the bug in the

simple simulator light sensor (Algorithm 13) described in a footnote on page 277, in

which the angles visible to the light sensor were inadvertently discretised. Here, the

emitter appears to be directly behind the robot, which is interpreted as a right turn.

This influenced the training data provided to the networks. The bug was detected

at a late stage, and there were insufficient resources available to retrain the networks

and re-run the experiments. However, the problem only manifests when the light is

nearly directly behind the robot. While it would have an effect on the robot paths, it

should not have an effect on the overall performance.

10.2.2.5 Why are the courses straight?

Output blending should produce curving courses when not facing directly towards

the emitter, because there is always an element of phototaxis present when the robot

is not fully charged (see Sec. 9.4.3 and Fig. 9.24). However, the robot shows many

288 Chapter 10. Robot and Gazebo experiments

input

ou
tp

ut

s0 s1 s2 s3 s4 s5 s6 s7 l0 l1 l2 l3 l4 l5 l6 l7

0
2

4
6

8 robot at 134.6, h=0.11
sim at 1.0, h=0.01

Figure 10.11: Plot of network input values in the robot and simulator networks

for the anomalous stopping run in output blending.

straight runs. For example, in Fig. 10.8, the robot does not actually turn until 50s into

north run 3, despite receiving different motor velocities for some time before this.

To examine this behaviour, several short runs were made with test values re-

placing the neural network outputs: the right motor was held at 1, while the left

motor also started at 1, then after 10 seconds ramped down to a lower level with

the ramp taking a further 10 seconds, as shown in Fig. 10.12. Robot experiments

0 10 20 30 40

0.
0

0.
4

0.
8

t

le
ft

Figure 10.12: Output for left motor over time for differential drive tests, with

the lower level at 0.5.

were performed with and without the smoothing described in Sec. 10.1.4 to ensure

this was not the cause of any difference. We would expect to see a gradual curve

starting at 10 seconds for both simulator and robot if there were no problems. What

we actually see is shown in Fig. 10.13 for three different levels. It is clear that the

10.2 Experiments 289

difference between the left and right motors needs to be high before the robot will

start to turn. When the motors are commanded to (0.7,1) the robot continues in a

straight line.

0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●● ●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●
●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

1.00

0.90

0.60

0.50

0.50

0.50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sim
smoothed
unsmoothed

(a) Ramp down to 0.5

0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0

x

y

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

● ●

● ●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ●

1.00

0.92

0.68

0.60

0.60

0.60

0.60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sim
smoothed
unsmoothed

(b) Ramp down to 0.6

0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

1.00

0.94

0.76

0.70

0.70

0.70

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sim
smoothed
unsmoothed

(c) Ramp down to 0.7

Figure 10.13: Differential drive test results. Each plot shows the position of the

robot as the left motor output is ramped down, with the robot starting at (or

close to) the origin. The green dots show the path of the simulated robot. The

red and blue dots show the path of the real robot, smoothed and unsmoothed

respectively. The text shows the motor output at a subset of points (marked

with black dots) in the smoothed runs.

This may be a fault with the elderly Pioneer robot used for the experiments: the

robot uses a rear casterwheel, which, if stiff, would cause this problem. Alternatively

the PID control of themotorsmaybe at fault. However, it serves here as an example of

the “reality gap”: differences between the simulation and reality will cause the robot

to behave in grossly different ways. Here, the output blending network generates

outputs which should produce gradual turns, but the physical robot simply ignores

these.

10.2.2.6 Summary

In summary, output blending performs fairly well in the robot if given sufficient

power to work with. In simulation it is conservative, due to the constant presence

of phototaxis. This behaviour does not carry over onto the robot, however: the

differential drive problem causes the robot to ignore gradually increasing turns,

following a straight line until the charge is significantly lower than the maximum.

This causes many robot runs to fail or approach dangerously low charge levels, but

helps it explore.

Another instance of the “reality gap” causing problems is south run 1 at kpower �

0.003, where the robot simply stopswhile facing themesh at full charge. This appears

to be a failure to generalise: the network has been presented with a situation which

290 Chapter 10. Robot and Gazebo experiments

is sufficiently different from those for which it has been trained to cause it to generate

an output which does not follow the original controller-based rules.

10.2.3 h-as-input, best network

The results for the best h-as-input network are shown in Figs. 10.14 (for kpower �

0.0025), the lower charging level) and 10.15 (kpower � 0.003). Only two robot experi-

ments were performed at each power level because the network performed so badly

on the robot that it caused damage to the arena bounding mesh, and was in danger

of damaging itself. However, this network performed better than both UESMANN

and output blending in the simple simulator experiments (See Fig. 9.11, noting the

performance of network 8 of h-as-input).

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●●●●●●●●●

SIM
maxt=90

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RUN 1
maxt=116

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RUN 2
maxt=114

●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●●
●●

●●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●

●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●●●
●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●●●●●

●●●●●●●●●●

SIM
maxt=744

y ●●●

RUN 1
maxt=135

y

●●

RUN 2
maxt=152

Figure 10.14: h-as-input best network runs at kpower � 0.0025.

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●

SIM
maxt=144

x

y ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RUN 1
maxt=106

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●
●●●
●●●
●●●●
●●●●

●●●●●●●●●

RUN 2
maxt=86

●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●

SIM
maxt=347

y

●●
●●●●

●●●●●
●●●●●
●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●●●

RUN 1
maxt=325

y

●●
●●●●

●●●●
●●●●
●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●

RUN 2
maxt=328

Figure 10.15: h-as-input best network runs at kpower � 0.003.

No run survives for 1000s, although the simulated south-facing run at kpower �

0.0025 performs several cycles before turning into the dark area and failing to return.

Robot runs either turn too late or not at all (whereupon the experiment was aborted).

10.2 Experiments 291

10.2.3.1 Runs at kpower � 0.0025

The north-facing simulation and second robot run are shown in more detail in

Figs. 10.16 and 10.17 (the secondwas chosen because it has an uninterrupted position

trace). In simulation, the robot shows very little phototaxis until the charge is about

0.5. At this point it begins to turn. However, at t � 60 there is a sudden return

to straight driving (i.e. exploration): the robot continues to drive straight until it is

almost at the north wall. Here it turns sharply, consistent with both behaviours, but

runs out of charge.

●●
●●●
●●●
●●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●●●●●●●

maxt=90

60

(a) Position plot

0

6
di

st
an

ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 20 40 60 80

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.16: Simulated north run of h-as-input best network, kpower � 0.0025.

Here, the point at time 60s is labelled in the position plot: see the text for

details.

The first part of this behaviour is consistent with the plot in Fig. 9.28: exploration
is the dominant behaviour until h � 0.6 (and charge is 0.4), whereupon a rapid

transition to phototaxis occurs. This can also be seen in the phase plot for the simple

simulation in the simple test arena, Fig. 9.15a. However, the return to exploration

(or at least straight driving) at t � 60 is more difficult to explain.

The robot run in Fig. 10.17 shows similar behaviour: a turn followed by a straight,

followed by a turn which follows the wall. Towards the end of the run there is a

short period of phototaxis, but far too short to enable a return to the emitter before

the simulated battery discharged.

In the simulated south-facing run the robot orbits around the emitter, aided

by the geometry of the arena. The orbits are tight, which suggests that phototaxis is
appearingwhile themodulator is still low, in contrast to the north-facing results. The

robot finally leaves the emitter with a high charge and begins exploring. However,

now the phototaxis behaviour does not begin until the robot is unable to return.

292 Chapter 10. Robot and Gazebo experiments

●●●
●●
●●
●●●
●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●
●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

maxt=114

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 20 40 60 80 100

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.17: Robot run 2 (north) of h-as-input best network, kpower � 0.0025.

South-facing run 1 is shown in Fig. 10.18. The robot shows no phototaxis as

expecteddue to the high charge and the nature of the transition (again, see Fig. 9.15a),

but also shows considerable flaws in exploration: the run was aborted at 135s because

the robot drove into the mesh wall, although it was turning intermittently as it did

so. The same behaviour occurred in the other run, and nomore runswere performed

to avoid damage.

●●●
●●

maxt=135

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 20 40 60 80 100 120 140

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
5

1.
0

1.
5

2.
0

2.
5

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.18: Robot run 1 (south) of h-as-input best network, kpower � 0.0025.

10.2.3.2 Runs at kpower � 0.003

Here, the simulation performed similarly to that at kpower � 0.0025, although the de-

tails are a little different, as shown in Fig. 10.19. There is a small amount of phototaxis,
which abruptly stops at t � 70 in a similar manner to the previous simulation— this

is much smaller, however, because of the higher power availability. At t � 80, the

10.2 Experiments 293

robot begins to turn sharply away from the wall, but this turn is intermittent as can

be seen from the velocity difference plot. This turn could be phototaxis or exploration,
both behaviours are appropriate here. Following this the robot tries to turn sharply

and runs out of charge.

The north-facing robot experiments show similar behaviour to the simulation,

with the turns so late that the robot hit the mesh and the runs were aborted.

●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●

●●●

maxt=144

80

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1
ch

ar
ge

time

ve
l

0
1

0 20 40 60 80 100 140

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.19: Simulated north run of h-as-input best network, kpower � 0.003.

Here, the point at time 80s is labelled in the position plot: see the text for

details.

The south-facing simulation is similar to that at kpower � 0.0025, although the

higher power level permitted the robot to explorewithout cycling around the emitter.

The run proceeds in a similar fashion with a run into the dark part of the arena. It

ends with an similar attempt to turn to that of the north-facing simulation, during

which the robot runs out of charge. The robot experiments are similar to this until

the end, where they were aborted because the robot failed to turn and hit the mesh

wall.

10.2.3.3 Collisions

The best h-as-input network clearly has some issues. The most obvious of these is

that turns to avoid the wall either happen too late or not at all, a behaviour not seen

in the simple simulation using the simple test arena. However, this behaviour can

be reproduced if the simple simulation is used with a map based on the robot arena,

as shown in Fig. 10.20.

There are three, possibly interrelated, causes of this problem:

• Collisions occur when the charge is below the maximum i.e. when the net-

work is in a transitional state, reasonably far from the extrema which should

294 Chapter 10. Robot and Gazebo experiments

●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●

maxt=73

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 20 40 60

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.20: Simple simulator running the best h-as-input network on a

simulacrum of the final arena.

perform either phototaxis or exploration. It may be that the transitional state

is compromised, such that it neither performs phototactic turns nor obstacle

avoidance.

• It may be that the network has overfitted on the training data, causing it to fail

when presentedwith certain combinations of light, sonar andmodulator input

which were not represented in the data.

• Additionally, this network was selected partially because it achieved a high

weighted distance score, which may be because it only responds to very close

sonar echoes. This constraint, applied to the networks post-training, may have

selected a network whose sonar component is marginal.

10.2.3.4 Behaviour changes

The simulated south run at kpower � 0.003 shows a tight cycling around the emitter

at the start of the run, which would appear to indicate phototaxis begin performed.

This is unexpected, because the charge is moderately high. However, towards the

end of the run the robot is heading straight, while the charge is low, which appears

to indicate exploration. A similar unexpected relationship between modulator and

behaviour occurs in Fig. 10.16, the simulated north run. Here, the robot performs a

little phototaxis but switches back to a straight line when the charge falls further.

Thus the relationship between modulator and behaviour appears to have some

undesirable features, including a strong non-monotonicity. Some non-monotonicity

is expected for both h-as-input and UESMANN (see Fig. 9.28) but the result here is

to cause a nearly discharged robot to appear to return to exploration.

10.2 Experiments 295

Some changes may also be due to the network learning stronger weights for

some sensors than others due to irregularities in the training set. If the weight for a

particular light sensor is low, when phototaxis rotates the robot such that this “weak”

sensor is directly in line with the emitter, the response will decrease. This would

give the appearance of a return to exploration.

10.2.3.5 Summary

While it performs well in the simple square testing arena, this particular h-as-input
network fails to perform in the final arena, either in simulation or on the robot. The

performance is worse than output blending, against which this network type scored

favourably during testing. The network does not deal well with the final arena’s

more complicated geometry, possibly due to overfitting to the small, square training

arena.

Additionally, there is an apparent tendency to return to exploration at low charge

levels (or at least to drive without turning back to the light), which is undesirable

but possibly resulted in a high metric at the test stage, which has a less stringent

power regime. As stated above, this may be due to overfitting, a flawed transitional

behaviour, or perhaps the effect of different weight strengths from the light sensors

into the hidden layer.

On the robot the problems appear to be worse, which may be due to the inputs

being different from those encountered during training. Only two robot runs were

made in each direction, due to all runs resulting in emergency stops.

10.2.4 h-as-input, second-best network

As has been noted, the best h-as-input network may have gained an advantage

through behaviours which do not perform well on the actual robot. The second-

best network according to the combined metric was therefore run in the same way,

to determine whether it suffers from the same problems. The runs are shown in

Figs. 10.14 and 10.15.

Fig. 9.11 (p. 258) shows that both networks achieve homeostasis in the simple

simulator within the test arena (at least for the length of the test run), but that the

second-best network (6) has a lower score than the best (8) in the edge-weighted

travel and distance variation metrics. This is because it did not stop long enough at

the emitter before resuming exploration (see Sec. 9.4.2.3, p. 259).

Wewould therefore expect the second-best network to bemore conservative than

the best, with phototaxis occurring when the charge is higher, and this is indeed what

296 Chapter 10. Robot and Gazebo experiments

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SIM
maxt=93

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●
●●●●●●

●●●●●●●
●●●

RUN 1
maxt=110

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●

●●●●●●
●●

RUN 2
maxt=113

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●
●●●●●

●●●●●●
●●

RUN 3
maxt=113

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●
●●●

RUN 4
maxt=112

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●●●
●●●●●

●●●●●
●●

RUN 5
maxt=109

●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●●●

●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SIM
maxt=366

y ●●
●●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●

●●●●●
●●●●

●●●●●●
●●●●●●

●●
●●●●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●

●●●●●●●●●
●●

●●●●●
●●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●

●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●
●●●●

●●●
●●●
●●●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●●●

●●●
●●●●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●●

●●●●
●●●●

●●●●●●
●●●●●●●

●●●

RUN 1
maxt=1000

y

●●●
●●●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●
●●

●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●●
●●

●●●●
●●●
●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●
●●●●●
●●●●

●●●
●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●
●●

●●●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●
●●●●

●●●●●●
●●●●●●●

●●

RUN 2
maxt=1028

y ●●●
●●●●●
●●●
●●●
●●●
●●●●
●●●
●●
●●●●
●●●
●●●
●●●●

●●●●
●●●●●●

●●●●
●●●●●●●

●●●●
●●●●●●●●

●●
●●●●
●●●
●●●
●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●●

●●●
●●●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●●

●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●
●●●●●●
●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●
●●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●●●
●●●●
●●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●●

●●●●●●●●
●●

RUN 3
maxt=1012

y

●●
●●●●
●●●
●●●
●●●
●●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●
●●

●●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●

●●●●●●
●●●●

●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●
●●●●
●●●
●●●
●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●

●●●●
●●●●
●●●●●
●●●●

●●●●●●
●●●

●●●●●
●●●
●●●
●●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●●

●●●●
●●●●●●

●●●●●
●●●

RUN 4
maxt=1000

y

●●
●●●●
●●●
●●●
●●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●

●●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●

●●●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●●

●●●●●●●
●●●

●●●●●
●●●
●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●●●●
●●●

●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●●

●●
●●●●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●
●●●●●
●●●●●
●●●

●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●RUN 5
maxt=1000

Figure 10.21: h-as-input second best network runs at kpower � 0.0025.

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●●

●●

SIM
maxt=113

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●●●●●●●
●●●

●●●●●●
●●●●

●●

●●●●●●

RUN 1
maxt=147

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●

●●●●●
●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RUN 2
maxt=166

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●●
●●●
●●●●
●●●
●●●
●●●●
●●
●●●●
●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●

●●●●●●●●●●●●

RUN 3
maxt=150

x
y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●●
●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●

●●●●●●●●●●●●●●●

RUN 4
maxt=156

x

y

●●●●
●●●●
●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●●●

RUN 5
maxt=148

●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●●

●●
●●●●●
●●●●
●●●●
●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●

SIM
maxt=420

y ●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

RUN 1
maxt=361

y

●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

RUN 2
maxt=363

y ●●●
●●●●

●●●●
●●●●

●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●

●●●●RUN 3
maxt=398

y

●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

RUN 4
maxt=399

y ●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●
●●●●●●

●●●●
●●●●
●●●●
●●●
●●●●●
●●●●
●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●
●●●●●●

●●
●●●●●●

●●●●●
●●●
●●●●
●●●
●●●
●●●●
●●●●●

●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●

RUN 5
maxt=884

Figure 10.22: h-as-input second best network runs at kpower � 0.003.

the plots show. This is particularly clear at the lower power level, where the north-

facing runs turn earlier (but still too late) and the south-facing runs complete the

experiment, at least on the robot.

The behaviour of the simulator in south-facing runs at both power levels is prob-

lematic, with a large amount of phototaxiswhile the charge is still very high. This also

occurs to a lesser extent in the south-facing low power robot runs. As can be seen in

the velocity plot of Fig. 10.23b, the phototactic loop starting at t � 100s in the simu-

lated high-power south run occurs while the charge is close to or at the maximum,

and takes the form of intermittent spikes in the velocity difference throughout the

turn. This suggests a similar problem to the behavioural shift in the best network:

while that network showed inappropriate exploration at high modulator levels, this

network sometimes has inappropriate phototaxis at low modulator levels2. It seems

unlikely that different weights from the light sensors into the network would cause

this effect, because there should be no effect from the light sensors at a lowmodulator

(high charge) level.

2This is a generalisation, in that the best network also demonstrated inappropriate phototaxis at
low modulator levels (in the south simulator run at kpower � 0.0025).

10.2 Experiments 297

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●●

●●●●●
●●●●●●●●

●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●●●
●●●●●

●●

maxt=420
100

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 100 200 300 400

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.23: Simulated south run of h-as-input second-best network, kpower �

0.003. Here, the point at time 100s is labelled in the position plot: see the text

for details.

While this particular behaviour is not apparent in other runs, there is still some

clear non-monotonicity in the behaviour as the modulator varies. For example, all

north-facing runs show three straight segments with two turns, both well away from

the walls. These suggest explorationwith two brief forays into phototaxis.

10.2.4.1 Summary

Both h-as-input networks appear to suffer from a tendency to use the wrong be-

haviour for a given modulator level in an unpredictable way. In the second-best

network, this manifests as a tendency to perform phototaxis when the modulator is

low (seen in the two simulator runs), while in the best network, there is the oppos-

ite tendency to drop back to exploration when the modulator is high — although

inappropriate phototaxis also appears in the south simulator run at kpower � 0.003.

The second-best network is general is conservative, suggesting that phototaxis is per-
formed over the greater part of the modulator range.

Although only two networks have been studied, it is possible that this pattern

extends over all the h-as-input networks. One possibility is that these networks

are trained using a single input for the modulator, and thus any signal from the

modulator is just another input. Therefore, if the network is given an input stimulus

very close to a set of training examples except for the modulator, it may produce an

output close to those for the examples, if few examples with the modulator at the

given value exist. If this were the case, it could also be the cause of the collisions

in both networks. Consider a situation where the modulator is high (i.e. phototaxis
should be performed), but the network contains examples similar to the current

298 Chapter 10. Robot and Gazebo experiments

inputs in which the modulator was low. In this case, outputs similar to those for the

examples at the low modulator level might be generated.

This is unlikely, however: the modulator input to the network has a large effect

on the behaviour, so it should have a much larger magnitude in its weights going

into the hidden layer. To confirm this, plots were made of the magnitudes of the

modulator weights compared with the other weights in both best and second-best

networks, as shown in Fig. 10.24. These show that the modulator weights are much

larger, by almost an order of magnitude. Because of this, the modulator’s effect

across the hidden layer will be stronger than the effect of other inputs.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●●
●
●
●
●●●●

●

●

modulator normal

0
20

40
60

80

weight type

ab
so

lu
te

 v
al

ue
 o

f w
ei

gh
t

(a) Best network

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●
●

●

●●
●

●●

●

●

modulator normal

0
20

40
60

80
10

0

weight type

ab
so

lu
te

 v
al

ue
 o

f w
ei

gh
t

(b) Second-best network

Figure 10.24: Box plots of the magnitudes of weights entering the hidden

layer from the modulator input and from other inputs.

Alternatively, it may be that the transitional behaviour is such that a “blend” of

the two behaviours is present, in which the robot drives forwards (as in exploration)
but ignores the sonar data (as in phototaxis). This problem appears in both the best

and second-best networks (as can be seen from the south-facing runs of the second-

best network at kpower � 0.003 in Fig. 10.15). Given the conservative nature of the

latter network, this would discount the possibility discussed in Sec. 10.2.3.3 that

marginal sonar networks were selected from the test set.

10.2 Experiments 299

10.2.5 UESMANN

The results for the best UESMANN network according to the combined metric are

shown in Figs. 10.25 and 10.26. Our first impression is of comparable performance

to output blending, with the exception of most north-facing UESMANN runs at

kpower � 0.003 which run out of charge. UESMANN shows more variation across

the runs, with long runs following different paths.

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●

●●●●●●
●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●●

●●
●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●●●
●●●●●●
●●●●

●●●●
●●●●●

●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●

●●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●●●●

●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●

●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●
●●●●

●●●●
●●●●●●

●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●

●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●

SIM
maxt=2576

x

y

●●●●
●●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RUN 1
maxt=116

x

y ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●●●●
●●

RUN 2
maxt=118

x

y ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●
●●●●●
●●●

RUN 3
maxt=115

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●

●●

RUN 4
maxt=116

x

y ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RUN 5
maxt=118

●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●
●●

●●●●●●
●●●●●

●●●
●●●●

●●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●
●●●●●●
●●●●●

●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●

●●●●●●
●●●●●

●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●
●●●●●●
●●●●●

●●
●●●●●●●
●●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SIM
maxt=1782

y ●●●
●●●●●

●●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●

●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●
●●

●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●
●●●●●●●

●●●●●●
●●

●●●

RUN 1
maxt=1020

y ●●●
●●●●●
●●●●●
●●●●
●●●
●●●●

●●●●
●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●

●●
●●●●●
●●●●●
●●●●
●●●
●●●
●●●●

●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●
●●●

●●●●●
●●●●●
●●●●

●●●●
●●●

●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●●●
●●●●●●

●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●●●●
●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●
RUN 2
maxt=1000

y

●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●●

●●●
●●●●

●●●●●
●●●●

●●●●●●
●●●●●●

●●●RUN 3
maxt=635

y

●●
●●●●●
●●●●●
●●●●
●●●
●●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●
●●●●●

●●●●●●●●●●●
●●

●●●●●
●●●●
●●●●●
●●●●
●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●
●●●

●●●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●
●●●●●●

●●●●●●●
●●

●●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●

●●●●
●●●●

●●●●●●
●●●●●

●●●●●●●●
●●

●●●●
●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●●●●

●●●●●●●●●●●●● ●●● ●●●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●●
●●●
●●●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●

RUN 4
maxt=1000

y

●●●
●●●●●
●●●●●
●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●●●

●●●●●●
●●

●●●●
●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●
●●

●●●●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●
●●●●●
●●●●●
●●●
●●●
●●●●

●●●
●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●●●
●●●●●●

●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●

RUN 5
maxt=1000

Figure 10.25: UESMANN best network runs at kpower � 0.0025. South-facing

run 3 stops to face the mesh indefinitely.

x

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●

●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●
●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●
●●●●
●●●●●●

●●

SIM
maxt=1014

x

y

●●●●
●●●
●●
●●●
●●●
●●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●●
●●●
●●●
●●●●
●●●●●●●
●●

●●●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●

●●●●
●●●●●●●

●●●●●
●●●●●●●

●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●

●●●●
●●●●●

●●●●●●
●●●●

●●●●●
●●●●

●●●●●●●
●●

●●●
●●●●●

●●●●
●●●●●●
●●●●●
●●●●●●

●●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●

●●●●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●

●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●●●

●●●●●
●●

RUN 1
maxt=1114

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●

RUN 2
maxt=176

x

y

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●

RUN 3
maxt=183

x

y

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●●●

●●

RUN 4
maxt=168

x

y
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●

RUN 5
maxt=170

●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●
●●●●●
●●●
●●●
●●●●
●●●●●

●●●

SIM
maxt=362

y ●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●
●●●●●●

●●●●●
●●●●●

●●●
●●●●●●

●●●●
●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●●

●●●●
●●●●●●●

●●●
●●●

●●●●●
●●●●

●●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●●
●●●

●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●●●●●

●●
●●

●●RUN 1
maxt=1000

y

●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●●●
●●●

●●●●●
●●●●

●●●●●●●
●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●
●●●
●●●●
●●●●●
●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●
●●●●

●●●●
●●●●
●●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●●
●●

●●●

RUN 2
maxt=1000

y ●●
●●●●●
●●●
●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●●●●
●●

●●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●●
●●

●●●●●
●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●

RUN 3
maxt=1000

y ●●
●●●●

●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●

●●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●●
●●

●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●
●●RUN 4

maxt=955

y ●●●
●●●●

●●●●
●●●●

●●●●●
●●●●
●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●

●●●●●
●●●●●●

●●●●●●
●●●RUN 5

maxt=521

Figure 10.26: UESMANN best network runs at kpower � 0.003. South-facing

runs 4 and 5 aborted due to wall collision.

10.2.5.1 Runs at kpower � 0.0025

In general, performance is more conservative than output blending but similar in

form,with the phase plots showing similar loops (compare Fig. 10.27c and Fig. 10.9c).

However, these loops have more of the characteristics of Fig. 9.25, with a triangular

shape, than the more circular Fig. 9.26.

The north-facing simulated run at this power level is shown in Fig. 10.27, which

performs considerably better than its output blending counterpart in Fig. 10.7 (which

300 Chapter 10. Robot and Gazebo experiments

fails after 110s). However, the run comes to a dead stop at full charge, facing the wall

at around 2230 seconds. Note that this is well after the normal 1000s termination

time for the robot experiments.

●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●

●●
●●●●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●●●
●●●●
●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●
●●●●

●●●
●●●●

●●●●●
●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●

●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●●

●●●
●●●●●●

●●●●●
●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●●●

●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●
●●●●●

●●●●●
●●●●●●●●●

●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●
●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●
●●●●●

●●●
●●●●

●●●●●
●●

●●●●
●●●●

●●●●
●●●

●●●
●●●
●●●●●
●●●●●
●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●●

●●
●●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●● 2232

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 500 1000 1500 2000

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

charge

di
st ●

(c) Phase plot (dis-

tance/charge)

Figure 10.27: Simulated north run of UESMANN best network, kpower �

0.0025. In this plot the time of the stop is shown — the run continued until

3000s with the robot stationary..

Of the north-facing robot runs, all fail with the robot again turning too late. Run

1 is shown in Fig. 10.28. At 65s, the robot performs a strong turn, which could

be caused either by phototaxis or exploration. However, subsequent runs with turns

further from the wall occur at a similar or higher charge level and have a similar

character (e.g. Fig 10.30), suggesting this is a phototaxis turn. At 90s the robot stops

turning sharply, and begins to curve gently towards the emitter. This suggests firstly

that the transition into phototaxis is crisp at h ≈ 0.7 (as can be determined from the

charge plot), and secondly that the phototactic behaviour is less marked than might

be expected when the angle to the emitter is small. Indeed, the velocity difference

plot shows considerable variation during this turn, where the phototaxis controller
should give a gradual reduction in difference. This is likely due to the modulator

continuing to rise through a non-monotonic transition.

The south-facing simulator run shows a similar set of loops to its north-facing

counterpartwhen constrained by thewalls, but upon escaping the robot againmoves

into phototaxis too late and fails to return. All the robot runs behave similarly, looping

conservatively around the narrow lit area, and most complete the experiment. It is

possible that given more time, these would eventually suffer a similar fate to the

simulator run. Run 3 behaves similarly to the north-facing simulator run, stopping

dead facing the wall at full charge. This is shown in Fig. 10.29. While difficult to see

in the plot, this happens at roughly the same place in the arena as the simulator run.

10.2 Experiments 301

●●●
●●
●●●
●●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●●
●●●
●●
●●●
●●●●●●

●●

maxt=116

65
90

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 20 40 60 80 100 120

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.28: Robot run 1 (north) ofUESMANNbest network, kpower � 0.0025.

Here, the points at times 65s and 90s are labelled in the position plot: see the

text for details.

●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●

●●●●
●●●●●

●●●●●●
●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●
●●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●●
●●●

●●●●●
●●●●

●●●●●
●●●

maxt=635

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 100 200 300 400 500 600

−1
1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
5

1.
0

1.
5

2.
0

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.29: Robot run 3 (south) ofUESMANNbest network, kpower � 0.0025.

10.2.5.2 Runs at kpower � 0.003

At the higher power level, we see the expected behaviour: the loops are more open,

and the robot travels further. The simulated run shows the common failure mode

of a long “north-west” run which travels too far to return safely; this does not occur

at the lower power level because phototaxis keeps the robot within the narrow area.

All north-facing robot runs fail in a similar manner to the lower power level runs,

except run 1, which is shown in Fig. 10.30.

Here, the robot turns slightly earlier and so has enough power to return to the

emitter, falling into a loop of long runs. Note the general similarity of the shape of

the phase plot with the simulated run at the higher power level in Fig. 10.7.

302 Chapter 10. Robot and Gazebo experiments

●●●
●●
●●●
●●
●●●
●●
●●
●●●
●●
●●●
●●
●●
●●●
●●
●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●●●

●●●
●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●
●●●●
●●●●
●●●●
●●●●●

●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●

●●●●●●
●●●●●

●●●●
●●●

●●●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●●●
●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●

●●●
●●●●●●

●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●●

●●●
●●

●●●●
●●●●●

●●●●●
●●●●●
●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●●

●●●
●●●●

●●●●●
●●●●●

●●●
●●●●●●●●●

●●●●●
●●●●

●●●●●
●●

maxt=1114

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.30: Robot run 1 (north) of UESMANN best network, kpower � 0.003.

The south-facing simulator run fails with the robot falling immediately into a

north-west run. While there is an attempt at phototaxis towards the end, the robot is

bounced away from the wall (showing enough exploration to do so), taking it further

into danger. Runs 1-3 complete the experiment. Runs 4 and 5, however, do not turn

away from the wall. In both these cases the experiment was halted.

Run 1 is an interesting case, and is shown in Fig. 10.31. In this run, the robot

travels north-west towards the far corner of the arena — this single traverse is close

to the longest possible. In most cases, this should fail. However, at 740s, the robot

stops to recharge for nearly 100s, performs a tight turn, and returns to the emitter.

Although the robot is performing phototaxis at the stop, it is not receiving the stimulus

for which stopping is the correct response: a large amount of light. Nevertheless,

this “error” has a beneficial effect.

10.2.5.3 Behaviour changes

UESMANN consistently fails to turn until too late on north-facing runs, which

appears to be due to a transition to phototaxis at h ≈ 0.7, as can be seen in the low

power run of Fig. 10.28. This corresponds to a charge level of 0.3, which is too

low to return to the emitter safely. However, as with h-as-input, the nature of the

transition between the behaviours is complex. Consider the low power south-facing

in runs in Fig. 10.25, which show a considerable amount of phototaxis at relatively
low modulator (high charge) levels. Another example is Fig. 10.31, which shows a

large amount of exploration, when phototaxis should have turned the robot. However,

near the wall the robot moves into phototaxis (albeit the stopping behaviour).

10.2 Experiments 303

●●
●●●●

●●●●
●●●
●●●●

●●●
●●●●●

●●●●
●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●

●●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●

●●●
●●●●

●●●●
●●●

●●●●
●●●

●●●
●●●
●●

●●●
●●●

●●●
●●●
●●●

●●●
●●

●●●
●●

●●●
●●●

●●●●
●●●

●●●●
●●●

●●●
●●●

●●●
●●
●●●
●●●

●●
●●●
●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●

●●●
●●●

●●●
●●●●

●●●●
●●

●●●
●●●●●●●
●●

●●

●●

maxt=1000

740

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
we

r i
n

0

1

ch
ar

ge

time

ve
l

0
1

0 200 400 600 800 1000

−1

1

ve
l d

iff
 (l

−r
)

(b) Variable plot

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

charge

di
st

(c) Phase plot (dis-

tance/charge)

Figure 10.31: Robot run 1 (south) of UESMANN best network, kpower �

0.003. Here, the point at time 740s is labelled in the position plot, and the

recharge which takes place after this time is marked by a grey rectangle in the

variable plot: see the text for details. Note that there are discontinuities in

the positional data due to the robot LED being obscured by the emitter lamp

hood; these manifest as steps in the phase plot, and are marked in red.

10.2.5.4 Summary

In general, UESMANN performs comparably to output blending with fewer runs

failing due to discharge, although it has two collisions and an unexplained stop in

the robot runs. It performs considerably better than h-as-input, and shows a larger

degree of variation in the runs than both methods. UESMANN appears to be more

conservative than output blending, which causes more runs at kpower � 0.0025 to

survive. However, the behaviour performed across the modulator range varies non-

monotonically, as it does in h-as-input. This can be seen in all the north-facing runs,

and is particularly clear in the successful run in Fig. 10.30. Both westernmost turns

in this run show a distinct set of stages, with the robot turning sharply, proceeding

perhaps 2m, then turning again. While this behaviour may be emphasised by the

robot’s problems with differential steer (Sec. 10.2.2.5), it is still evident to a lesser

extent in the simulator runs: see the westernmost turn in Fig. 10.32 for an example.

This non-monotonicity is less problematic than in h-as-input, which contributes

to its success compared to both h-as-input networks. However, like that network, it

sometimes turns too late (such as in the north-facing runs) and sometimes too early.

Compare Fig. 10.33, which shows phototaxis too early, with Fig. 10.34, which shows

phototaxis too late (or rather, not at all).

In the first case, the robot is showing a wheel velocity difference while the charge

is still at around 0.8, while in the second case the charge falls to around 0.3 without

any velocity difference.

304 Chapter 10. Robot and Gazebo experiments

●●
●●●
●●
●●
●●
●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●

●●●●●●
●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●

●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●
●●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●
●●●
●●●
●●●
●●●●

●●●●●●●●
●●

maxt=1014

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

0 200 400 600 800 1000

−1
1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.32: Simulated north run of UESMANN, kpower � 0.003.

●●●●●
●●●●●●●

●●

maxt=1000

900

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

900 920 940 960 980 1000

−1

1

(b) Variable plot

0.85 0.90 0.95 1.00

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.33: Robot run 2 (south) of UESMANN at kpower � 0.0025, t > 900.

●●●
●●
●●
●●
●●●
●●
●●●
●●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●●
●●●
●●

15

65

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

20 30 40 50 60

−1

1

ve
l d

iff
 (

l−
r)

(b) Variable plot

0.4 0.5 0.6 0.7 0.8 0.9

2.
5

3.
0

3.
5

4.
0

4.
5

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 10.34: Robot run 1 (north) of UESMANN at kpower � 0.0025, 15 < t <
65.

10.2 Experiments 305

Like h-as-input, UESMANN suffers from collision problems, although these are

only seen twice and in similar circumstances (south-facing runs 4 and 5 at kpower �

0.003). Here, this occurs during exploration with the robot at high charge, near a

distinctive corner of the arena unlike any part of the training arena. Another failure

mode is a dead stop facing the mesh, seen twice: once in simulation and once in

a robot run. These occurred at nearly the same place in the arena, facing south-

west into a wall. This is similar to the stopping behaviour seen in output blending

(Sec. 10.2.2.3, p. 286), and happens at roughly the same place in the arena. This

suggests that the problem lies in the training data, or rather the system producing

the training data (since each network is trained from a separately generated set of

examples).

306 Chapter 10. Robot and Gazebo experiments

Chapter 11

Conclusions

The robot experiments show that all three network architectures are able to learn a

simple homeostatic robot task, given examples of simple controllers performing two

behaviours at different modulator (and therefore charge) levels. This is true even

when the simulator from which the examples were generated has simple sensors

and actuators, which behave rather differently from reality, andwhen the simulation

arena is different from the final arena.

11.1 Quantitative differences
Before summarising the qualitative differences described in detail above, we will

show some brief quantitative analyses of the robot runs. The simplest possible

metric for these experiments is howmany survive the arbitrary time limited selected

during the experimental design. The results are shown in Fig. 11.1, which appears to

show thatUESMANNperforms “best”, in that it has the highest number of surviving

runs. Another simple metric is survival time, which is shown in Table 11.2. This

Table 11.1: Number of robot runs for each network type and power regime

which survive at least 1000s without stopping indefinitely.

Network good runs (kpower � 0.0025) good runs (kpower � 0.003) total

output blending 1 5 6

h-as-input best 0 0 0

h-as-input second-best 5 0 5

UESMANN 4 4 8

shows a high survival time for output blending, with UESMANN a close second.

The discrepancy with the previous table is due to some output blending networks

surviving for some time before failing, while some UESMANN runs fail quickly.

307

308 Chapter 11. Conclusions

Table 11.2: Total survival times of all five robot runs for each network and

power regime, with each run capped at 1000s. All figures rounded to the

nearest second.

Network total time (kpower � 0.0025) total time (kpower � 0.003) total

output blending 4119 7668 11786
h-as-input best 519 846 1364

h-as-input second-best 5559 3175 8733

UESMANN 5220 6175 11394

While output blending tends to survive at high power, it does not perform as well as

UESMANNat lowpowerdue to the latter network’smore conservativebehaviour. At

low power, the second-best h-as-input network appears to performwell, but this also

is achieved by extremely conservative behaviour. At a higher power level, however,

h-as-input does not survive long. A final obviousmetric is the combinedmetric used

to select the networks for these experiments from those used in the simple simulator.

The results are shown in Fig. 11.1. This clearly shows the difference between north

and south runs, with most north runs performing poorly, except in output blending.

However, the overall picture shows no statistically significant differences between

the three scores (p > 0.05, Wilcoxon rank-sum test).

Fig 11.2 shows the same data with the north and south facing runs separated. In

this analysis, output blending is significantly better than h-as-input in north-facing

runs, and UESMANN is significantly better than output blending in south-facing

runs (p < 0.05, Wilcoxon rank-sum test). This is mainly due to differences in survival

times, as can be seen from visual inspection of the runs.

11.2 Qualitative differences
Detailed descriptions of how each network behaves have been given above at some

length, with each network producing a complex set of behaviours. We will attempt,

however, to summarise the differences between them.

It was predicted that output blending would survive in the real robot but not

explore the arenawell because of the constant presence of phototaxis at allmodulator

levels except zero. This was not the case, because the robot did not turn until

the difference between the motor outputs was large (see Sec. 10.2.2.5). In fact,

output blending explored further than the other network types, with the long, slowly

increasing curves generatedby themotor outputs being realised as long straight runs,

until a threshold in the motor output difference was reached. However, it is possible

11.2 Qualitative differences 309

output blending h−as−input (2nd best) UESMANN

−
6

−
4

−
2

0

network type

co
m

bi
ne

d
m

et
ric

1n
2n

3n 4n 5n
1n 2n 3n 4n

5n

1n 2n 3n 4n 5n

1s

2s

3s

4s
5s

1s 2s

3s

4s 5s1s 2s

3s
4s 5s

1n 2n
3n 4n 5n 1n

2n
3n 4n 5n

1n

2n
3n 4n 5n1s

2s 3s

4s

5s

1s
2s

3s 4s

5s

1s
2s 3s 4s

5s

power 0.0025 power 0.003

Figure 11.1: Combinedmetric for all robot runs. Each run is shown numbered

with “s” or “n” indicating whether it is a “north” or “south” facing run. The

few runs made for the best h-as-input network have been omitted.

that this good performance is a consequence of the peculiarities of this particular

robot’s steering mechanism.

Output blending was also less prone to the other problems suffered by the net-

works, notably random stops and collisions with the mesh (although one random

stop did occur). Because of this, it has the longest survival time at high power: long

runs in other networks often ended in a stop or collision. This may be due to each

behaviour being isolated to a single network, resulting in less “crosstalk” between

the behaviours.

This may be a particular problem in h-as-input, which seems to show a strong

tendency to use the wrong behaviour for a given modulator level, and to sometimes

performonly aspects of that behaviour. For example, the best network drives straight

intowalls at highmodulator levels: a behaviour consistentwith elements of phototaxis
and exploration beingmixed, showing the straight driving of the latter and the “sonar

blindness” of the former. Aside fromcrosstalk, itmay simply be that the trainingdata

does not contain examples for this situation given the different shapes of the training

310 Chapter 11. Conclusions

●

●

●

●

OB.n hin.n UES.n OB.s hin.s UES.s

−
6

−
4

−
2

0

network type

co
m

bi
ne

d
m

et
ric

1n
2n

3n4n5n
1n2n3n4n

5n

1n2n3n4n5n

1s

2s

3s

4s
5s

1s2s

3s

4s5s1s2s

3s
4s5s

1n2n
3n4n5n 1n

2n
3n4n5n

1n

2n
3n4n5n 1s

2s3s

4s

5s

1s
2s

3s4s

5s

1s
2s3s4s

5s

power 0.0025 power 0.003

Figure 11.2: Combined metric for all robot runs, with separate box plots for

north and south. Each run is shown numbered with “s” or “n” indicating

whether it is a “north” or “south” facing run. The few runs made for the best

h-as-input network have been omitted.

and final arenas. In this situation, the network may produce a “corrupt” version of

a correct behaviour. More work is needed to study the cause of the problems: if and

how crosstalk occurs, and how limitations in training data affect the network.

When h-as-input works — as it generally does in the second-best network — it

appears to bemore conservative thanoutput blending,which canbe seenparticularly

clearly in the kpower � 0.0025 runs. The transition itself is non-monotonic and

complex, with phototaxis sometimes occurring at high charge (lowmodulator) levels,

and exploration at low charge (high modulator), depending (as it must) on the input.

Despite this, the behaviour is quite consistent, with the robot traversing roughly the

same pattern in each group of runs.

InUESMANN, however, different runs from the same experiment can followvery

different paths. There is also less of a tendency for the robot to settle into a repeating

loop — something commonly seen in other network types. It seems likely that

UESMANN is more sensitive to differences in the inputs and modulator, perhaps

11.3 Limitations in the training data? 311

with the response these being less smooth at small scales. Certainly Fig. 9.28 suggests

that UESMANN is sensitive to changes in themodulator at all but the highest values.

Thus it may be that UESMANN demonstrates a form of sensitive dependence

on initial conditions, given that a slight variation in the course will change the light

input and affect the modulator, which will cause a change in behaviour, which will

affect the course. If so, this may be useful in an exploratory robot; UESMANN covers

more of the arena from different angles. Naturally, because it finds more situations

in which to fail, it may also appear to fail more often.

UESMANN’s failures consist of discharge (although these occur a little less than

in output blending), two collisions which occur at roughly the same place in the

arena, and a single dead stop at full charge. The discharging runs are all north-

facing, and UESMANN has fewer than the other network types. The other failures

may be caused by deficiencies in the training data, since they all occur in parts of

the arena unlike the training arena. It is possible that the small, square training

arena does not provide examples for this situation, but insufficient resources were

available to repeat the experiments with modified training data.

The nature of the transition in UESMANN is complex, and perhaps rather more

complex than h-as-input given the possible sensitive dependence. For the paths to

diverge from the same approximate initial conditions as much as they do, it is likely

that small variations in the modulator cause larger differences in the motor outputs

than they do in the other networks. Indeed, the behaviour of the systemmay be truly

chaotic, and future work might look at measuring the Lyapunov exponent spectra

[304] of a large number of runs to determine if this is the case (see Sec. 12.5.2.1,

p. 329).

11.3 Limitations in the training data?
We have mentioned above that some problems, particularly with h-as-input and
UESMANN, may be due to limitations in the training data which arise from the

nature of the training arena. The training and final arenas are shown in Fig. 11.3.

They are roughly the same size, but the training arena is a simple square, so all

angles are right angles. All corners will therefore present identical sonar profiles

when viewed from equivalent relative locations. In contrast, the final arena is amore

complex shape where each corner’s profile is unique. Additionally, the final arena

is much more open than the training arena, which tends to produce much closer

sonar echoes (however, the simple test arena generates more distant echoes than

than either the training or final arenas and does not suffer from sonar problems to

312 Chapter 11. Conclusions

−4 −3 −2 −1 0 1 2 3

−2
0

2

x

y

training
final

Figure 11.3: The training and final arenas, with the emitter positions and sizes

(the final arena shows the approximate size of the pool of light cast by the

emitter lamp).

the same extent). Finally, the emitters are differently positioned and are different in

nature: the training emitter is linear and crisp, while the final emitter is circular and

diffuse. It is likely to be the case that the patterns generated in the input vector by

the emitter are different in the two arenas, despite some care being taken to ensure

the robot’s light sensor behaved like the virtual sensor.

Thus it is possible that there will be input vectors generated in the robot (and

Gazebo simulation) which are not adequately represented in the training data, and

may result in incorrect behaviour. Naturally, a neural network is intended to gen-

eralise from the training data to recognise unfamiliar inputs, but in some cases the

input may simply be too unfamiliar.

This problem seems to manifest most in h-as-input, and to some extent in UES-

MANN. It is least apparent in output blending, although the single unexplained

stop at full charge may be connected. The reasons for the different prevalences of

the problem are not currently understood, but may be related to crosstalk from ex-

amples with similar inputs at different modulator levels, given that output blending

separates the modulator levels into different networks.

Nevertheless, UESMANN is able to perform the behaviour in a real robot rather

better than h-as-input and with comparable performance to output blending. The

h-as-input network, despite working well in the simple simulation, does not deal

well with the reality gap — even the relatively modest reality gap from the simple

simulator to Gazebo. Output blending works well on the robot, but does so because

11.4 Emergent behaviour 313

of the reality gap: the steering behaviour of the real robot counteracts the gradual

nature of the behavioural transition.

11.4 Emergent behaviour
The behaviour which emerges from the system in the real world is interesting and

perhaps useful. We note that output blending may only be able to perform well

because of the physical peculiarities of the steering on this particular robot, but of

more interest is the more complex emergent behaviour of the two other networks.

Both h-as-input andUESMANNhave complex transition regions, which oscillate

between the two trained behaviours as the modulator increases. In UESMANN’s

case, the non-monotonic sensitivity of the behaviour to modulator appears to be

more finely-grained (from the apparent sensitivity to initial conditions described

above), leading to a good deal more variation in the paths traversed. This is very

useful behaviour in a robot designed to cover an area as much as possible, and

in general may provide a useful source of variation. In h-as-input this behaviour

is larger, with the “incorrect” behaviour being used more often, and appears less

finely-grained, with the second-best network showing less variation in the paths

traversed (although this may also be due to the tightness of the loops).

One behaviourwhichwas expected to be helpful from the simple simulation runs

in h-as-input andUESMANN is the extended stop at the emitter for recharging, seen

in the phase diagram in Fig. 9.25 (p. 267) and shown in Figs. 9.15a and 9.20c. An

example from the robot experiments is north-facing UESMANN run 1 at kpower �

0.003, a detail of which is shown in Fig. 11.4. This is exceptional, however: the

robot rarely stopped at the emitter for any length of time, either having picked up a

sufficient charge while travelling to the emitter or simply never venturing far in the

first place, often being bounced back toward the emitter by the arena walls.

A final, minor example of interesting emergent behaviour is that of the run

shown in Fig. 10.31, where the robot stops and recharges despite the low light

values. This only occurs in a single run, but would be worth analysing in future

work. However, it is possible that this behaviour, while helpful in this particular

case, may be deleterious in others.

11.5 Issues with multiple training sets
Each network in Sec. 8.1.3 (p. 239) is trained from different initial weights and values,

but also from a different set of training data generated by the simple simulator. This

314 Chapter 11. Conclusions

●●

180

230

(a) Position plot

0

6

di
st

an
ce

0.0

0.1

po
w

er
 in

0

1

ch
ar

ge

time

ve
l

0
1

180 190 200 210 220 230

−1

1

(b) Variable plot

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

charge

di
st

●

(c) Phase plot (dis-

tance/charge)

Figure 11.4: Robot run 1 (north) of UESMANN at kpower � 0.003, 180 ≤ t ≤
230.

was intended to provide an extra source of variety. If one set of training data were

used, and it had problems, these would be reflected across all the networks. Using

multiple training sets helps avoid this possibility: at least one network should have

a reasonable set of training data and can be carried forward into the Gazebo and

robot experiments. However, it does result in confounding factors: the success of the

network depends on both the training data and the initial weights of the network.

The effect can be investigated by training a number of networks from different

training data sets and different initial weights and biases. A possible procedure

might be:

• Generate N sets of training data T1, T2 · · ·TN

• For each set of training data, train M networks initialising the weights and

biases by initialising the PRNG seeds to the values S1, S2 · · · SM .

• We now have N × M networks: one for each pairing of training data set and

initial weights and biases.

• Make multiple runs of each network and record their performances according

to the metric in Sec. 8.1.2.4 (p. 238).

If the networks with the same initial weights but trained using different data have

very different performances, this would indicate a problem with the training data.

All sets of generated training data should have representative data points for each

possible interaction with the environment. If there is indeed a problem, it would

also have ramifications for Sec. 11.3 because it would indicate clearly that the training

data is inadequate, even within the simple training arena.

11.5 Issues with multiple training sets 315

However, Fig. 9.4 (p. 250) and Fig. 9.11 (p. 258) (box plots showing the final

mean squared error after training, and the combined metric on all trained networks

respectively) appear to show clear differences between the three network types. This

appears to indicate that randomly sampling networks from the 2D space of training

data and initial parameters is sufficient to expose the differences between the network

types.

If the experiments were to be repeated with a single training data set, this could

bemademuch larger, and generated in amore methodical way than the current sets.

One possibility is simply positioning the robot at all points in a regular grid within

the training arena, and at a range of rotations, and recording the outputs from the

rule-based controllers. Such a larger training set would impact the training times

considerably.

316 Chapter 11. Conclusions

Part V

Conclusion

317

Chapter 12

Discussion

12.1 A global, uniform neuromodulator
Our first research question was:

Is it possible to build an extremely simple neuroendocrine system whose

response to a neuromodulator (a global parameter) can be trained such

that the network performs qualitatively different functions at different

modulator levels?

UESMANN is such a system, inspired by the Neal/Timmis artificial endocrine sys-

tem [209]. Like that system, it uses a simplemultiplicativemodulation of theweights;

however, where the NTS has

y � σ

(
b +

∑
i

wi xihsi

)
(2.15 revisited)

UESMANN adds one to the modulator to make h � 0 the value at which the weights

take their nominal values, and removes the sensitivity value si :

y � σ

(
b + (h + 1)

∑
i

wixi

)
. (3.2 revisited)

In both these equations, y is the node output, wi and xi are the ithweight and input, b
is the bias, h is themodulator and σ is the sigmoid activation function σ(x) � 1

1+e−x . It

therefore modulates all the weights uniformly: when h � 0 the weights are nominal,

and when h � 1 the weights are doubled.

Intuitively, it might seem unlikely that such a simple system would be able

to perform two qualitatively different functions: indeed, the initial design of the

319

320 Chapter 12. Discussion

system used by Sauzé and Neal [243] suggests that they believed that increasing

the modulator would simply create more of the behaviour for which the network

was trained. However, this is not the case: Sauzé and Neal instead found that their

network behaved unpredictably when the modulator was used, and so switched to

modulating the output layer only. We wished to study the possibility of controlling

this behaviour, beginning with simple functions.

The simplest functions studied inneural networks are typically thebinaryboolean

functions. Sec. 3.1 shows that a UESMANN network with two hidden nodes can

perform all possible pairings of such functions in the same number of parameters

required to performa single function, and establishes the size of the volumeoccupied

by each pairing in the parameter space.

In Chapter 4 a simple algorithm for training UESMANN networks through the

back-propagation of errors is described, based on finding the gradients with re-

spect to both the weights and doubled weights for each problem respectively, and

alternating between each in the update steps. This algorithm successfully finds

solutions for all binary boolean functions, having problems with some combina-

tions (e.g. x ∧ y → ¬(x ∨ y)) but outperforming two rival techniques in others (e.g.

x ⊕ y → x ∧ y).
The networks are analysed in some depth in Sec. 4.5 demonstrating that the

modulation has the effect on a single node of raising the bias and narrowing the

unsaturated part of the sigmoid activation function’s output. A multi-layer network

of suchnodes either functionswith all thenodes in saturation, inwhich case solutions

are easy to find; or finds a careful balance between the weights which may be

significantly harder to find. This difficulty is sometimes unpredictable: consider the

pairing x∧ y → ¬(x∨ y), which has by nomeans the smallest solution volume, but is

hard to train. In this case, it is possible that the solution lies through a narrow “pass”

in the parameter space which is difficult to find from the initial weight range used in

the experiments — increasing the weight range increased the number of solutions

found. Other problem domains are likely to have similar difficulties.

Part III tests UESMANN against two other modulatory techniques in two simple

classification tasks: switching between horizontal and vertical line recognition and

recognising handwritten digits. The two other techniques were output blending,
which trains two networks separately for the h � 0 and h � 1 functions and uses h
to interpolate linearly between the outputs; and h-as-input, which supplies h as an

extra input to a single network.

UESMANN was able to find solutions to both problems which were compar-

able with the other methods, particularly in line recognition. Interestingly, while

12.1 A global, uniform neuromodulator 321

the average performance of UESMANN was worse at line recognition, some indi-

vidual networks outperformed all networks of both h-as-in and output blending

(Fig. 6.10, p. 183). In recognising handwritten digits UESMANN was less able, but

the performance was still comparable at higher node counts (Fig. 7.7, p. 209).

Finally, Part IV tests UESMANN against the two other methods in a control and

regression problem, attempting to achieve both homeostasis and area coverage in a

robot with a simple charging model by supervised learning of two behaviours and

switching between them. UESMANN performed well here, and much better than

h-as-input which failed to learn solutions which crossed the “reality gap” between

simulation and reality. Output blending also performed well, but this may again

have been due to the reality gap: the steering on the robot failed to turn when the

velocity differential between thewheels was small, counteracting thewide transition

which would normally cause this network type to perform poorly. Because these

experiments took place in the real world with its concomitant complexities, each

network’s runs varied a great deal. This made analysis of the behaviours difficult,

and exposed a number of problems in each network type which may have been due

to problems with the training data.

Perhaps the most interesting aspect of UESMANN is the transition behaviour,

when the modulator is between the extrema 0 and 1. The transition region, within

which the function beingperformed is notably different from the extrema, is typically

wide. The functions produced by the networks at these points are usually (but

not always) some compromise between the extrema. The transitions regions were

compared with both h-as-input and output blending: in h-as-input the behaviour

was similar butwith anarrower transition,while output blendingproduceda smooth

linear interpolation of the outputs across the entire region. In classification problems

this resulted in an almost zero-width transition due to thresholding, and a transition

occupying the entire range of h in regression and control problems. In the robot

control problem, UESMANN demonstrated a complex non-monotonic transition

which created useful variation in the traversed paths.

The above is a brief summary of the findings of this thesis; we will now discuss

some of the issues arising from the findings in more depth from the point of view of

our initial research questions.

322 Chapter 12. Discussion

12.2 Simplicity
Our second question was:

How simple is it possible to make such a system, so that we can make the

fewest possible prior assumptions about it?

UESMANN is a simple modulatory system for an MLP: it multiplies all the weights

by a global parameter, which is a single operation. That we multiply by h + 1 instead

of h is just convenience: the weights have their nominal values at 0 and 1 rather than

at 1 and 2. Also, in a node defined by y � σ (b + h
∑

i wixi), setting h � 0 would

always produce zero output.

It might be considered that an additive modulation is simpler yet, but networks

of this type have not been tested. Rather than introducing a completely novel form

of modulation, it was decided to build upon (or rather simplify) the existing NTS.

Whether addition is a “simpler operation” than multiplication is an argument in

number theory1.

It can be argued that modulating both weights and biases, i.e.

y � σ

(
(1 + h)(b +

∑
i

wixi)
)

(3.81 revisited)

is simpler. Nodes of this type modulate by narrowing the unsaturated region of the

activation function, which is certainly a simpler operation. This form of modulation

was briefly tested in Sec. 3.2 (p. 82) and found to be fairly capable on the boolean

functions, but unable to find solutions for all. It was therefore considered to be below

the (somewhat arbitrary) threshold for “usefulness.”

Another possible modulation scheme involves modulating the bias, rather than

the weights:

y � σ

(
(1 + h)b +

∑
i

wi xi

)
. (3.82 revisited)

This modulation doubles the intercept on the node when h � 1. While this was

also investigated in Sec. 3.2 (p. 82) and found to have a similar performance on the

boolean functions as UESMANN, it had a slightly worse distribution of probabilities

of solutions. However, it is still above our arbitrary threshold in that it can perform

all boolean pairings, and perhaps should be investigated further. Whether it is

1Briefly, the real numbers form a field, and multiplication is a necessary operation on a field.

Addition could exist without multiplication, but the reals would not then be a field, so on the reals at

least, multiplication is as fundamental as addition.

12.3 Is it useful? 323

“simpler” or not is a matter of opinion: it is still a single multiplication, but does

not have the same effect on the node output as it leaves the width of the unsaturated

region unmodified.

There are many possible enhancements to the basic back-propagation algorithm

which could have been used: momentum, regularisation (including weight decay)

and so on. Indeed, momentum is considered part of the core gradient descent

algorithm, appearing in Rumelhart, Hinton and Williams [237]. These were not

used: while straightforward to implement, the aim was to investigate the basic

behaviour of the algorithm, keeping things as simple as possible. It is also possible

that certain enhancementswould also have required careful tuning to achieve a good

performance. For example, momentum in particular might have made it more likely

that narrow “passes” through the topography of the error surface would have been

overshot. However, these should certainly be tested in the future, not least because

they may provide insights into the nature of the learning process.

No batching was used in the UESMANN training algorithm; instead, the paired

examples are presented first at h � 0, an update is made, then at h � 1 with another

update being made. There are two points to be made here: first, andmost obviously,

that batching is another enhancement which was not implemented for the sake of

simplicity. Secondly, while this is the simplest possible form of the algorithm from

an implementation point of view, it is perhaps more mathematically complex than

finding the mean gradient of the two results and applying it. The result would still

be stochastic gradient descent given that we do not batch the means of the gradient

pairs and apply them as a single update.

Thus we have analysed the behaviour of a simple system, but it could be argued

that it is not the most simple. Perhaps additive or bias-only modulation would be

simpler, or a combination of the two. Perhaps combining the two gradient vectors

into one mean vector would be simpler. Nevertheless, UESMANN is a simple

network which has the strength of being built upon an existing system (the Neal-

Timmis AES).

12.3 Is it useful?
Our third question was:

What engineering advantages might such a system have?

On simple classification problems UESMANNdoes not perform the end-point func-

tions as accurately as the two other methods under test, although the performance

324 Chapter 12. Discussion

was still good. However, the complex behaviour of the transition region gave a

wide gradual shift between one classification and another. This is potentially useful

behaviour, although the use-case is somewhat esoteric.

In the robot problem, UESMANN performed surprisingly well, but much of

the desired behaviour could have been achieved by other means. For example,

the transition region could be controlled by using an output blending system with

a sigmoid imposed on the modulator to precisely set the centre point and width.

However, the “chaotic” (to use the term loosely, but see also Sec. 12.5.2.1) nature

of the transition behaviour is harder to replicate with a traditional system. This

appeared to provide the network with a source of variety which allowed it to cover

more of the arena. It might be thought that a small amount of noise would produce

the same behaviour; however, the real robot is in such a noisy environment (due to

sensor and actuator irregularities) but does not show the same degree of dependence

in h-as-input or output blending.
Thus the complex transition of UESMANNmight be its most directly useful trait,

providing a gradual shift in classification problems and a source of variety in control

problems. The latter has applications in problemswhere the systemmight otherwise

form undesirable loops, but also in human/machine interaction. In initial work on

their AES, Neal and Timmis [209] found that people responded emotionally to the

fairly simple behaviour of the system:

Requests to “leave the poor thing alone” and other such comments are

not uncommon. Indeed it is surprising how people are very willing to

project emotions onto a small autonomous robotwhich exhibits even very

rudimentary displays of “distress” and “fear.”. . . Although the mechan-

ism used is extremely simple, the behaviour generated is both functional

and emotionally appealing. ([209], p. 8)

The network described in the cited paper used themodulator to increase the weights

of the entire network, leading to unpredictable behaviour rather than “more of the

same,” as described above. UESMANN could provide such a systemwith an altern-

ative behaviour into which the system could transition in a slightly unpredictable,

naturalistic way, whichmight be of use in situations where it is desirable for humans

to form relationships with robots. One possible example is support robots for the

elderly or disabled [294]. This would be particularly useful in combination with a

Neal/Timmis (or similar) release/decay hormone model, thus forming a full AES.

Most neuromodulatory AESs in the literature have either pre-designed neural

networks, or use some form of evolutionary algorithm to determine the parameters.

UESMANN uses stochastic gradient descent, and thus is a supervised learning

12.4 What can it tell us about biology? 325

technique requiring a large number of examples of the “correct” behaviour at the

modulation extrema. While this is not ideal, it is often easier to define the required

behaviours by example rather than designing the network by hand.

One existing problem noted in the literature review (Sec. 2.5.6.5, p. 51) was the

hexapod of Henley and Barnes [118]. This walking robot used an neuromodulator

to vary the leg lift height, but suffered from undesirable translations under modula-

tion. This was resolved by setting modulator sensitivities by hand, but it is possible

that training for the modulator extrema using a UESMANN network might produce

better results. Of course, it is also possible that in such problems output blend-

ing and h-as-input could provide useful (or better) solutions, and this thesis also

demonstrates that these two simple neuromodulatory techniques have their place.

One possible advantage of UESMANN over output blending and h-as-input has
not yet been discussed, and has only been tested in preliminary work: the possibility

of extending the algorithm to train for h at multiple points, not just the extrema

h � 0 and h � 1. Work on line recognition with a third function at h � 0.5 suggests

that this is possible, particularly if the third function is in some sense “between” the

functions at the extrema. For example, an intermediary function which detected any

line (whether horizontal or vertical) worked, but an intermediary which detected

blanks did not. Values outside the range [0, 1] might also have show interesting

behaviour.

Finally, UESMANN is limited by only having one modulator: the Neal/Timmis

system can have any number of modulators. It is difficult to see how it could be

extended to have this capability, although this possibility will be discussed below in

Sec. 12.6.

Nevertheless, UESMANN is an interesting network. It can be trained using

gradient descent (which makes it a possible candidate for deep learning), performs

reasonably well at the extrema, provides a wide — but not too wide — transition

region, and the transition has irregularities which may be useful in certain cases. It

is also simple to understand and implement, and provides an “existence proof” that

is is possible to construct an simple neuromodulatory model which can solve a large

range of problems.

12.4 What can it tell us about biology?
Our final question was:

If such a simple system can be built, can we learn from it anything about

the nature and evolution of the biological systems which inspired it?

326 Chapter 12. Discussion

UESMANN is a biologically inspired system; it is not bio-mimetic. That is, it is not an

attempt to directly model a biological process, but is instead an attempt to apply the

general principles of operation of such a process. This means it is unlikely to provide

many insights into the workings of biological systems. The biological neuron is far

more complex than the MLP neuron in its response to neuromodulators. In biology,

the intrinsic nature of a neuron canbe changed indifferentways byneuromodulators;

for example, a “tonically firing” neuron can change into a “bursting” neuron – these

are two fundamentally different types of activity [182]. TheUESMANNMLPneuron

has no variable intrinsic properties; instead, modulation is performed entirely at the

synaptic level.

However, it does provide a potentially useful “existence proof” of a certain form

of modulation. In UESMANN, a modulator acts in a uniformly excitatory manner

on a group of units which have a particular learned behaviour. Rather than simply

performing more of the same behaviour when the modulator is increased, it can in-

stead generate an entirely different learned behaviour. Thismight come as a surprise

to those without a deep familiarity with neuromodulation because naïve descrip-

tions of neuromodulator action sometimes describe neuromodulators as increasing

or decreasing behaviours of large groups of cells, rather than the synaptic connections

between them.

Consider the behaviour of the first Neal/Timmis systems [209, 243]: both these

systems up-modulated the entire network in an attempt to control the “amount” of

behaviour elicited, and both performed in unexpected ways when the modulator

was such that the nominal weights were not used. This was controlled in [243] by

modulating only the output layer, which produced the desired behaviour.

UESMANNdemonstrates that even in a system inwhich all synaptic connections

are strengthened by a modulator in exactly the same way, the behaviour when the

modulator is increased can be a qualitatively different behaviour which may also be

a learned behaviour. Thus UESMANN shows how an extremely reductive model of

excitatory neuromodulation can result inmore complex behaviour than is often real-

ised. While thismay be obvious to thosewhohave studied neuromodulation in some

depth, systems like UESMANN may be useful for introducing such complexities to

students.

With regard to the second part of the research question, it is unlikely UESMANN

can provide information about the evolution of neuromodulatory systems. While it

is possible that UESMANN itself can be trained by an evolutionary algorithm, the

biological neuron is a different and far more complex system. Any data gathered

12.5 Future work 327

on the evolvability of UESMANN-style systems would not be relevant to biology,

beyond the existence proof that such modulatory methods can be evolved.

12.5 Future work
There is a large amount of work left undone in the study of this network due to

time and scope limitations. While many possible avenues for future study have been

noted in the course of the thesis, it is useful to summarise them here and introduce

a few more.

12.5.1 Classification and boolean functions

12.5.1.1 Is there a preference for h � 0?

We note in Sec. 4.5.7.3 (p. 153) that the boolean pairings x ∧ y → ¬(x ∨ y) and
x ⊕ y → x ∧ y appear to have a “preference” for the h � 0 function; that is, the

transition is skewed such that this function is performed for the larger part of the

modulator range: see Fig. 4.32 (p. 139) and Fig. 4.43 (p. 153). This also appears to

occur in the line detection transition (Fig. 6.18, p. 194). However, it is not apparent

in the MNIST classification transitions of Fig. 7.13 (p. 222) and Tables 7.19 and 7.20

(p. 223). It is difficult to judge if it is present in the robot control solutions, but

Fig. 9.28 (p. 271) would suggest not.

Therefore if there is such a preference, it is only seen to manifest in binary

classification problems. Further investigation is required to see if this bias is real,

and if so, how it is caused and how it can be either used or ameliorated.

12.5.1.2 How few hidden nodes for line classification?

Another open problem is how few hidden nodes are required for a good solution

in line recognition. Solutions were obtained with as few as three nodes (Sec. 6.5.3,

p. 187), but it was found that a two node solution can exist (since the three node

solution has a redundant node). It is therefore likely that such a solution exists, but

it may require a large number of random initial weight trials.

InMNIST handwriting recognition this is not an issue: the performance degrades

as expected below 10 hidden nodes, although it is possible that good solutions exist

with fewer.

328 Chapter 12. Discussion

12.5.1.3 Why are vertical lines harder to recognise?

In Sec. 6.3.2 (p. 174) it was noted that vertical lines appearedmore difficult to train an

output blending system to recognise than horizontal lines, which should not be the

case. It is likely that this is due to a problem with the code generating the training

data. This needs to be investigated.

12.5.1.4 Training more functions at more modulator values

As stated above, preliminary work suggests that it might be possible to train addi-

tional functions at other h values, such as h � 0.5, or even at values outside the range

[0, 1] such as h � 2. Algorithm 1 (p. 97) is easily modified to accept such values. We

would predict that a third function at h � 0.5 can be trained for, provided it is close

to one of the end-point functions or forms a “natural intermediate” between the two

functions — if the outputs are binary, this would suggest a short Hamming distance

between each end-point and the intermediate.

Training more functions could also work in h-as-input without requiring any

modification. Output blending would require a more complex interpolation tech-

nique, perhaps using splines to interpolate between more than two networks.

12.5.1.5 Why does h-as-input outperform output blending sometimes?

Wenote fromFig. 7.7 (p. 209) that at high node counts h-as-input consistently outper-
forms output blending. While unrelated to UESMANN, this is strange considering

that output blending uses two separate networks trained for each function, while

h-as-input only uses one (with an extra input for the modulator). It would be inter-

esting to investigate this further.

12.5.2 Control

There are a few anomalies in the robot control results which require further invest-

igation, notably the “anomalous stops” (Sec. 10.2.2.3, p. 286), the fairly common

collisions and the “serendipitous stop” of Fig. 10.31 (p. 303). It may be that these

are due to problems in the training data, which was generated from the simulated

arena which was square with a linear emitter in a corner and some internal walls,

all at 90
◦
degrees. This needs further investigation, which may only be possibly by

retraining the networks in a more irregular arena with a central emitter to generate

more representative data, and re-running the experiments.

We also noted that much of the unusual behaviour of h-as-input and UESMANN

appeared to be due to a notional “crosstalk” between the two behaviours. This

12.5 Future work 329

manifested as the expected behaviour with an element of the other behaviour, such

as explorationwith no obstacle avoidance. This may have been an illusion of the kind

often seen in naïve analysis of robot behaviour and needs verification.

12.5.2.1 Is UESMANN on the edge of chaos?

It was found that the paths of the robot had more variation within the runs of

each UESMANN network than within the networks of other types. As discussed

in Sec. 11.2 (p. 308), this suggests that UESMANN may be sensitive to small differ-

ences in the input and/or modulator values, perhaps to the extent of exhibiting the

“sensitive dependence on initial conditions” characteristic of chaotic systems. Thus

UESMANN networks may operate on the “edge of chaos,” (i.e. near the critical line

which separates ordered and chaotic behaviour) than the othermodulatorymethods

examined.

Systems which operate in this region have been found to be capable of complex

behaviour (including computation) [164, 215]. The criticality hypothesis states that

“systems which are in a dynamical regime between order and disorder have the

highest level of computational abilities and achieve an optimal trade-off between

robustness and flexibility” [235]. Indeed, theorists such as Kauffman [146] believe

that living systems evolve towards the edge of chaos.

Whether the dynamical system formed by a UESMANN network together with

its environment operates within this critical region can be experimentally tested by

recording a large number of time series from different experiments and measuring

the Lyapunov exponents and exponent spectra [304]. Naturally, these should also be

examined for the other twomodulation methods. A systemwhich is on the “edge of

chaos” should show Lyapunov exponents which are positive, but close to zero [144].

This should also be tested in other problems: it may be that UESMANN is

operating near the critical line in this particular problem, but this does not necessarily

imply that it will do so in others. Should it appear that UESMANNdoes operates on

the edge of chaos inmultiple scenarios, further analysis should be done to investigate

why this is so.

12.5.3 Enhancements

As discussed above and in Sec. 4.1 (p. 88), no modifications to stochastic gradient

descent (momentum, regularisation, etc.) were used. These should be tested because

they may either improve or detract from the performance, as described in Sec. 12.2

above. Batching should also be tested because it may be conceptually “simpler” than

stochastic gradient descent, and also because it may improve results – although the

330 Chapter 12. Discussion

loss of the “jitter” provided by alternating between the two function gradients may

also be detrimental. These methods would also improve the results from output

blending and h-as-input, perhaps more than they would improve UESMANN.

12.5.4 Alternative modulation schemes

As discussed above and in Sec. 3.2 (p. 82), two alternative modulation schemes

(weight and bias, and bias-only) performed slightly worse than UESMANN: bias-

only in particularwas rejected on the basis of a slightlyworse probability distribution

in the boolean pairing solution counts. These should be tested more thoroughly

because they may perform better on more complex tasks, and because it could be

argued (as stated above) that they are simpler than UESMANN. Therefore the line

detection and handwriting recognition experiments should be repeated with these

schemes, and the better of the two carried over into more robot control experiments.

12.6 More modulators?
One of the main drawbacks of UESMANN as a modulatory system is that it only

works with a single modulator. This is in contrast to the original Neal/Timmis

system, which incorporates multiple “hormones” with a sensitivity for each applied

to each weight in the network.

It may be possible to extend UESMANN to multiple modulators by assigning

neurons to be modulated by different modulators, changing the core equations

(Eqs. 4.13 to 4.16, p. 96) accordingly. However, training such a network would be dif-

ficult because examples must be provided for every possible high/low combination

of modulators. Nevertheless, the attempt should be made.

Alternatively, a system could be composed of multiple UESMANN networks,

each separately trained to respond to a different modulator. Again, the difficulty is

the training data: the entire system can no longer be trained as a “black box”: each

sub-network would require its own set of examples.

12.6.1 Reinforcement learning

UESMANN is currently problematic from the point of view of learning adaptivity

and homeostasis because it is trained using a supervised learning method. There

are several possible avenues for reinforcement learning, of which the most obvious

is some form of evolutionary algorithm, perhaps based on the NEAT algorithm

of Stanley and Miikkulainen [264]. Other techniques are available, for example

12.6 More modulators? 331

Riedmiller [231] adapts Q-learning for neural networks, while the more recent deep

Q-network of Mnih et al. [198] extends this idea to deep convolutional networks.

12.6.2 Recurrent networks

It may be possible to use UESMANN to modulate parts of a recurrent network,

such as the “readout” layer of a reservoir system (see Sec. 2.3.7.6, p. 33), for example,

replacing the learnedweightswith aUESMANNreadout layer. Thiswould allow the

network to be trained to recognise different temporal patterns at different modulator

levels.

12.6.3 Alternative activation functions and deep learning

There is no inherent reason why UESMANN layers cannot appear in deep networks,

provided a suitable activation function can be found for gradient descent (or for the

Q-learning systemdescribed in the paragraph above). It would be straightforward to

rewrite the core UESMANNequations for a rectified linear unit (ReLU), for example.

Simple networks of this type should be tested, and if successful, incorporated into a

test deep learning problem. It would be interesting to construct a deep convolutional

binary image classifier with a UESMANN layer (or layers) which could transition to

another classification, and it may provide useful functionality as well as being the

first example of a deep AES.

Additionally, if it were possible to modify a deep reinforcement learning system

such as the deep Q-network (described above) to contain UESMANN layers, a truly

adaptive, deep artificial neuroendocrine system would finally be possible.

332 Chapter 12. Discussion

Appendix A

The robot system architecture

The architecture was designed so that the same software runs the neural network

code whether the experiment is a Gazebo simulation or on the real robot. Sensor

emulationswere designedwhere necessary, and a visual tracking systemwas built to

give positional data during the robot runs. To this end, the neural network software

was written in the Robot Operating System (ROS) [225], which interoperates well

with Gazebo and has a mature and straightforward communications architecture.

ROS executables are known as “nodes”, which are able to publish and subscribe

to named “topics.” These hold structured messages of arbitrary complexity. A ROS

application is made up of several nodes, each of which can be running on different

machines (although in our application the nodes all run on the “host” machine, a

laptop). The neural network software acts as such a node, subscribing to sensor

topics and outputting motor control topics. In a Gazebo experiment, Gazebo also

acts as such a node. Because the robot does not natively run ROS, robot experiments

instead run a “bridge node” which communicates over TCP/IP with a server on the

robot, which both controls the robot via its native ARIA interface and communicates

sonar and light sensor readings back to the host. This occurs at a rate of 10Hz,

although the light sensor data is updated at ∼ 3.3Hz (see Sec. 10.1.2.1, p. 275).

Additionally, a localisation topic is subscribed to by the network node to allow

position to be included in the experimental logs. The data for this either comes from

the localisation system described in Appendix B or from Gazebo. In both cases, the

data is sent via the “Diamond Apparatus” simple publish/subscribe system1. An

overview of the architecture is given in Fig. A.1.

Sensordata is sent fromthe robot andmotordata received in return, at a frequency

of 10Hz.

1https://github.com/jimfinnis/DiamondApparatus

333

334 Chapter A. The robot system architecture

pioneernet
bridge_node

bridgeserver

ARIA library

Pioneer hardware

TCP/IP port
34312

motor
data

sensor
data

s0...
sonar
data

light
light
data

leftmotor

rightmotor

motor
control
values

gazebo_ros_3dx
jcf.xacro

lightsensor_gazebo
lightsensor_gazebo.so

gazebo_ros_3dx
sonar_pos.urdf.xacro

gazebo_ros_3dx
sonar_sensor.urdf.xacro

(hector sensors)

(libgazebo_ros_control)

gazebo

pioneernet
pioneernet_node

ROS on laptopPioneer

camera motors sonars

Picasso
library

tracker

/tracker/points

Diamond Apparatus

gazebo_ros_3dx
diamondpublish
(launched by
sim.launch)

Tracking code

/bright

(In the robot, total
brightness is calculated
from light sensor input.)

Figure A.1: Architecture of Pioneer/Gazebo controlled by ROS. Components

used only in the robot are in red, those used only in the simulation are in

blue. “Diamond Apparatus” is a simple publish/subscribe communications

system which runs outside ROS.

In the Gazebo simulation the sonar sensors are simulated using the TeamHector

sensor plugins [152]. These permit a degree of Gaussian noise to be added to the

sonar distance reading, and a value of σ � 0.005 was selected. This small value was

chosen because the robot sonar noise was as yet uncharacterised; it only has a small

effect on the repeatability of the paths.

A.1 Safety on the robot
Once the first message has been received, the robot will measure the interval since

the previous message. If no message has been received for 0.5s, the bridge program

will stop the motors and quit. Additionally, the low level ARIA system will stop the

motors if the battery is low or the bumpers encounter a persistent obstruction.

Appendix B

The robot tracking system

This appendix describes the localisation system used in the robot experiments, de-

scribed briefly in Sec. 10.1.5. As stated in that section, a commodity webcam with a

view of the entire arena is used to track the robot by locating a red LED in the image

and performing an inverse perspective transform. The steps are:

• Take image.

• Apply a Gaussian blur to make the diffused red LED clearer and reduce noise.

• Filter out a given range of hue, separation and value, turning all other pixels

black.

• Use OpenCV’s simpleBlobDetector to detect blobs, returning a list of key

points (centroids of candidates).

• Remove blobs whose centroids are dark (OpenCV has a bug whereby the

“colour filtering” in the blob detector does not work correctly1).

• Remove blobswhich are in areasmaskedbyhand to remove specular highlights

from the floor and spurious blobs produce by the lamp hood holes.

• Transform blobs to world space, where world space is a 2D plane parallel to

the floor, within which the LED moves.

• If we are operating in “locked” mode, remove blobs which are not within 0.2m

of the last robot position found. This is a “strong” frame coherence assumption

that the robot will not move more than 0.2m in a frame. The user engages

locked mode once the tracker has successfully found the stationary robot.

1https://www.learnopencv.com/blob-detection-using-opencv-python-c/

335

336 Chapter B. The robot tracking system

• Sort the list by increasing distance from the previous 10 top blobs (if any).

• Find the 10 top blobs by removing all but the first 10 from this list. This is a

“weak” frame coherence assumption that the correct blob is probably close to

a blob found in the previous frame.

• The next point to be published – the position of the robot – is the head of this

list.

This is given a little more formally in Algorithm 14. Fig. B.1 shows the image from

the camera before and after manual exposure adjustment, showing the noise present

when auto adjustment is used (setting the exposure very high) alongwith the blown-

out pixels of the robot’s LED. In the manual exposure image the LED is clearly a

trackable red blob. The need formasking is clear, however: the lamp and its specular

highlight are still too easily confusedwith the LED. It should also be noted that there

is a fairly large area inwhich the LED is obscured by the lamp hood: the robot cannot

be tracked here.

(a) Auto exposure (b)Manual exposure

Figure B.1: Images from the tracking camera, with auto andmanual exposure

settings

337

Algorithm 14 Tracking algorithm.

M ← image to world transformation matrix

prevKPDists ← empty list

lastPoint ← (0, 0)
repeat

I ← image from sensor (RGB)

I ← gaussianBlur(I) {Gaussian blur with kernel size 11, σ � 1}

I ← HSV(I) {Transform image into HSV space}

for all p ∈ I do
if pH outside range or pS outside range or pV outside range then

p ← (0, 0, 0)
end if
L ← blobDetect(I) {use OpenCV’s simpleBlobDetector to get a list of key-

points}

end for
clear list KPDists
for all p ∈ L do
if pr + pg + pb > 3×minBri ght then {point is bright at the centre (avoids dark

blob detection)}

if p not in a mask then
®t ← M × (xI , yI , 1)T {perform transform to world}

®w ← (tx/tz , ty/tz) {perform perspective division}

if not locked or w within 0.2m of lastPoint or lastPointx < −99 then
d ←minimum distance from points in prevKPDists
append (®w , d) to list KPDists

end if
end if

end if
end for
sort KPDists by d
truncate KPDists to first 10 points

prevKPDists ← KPDists
if len gth(KPDists) > 0 then

lastPoint ← head(KPDists)
publish lastPoint to /tracker/points in Diamond Apparatus

end if
until done

338 Chapter B. The robot tracking system

B.1 Calibration
Calibration consists of several phases:

• find the transform to convert image coordinates into world coordinates, done

by marking known world positions in the image to give corresponding 2D

world plane coordinates — this was done using a pole with a marker the same

height as the LED to compensate for the height difference;

• calibrate the camera exposure so the LED is always detectable;

• find the optimal values for the HSV filtering;

• find the optimal values for the blob detection;

• establish which areas in the image need to be masked to avoid false positives –

necessary because of specular highlights from the lamp on the floor, and holes

in the lamp’s hood emitting large spots of light.

Bibliography

[1] D. H. Ackley, G. E. Hinton and

T. J. Sejnowski. “A learning algorithm

for Boltzmann machines”. In: Cognitive
Science 9.1 (1985), pp. 147–169.

[2] ActivMedia Robotics. Pioneer 2/PeopleBot
Operations Manual. 2001.

[3] U. Aickelin and S. Cayzer. “The Danger

Theory and its Application to Artificial

Immune Systems”. In: Proceedings of the
1st International Conference on Artificial
Immune Systems. Canterbury, UK, 2002,

pp. 141–148.

[4] U. Aickelin, D. Dasgupta and F. Gu.

“Artificial immune systems”. In: Search
Methodologies. Springer, 2014,
pp. 187–211.

[5] L. Altenberg. “The Schema Theorem

and Price’s Theorem”. In: 9th
International Workshop, Foundations of
Genetic Algorithms 2007. Mexico City:

Springer, 2007, pp. 23–49.

[6] J. R. Anderson et al. “An integrated

theory of the mind”. In: Psychological
Review 111.4 (2004), pp. 1036–1060.

[7] M. Anthony. Boolean functions and
artificial neural networks. Tech. rep.
LSE-CDAM-2003-1. London School of

Economics and Political Science, 2003.

[8] M. A. Arbib and J.-M. Fellous.

“Emotions: from brain to robot”. In:

Trends in Cognitive Sciences 8.12 (2004),

pp. 554–561.

[9] R. C. Arkin. Behavior-Based Robotics. MIT

Press, 1998.

[10] R. C. Arkin. “Homeostatic Control for a

Mobile Robot - Dynamic Replanning in

Hazardous Environments”. In: Journal of
Robotic Systems 9.2 (1992), pp. 197–214.

[11] R. C. Arkin and T. Balch. “AuRA:

Principles and practice in review”. In:

Journal of Experimental and Theoretical
Artificial Intelligence 9.2-3 (1997),

pp. 175–189.

[12] R. C. Arkin and D. C. Mackenzie.

“Planning to Behave: A Hybrid

Deliberative/Reactive Robot Control

Architecture for Mobile Manipulation”.

In: International Symposium on Robotics
and Manufacturing. Maui, HI, USA, 1994.

[13] W. R. Ashby. An Introduction to
Cybernetics. London: Chapman & Hall,

1957.

[14] W. R. Ashby. Design for a Brain. New

York: Wiley, 1952.

[15] R. D. Beer. “A dynamical systems

perspective on agent-environment

interaction”. In: Artificial Intelligence 72.1
(1995), pp. 173–215.

[16] R. D. Beer. “Dynamical approaches to

cognitive science”. In: Trends in Cognitive
Sciences 4.3 (2000), pp. 91–99.

[17] R. D. Beer. “On the dynamics of small

continuous-time recurrent neural

networks”. In: Adaptive Behavior 3.4
(1995), pp. 469–509.

339

340 Bibliography

[18] R. D. Beer and J. C. Gallagher. “Evolving

dynamical neural networks for adaptive

behavior”. In: Adaptive Behavior 1.1
(1992), pp. 91–122.

[19] U. Behn. “Idiotypic networks: toward a

renaissance?” In: Immunological Reviews
216.1 (2007), pp. 142–152.

[20] M. Ben-Ari and F. Mondada. Elements of
Robotics. Springer International
Publishing, 2018.

[21] Y. Bengio, P. Frasconi and P. Simard.

“Learning long term dependencies in

recurrent networks”. In: IEEE
International Conference on Neural
Networks. 1993, pp. 1183–1188.

[22] Y. Bengio, P. Simard and P. Frasconi.

“Learning long-term dependencies with

gradient descent is difficult”. In: IEEE
Transactions on Neural Networks 5.2
(1994), pp. 157–166.

[23] Y. Bengio et al. “Greedy layer-wise

training of deep networks”. In: Advances
in Neural Information Processing Systems.
2007, pp. 153–160.

[24] I. S. N. Berkeley. A revisionist history of
connectionism. 1997. url:

http://www.universelle-

automation.de/1969_Boston.pdf

(visited on 16/08/2019).

[25] H.-G. Beyer and H.-P. Schwefel.

“Evolution strategies – A

comprehensive introduction”. In:

Natural Computing 1.1 (2002), pp. 3–52.

[26] C. M. Bishop. Neural Networks for Pattern
Recognition. Clarendon Press, 1995.

[27] C. M. Bishop. Pattern Recognition and
Machine Learning. New York, NY, USA:

Springer-Verlag, 2006.

[28] C. Blum and X. Li. “Swarm intelligence

in optimization”. In: Swarm Intelligence.
Springer, 2008, pp. 43–85.

[29] E. K. Blum. “Approximation of Boolean

Functions by Sigmoidal Networks: Part

I: XOR and Other Two-Variable

Functions”. In: Neural Computation 1.4

(1989), pp. 532–540.

[30] V. Braitenberg. Vehicles. MIT Press, 1986.

[31] C. Brom and J. Bryson. Action selection
for intelligent systems. Tech. rep. 044-1.
European Network for the

Advancement of Artificial Cognitive

Systems, 2006.

[32] R. A. Brooks. “A robot that walks;

emergent behaviors from a carefully

evolved network”. In: Neural
Computation 1.2 (1989), pp. 253–262.

[33] R. A. Brooks. “A robust layered control

system for a mobile robot”. In: IEEE
Journal of Robotics and Automation 2.1

(1986), pp. 14–23.

[34] R. A. Brooks. “Artificial life and real

robots”. In: Toward a Practice of
Autonomous Systems: Proceedings of the
First European Conference on Artificial Life.
Paris, France: MIT Press, 1992.

[35] R. A. Brooks. “Elephants don’t play

chess”. In: Robotics and Autonomous
Systems 6.1-2 (1990), pp. 3–15.

[36] R. A. Brooks and P. A. Viola. “Network

based autonomous robot motor

control”. In: Advanced Neural Computers.
Ed. by R. Eckmiller. Elsevier Science

Publishers, 1990, pp. 341–348.

[37] R. A. Brooks. “Challenges for complete

creature architectures”. In: First
International Conference on Simulation of
Adaptive Behavior. 1991, pp. 434–443.

[38] R. A. Brooks. “Intelligence without

representation”. In: Artificial Intelligence
47.1 (1991), pp. 139–159.

Bibliography 341

[39] R. G. Brown. “Smoothing”. In:

Forecasting and Prediction of Discrete Time
Series. Englewood Cliffs, NJ, USA:

Prentice-Hall, 1963, p. 238.

[40] J. Bryson. “Cross-paradigm analysis of

autonomous agent architecture”. In:

Journal of Experimental and Theoretical
Artificial Intelligence 12.2 (2000),
pp. 165–189.

[41] J. J. Bryson. “Action selection and

individuation in agent based

modelling”. In: Proceedings of Agent
2003. 2003, pp. 317–330.

[42] D. Bucher and E. Marder. “SnapShot:

neuromodulation”. In: Cell 155.2 (2013),

p. 482.

[43] D. V. Buonomano and W. Maass.

“State-dependent computations:

spatiotemporal processing in cortical

networks”. In: Nature Reviews
Neuroscience 10.2 (2009), p. 113.

[44] F. M. Burnet. “A modification of Jerne’s

theory of antibody production using the

concept of clonal selection”. In: CA: A
Cancer Journal for Clinicians 26.2 (1976),

pp. 119–121.

[45] E. Cambria and B. White. “Jumping

NLP curves: A review of natural

language processing research”. In: IEEE
Computational Intelligence Magazine 9.2
(2014), pp. 48–57.

[46] D. Cañamero. “A hormonal model of

emotions for behavior control”. In:

Fourth European Conference on Artificial
Life, ECAL ’97. Brighton, UK, 1997.

[47] G. A. Carpenter and S. Grossberg. “ART

3: Hierarchical search using chemical

transmitters in self-organizing pattern

recognition architectures”. In: Neural
Networks 3.2 (1990), pp. 129–152.

[48] G. A. Carpenter and S. Grossberg. “The

ART of adaptive pattern recognition by

a self-organizing neural network”. In:

Computer 21.3 (1988), pp. 77–88.

[49] G. A. Carpenter, S. Grossberg and

J. H. Reynolds. “ARTMAP: Supervised

real-time learning and classification of

nonstationary data by a self-organizing

neural network”. In: Neural Networks 4.5
(1991), pp. 565–588.

[50] G. Chevalier and J. M. Deniau.

“Disinhibition as a basic process in the

expression of striatal functions”. In:

Trends in Neurosciences 13.7 (1990),

pp. 277–280.

[51] K. Cho et al. “Learning Phrase

Representations using RNN

Encoder–Decoder for Statistical

Machine Translation”. In: Proceedings of
the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP).
2014, pp. 1724–1734.

[52] A. Clark and R. Grush. “Towards a

cognitive robotics”. In: Adaptive Behavior
7.1 (1999), pp. 5–16.

[53] D. Cliff. “Computational

Neuroethology: A Provisional

Manifesto”. In: From Animals to Animats:
Proceedings of the First International
Conference on Simulation of Adaptive
Behavior. Cambridge, MA, USA: MIT

Press, 1990, pp. 29–39.

[54] D. Cliff. “Neuroethology,

computational”. In: The Handbook of
Brain Theory and Neural Networks. Ed. by
M. Arbib. 2nd ed. MIT Press, 2003,

pp. 737–741.

[55] M. Cohn. “The real ‘danger’ lies in the

failure to confront fundamentals”. In:

Scandinavian Journal of Immunology 88.6

(2018), e12726.

342 Bibliography

[56] G. Cybenko. “Approximation by

superpositions of a sigmoidal function”.

In: Mathematics of Control, Signals and
Systems 2.4 (1989), pp. 303–314.

[57] M. F. Dacrema, P. Cremonesi and

D. Jannach. “Are We Really Making

Much Progress? AWorrying Analysis of

Recent Neural Recommendation

Approaches”. In: Proceedings of the 13th
ACM Conference on Recommender Systems
(RecSys 2019). Copenhagen, 2019.

[58] Y. Dan and M. M. Poo. “Hebbian

depression of isolated neuromuscular

synapses in vitro”. In: Science 256.5063
(1992), pp. 1570–1573.

[59] L. Danziger and G. L. Elmergreen.

“Mathematical models of endocrine

systems”. In: The Bulletin of Mathematical
Biophysics 19.1 (1957), pp. 9–18.

[60] F. Dario et al. “Evolution of spiking

neural circuits in autonomous mobile

robots”. In: International Journal of
Intelligent Systems 21.9 (2006),
pp. 1005–1024.

[61] L. N. De Castro and J. Timmis. Artificial
Immune Systems: A New Computational
Intelligence Approach. Springer Science &
Business Media, 2002.

[62] K. Deb et al. “A fast and elitist

multiobjective genetic algorithm:

NSGA-II”. In: IEEE Transactions on
Evolutionary Computation 6.2 (2002),

pp. 182–197.

[63] R. Dechter. “Learning while searching

in constraint-satisfaction problems”. In:

Proceedings of the Fifth AAAI National
Conference on Artificial Intelligence.
Philadelphia, PA, USA, 1986.

[64] M. P. Deisenroth. “A Survey on Policy

Search for Robotics”. In: Foundations and
Trends in Robotics 2.1-2 (2013), pp. 1–142.

[65] E. A. Di Paolo. “Organismically-inspired

robotics: homeostatic adaptation and

teleology beyond the closed

sensorimotor loop”. In: Dynamical
Systems Approach to Embodiment and
Sociality (2003), pp. 19–42.

[66] S. Doncieux et al. “Evolutionary

robotics: what, why, and where to”. In:

Frontiers in Robotics and AI 2 (2015), p. 4.

[67] M. Dorigo and M. Birattari. “Ant colony

optimization”. In: Encyclopedia of
Machine Learning. Springer, 2011,
pp. 36–39.

[68] M. Dorigo, E. Bonabeau and

G. Theraulaz. “Ant algorithms and

stigmergy”. In: Future Generation
Computer Systems 16.8 (2000),

pp. 851–871.

[69] K. Doya. “Metalearning and

neuromodulation”. In: Neural Networks
15.4-6 (2002), pp. 495–506.

[70] H. L. Dreyfus. Alchemy and artificial
intelligence. Tech. rep. P-3244. Santa
Monica, CA, USA: Rand Corporation,

1965.

[71] H. L. Dreyfus. “Why computers must

have bodies in order to be intelligent”.

In: The Review of Metaphysics (1967),
pp. 13–32.

[72] R. O. Duda, P. E. Hart and D. G. Stork.

Pattern Classification. John Wiley & Sons,

2012.

[73] P. Dürr, C. Mattiussi and D. Floreano.

“Neuroevolution with analog genetic

encoding”. In: Parallel Problem Solving
From Nature - PPSN IX. Reykjavik,
Iceland, 2006, pp. 671–680.

[74] R. C. Eberhart and J. Kennedy. “A new

optimizer using particle swarm theory”.

In: Proceedings of the Sixth International
Symposium on Micro Machine and Human
Science. Vol. 1. New York, NY, USA,

1995, pp. 39–43.

Bibliography 343

[75] J. L. Elman. “Finding structure in time”.

In: Cognitive Science 14.2 (1990),
pp. 179–211.

[76] J. L. Elman. “Distributed

representations, simple recurrent

networks, and grammatical structure”.

In: Machine Learning 7.2-3 (1991),

pp. 195–225.

[77] D. Erhan et al. “Why Does

Unsupervised Pre-training Help Deep

Learning?” In: Journal of Machine
Learning Research 11.Feb (2010),

pp. 625–660.

[78] B. S. Everitt, S. Landau and M. Leese.

Cluster Analysis. John Wiley & Sons, Inc.,

1993.

[79] S. E. Fahlman, G. E. Hinton and

T. J. Sejnowski. “Massively parallel

architectures for Al: NETL, Thistle, and

Boltzmann machines”. In: Proceedings of
AAAI-83. Vol. 113. Washington, DC,

USA, 1983.

[80] L. S. Farhy. “Modeling of Oscillations in

Endocrine Networks with Feedback”.

In: Numerical Computer Methods, Part E.
Vol. 384. Methods in Enzymology.

Academic Press, 2004, pp. 54–81.

[81] L. S. Farhy et al. “A construct of

interactive feedback control of the GH

axis in the male”. In: American Journal of
Physiology-Regulatory, Integrative and
Comparative Physiology 281.1 (2001),

R38–R51.

[82] B. G. Farley and W. Clark. “Simulation

of self-organizing systems by digital

computer”. In: Information Theory,
Transactions of the IRE Professional Group
On 4.4 (1954), pp. 76–84.

[83] J. D. Farmer, N. H. Packard and

A. S. Perelson. “The immune system,

adaptation, and machine learning”. In:

Physica D: Nonlinear Phenomena 22.1-3
(1986), pp. 187–204.

[84] J.-M. Fellous. “From human emotions to

robot emotions”. In: Architectures for
Modeling Emotion: Cross-Disciplinary
Foundations, American Association for
Artificial Intelligence (2004), pp. 39–46.

[85] J. C. Finnis. “Homeostatic Robot Control

Using Simple Neuromodulatory

Techniques”. In: Proceedings of TAROS
(Towards Autonomous Robotic Systems).
Guildford, UK, 2017, pp. 325–339.

[86] J. C. Finnis. Rover walking: a
neuroendocrine controller for switching
between rolling and walking locomotion.
Aberystwyth University. 2013. url:

http://users.aber.ac.uk/jcf1/

finalYearReport.pdf (visited on

15/08/2019).

[87] J. C. Finnis and M. Neal. “A simple

drive load-balancing technique for

multi-wheeled planetary rovers”. In:

Proceedings of TAROS (Towards
Autonomous Robotic Systems). Oxford,

UK, 2013.

[88] J. C. Finnis and M. Neal. “UESMANN:

A feed-forward network capable of

learning multiple functions”. In:

International Conference on Simulation of
Adaptive Behavior. Aberystwyth, UK,

2016, pp. 101–112.

[89] D. Floreano and C. Mattiussi.

Bio-Inspired Artificial Intelligence:
Theories, Methods, and Technologies. MIT

press, 2008.

[90] D. Floreano and C. Mattiussi.

“Evolution of spiking neural controllers

for autonomous vision-based robots”.

In: International Symposium on
Evolutionary Robotics. 2001, pp. 38–61.

[91] D. Floreano and F. Mondada.

“Automatic creation of an autonomous

agent: Genetic evolution of a neural

network driven robot”. In: From Animals
to Animats 3: Proceedings of the Third

344 Bibliography

International Conference on Simulation of
Adaptive Behavior. 1994, pp. 421–430.

[92] K. Friston. “The free-energy principle: a

unified brain theory?” In:Nature Reviews
Neuroscience 11.2 (2010), pp. 127–138.

[93] K. Fukushima and S. Miyake.

“Neocognitron: A self-organizing

neural network model for a mechanism

of visual pattern recognition”. In:

Competition and Cooperation in Neural
Nets. Springer, 1982, pp. 267–285.

[94] K. Funahashi and Y. Nakamura.

“Approximation of dynamical systems

by continuous time recurrent neural

networks”. In: Neural Networks 6.6
(1993), pp. 801–806.

[95] J. Garson. “Connectionism”. In: The
Stanford Encyclopedia of Philosophy. Ed. by
E. N. Zalta. Winter 201. Metaphysics

Research Lab, Stanford University, 2016.

[96] GCTronic. Extensions - Omnidirectional
Vision Turret. url: http://www.e-puck.

org/index.php?option=com_content&

view=article&id=26&Itemid=21

(visited on 21/01/2020).

[97] R. Ge et al. “Escaping from saddle

points—online stochastic gradient for

tensor decomposition”. In: Proceedings of
the 28th Conference on Learning Theory.
Paris, France, 2015, pp. 797–842.

[98] I. Gerostathopoulos et al. “Architectural

homeostasis in self-adaptive

software-intensive cyber-physical

systems”. In: European Conference on
Software Architecture. 2016, pp. 113–128.

[99] R. Gesztelyi et al. “The Hill equation

and the origin of quantitative

pharmacology”. In: Archive for History of
Exact Sciences 66.4 (2012), pp. 427–438.

[100] B. Girard et al. “Where neuroscience

and dynamic system theory meet

autonomous robotics: A contracting

basal ganglia model for action

selection”. In: Neural Networks 21.4
(2008), pp. 628–641.

[101] X. Glorot and Y. Bengio.

“Understanding the difficulty of

training deep feedforward neural

networks”. In: Proceedings of the
Thirteenth International Conference on
Artificial Intelligence and Statistics. 2010,
pp. 249–256.

[102] I. Goodfellow et al. “Generative

adversarial nets”. In: Advances in Neural
Information Processing Systems. 2014,
pp. 2672–2680.

[103] J. Greensmith, A. Whitbrook and

U. Aickelin. “Artificial immune

systems”. In: Handbook of Metaheuristics.
Springer, 2010, pp. 421–448.

[104] D. Greer, P. McKerrow and J. Abrantes.

“Robots in urban search and rescue

operations”. In: Australasian Conference
on Robotics and Automation, Auckland.
2002, pp. 27–29.

[105] W. Grey Walter. The Living Brain. Gerald

Duckworth & Co., 1953.

[106] S. Grossberg. “Adaptive Resonance

Theory: How a brain learns to

consciously attend, learn, and recognize

a changing world”. In: Neural Networks
37 (2013), pp. 1–47.

[107] K. Gurney, T. J. Prescott and

P. Redgrave. “A computational model of

action selection in the basal ganglia. I. A

new functional anatomy”. In: Biological
Cybernetics 84.6 (2001), pp. 401–410.

[108] M. T. Hagan and M. B. Menhaj.

“Training feedforward networks with

the Marquardt algorithm”. In: IEEE
Transactions on Neural Networks 5.6
(1994), pp. 989–993.

Bibliography 345

[109] H. Hamann et al. “A hormone-based

controller for evolutionary

multi-modular robotics: From single

modules to gait learning”. In: IEEE
Congress on Evolutionary Computation.
2010, pp. 1–8.

[110] H. Hamann et al. “Artificial hormone

reaction networks: Towards higher

evolvability in evolutionary

multi-modular robotics”. In: Artificial
Life XII: Proceedings of the 12th
International Conference on the Synthesis
and Simulation of Living Systems, ALIFE
2010. 2010, pp. 773–780.

[111] L. G. C. Hamey. “XOR has no local

minima: A case study in neural network

error surface analysis”. In: Neural
Networks 11.4 (1998), pp. 669–681.

[112] S. Harnad. “Minds , Machines and

Searle”. In: Journal of Experimental and
Theoretical Artificial Intelligence 1.August
(1989), pp. 5–25.

[113] J. Harrison. Handbook of Practical Logic
and Automated Reasoning. Cambridge

University Press, 2009.

[114] I. Harvey et al. “Evolutionary robotics:

A new scientific tool for studying

cognition”. In: Artificial Life 11.1-2
(2005), pp. 79–98.

[115] D. Hassabis. “Artificial Intelligence:

Chess match of the century”. In: Nature
544.7651 (2017), p. 413.

[116] K. He et al. “Deep residual learning for

image recognition”. In: Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 770–778.

[117] D. O. Hebb. The Organization of Behavior;
A Neuropsychological Theory. Psychology
Press, 1949.

[118] J. J. Henley and D. P. Barnes. “An

artificial neuro-endocrine kinematics

model for legged robot obstacle

negotiation”. In: 8th ESA Workshop on
Advanced Space Technologies for Robotics
and Automation. 2004, p. 22.

[119] J. Hinson et al. The Endocrine System :
Basic Science and Clinical Conditions.
2nd ed. Churchill Livingstone, 2010,

p. 185.

[120] G. E. Hinton. “Learning distributed

representations of concepts”. In:

Proceedings of the Eighth Annual
Conference of the Cognitive Science Society.
Vol. 1. Amherst, MA, USA, 1986, p. 12.

[121] G. E. Hinton. “To recognize shapes, first

learn to generate images”. In: Progress in
Brain Research 165 (2007), pp. 535–547.

[122] G. E. Hinton and T. Shallice. “Lesioning

an attractor network: investigations of

acquired dyslexia”. In: Psychological
Review 98.1 (1991), pp. 74–95.

[123] S. Hochreiter and J. Schmidhuber.

“Long short-term memory.” In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[124] A. L. Hodgkin and A. F. Huxley. “A

quantitative description of membrane

current and its application to

conduction and excitation in nerve”. In:

The Journal of Physiology 117.4 (1952),

pp. 500–544.

[125] J. H. Holland. Adaptation in Natural and
Artificial Systems: An Introductory
Analysis With Applications to Biology,
Control, and Artificial Intelligence.
University of Michigan Press, 1975.

[126] J. J. Hopfield. “Neural networks and

physical systems with emergent

collective computational abilities.” In:

Proceedings of the National Academy of
Sciences of the United States of America
79.8 (1982), pp. 2554–2558.

346 Bibliography

[127] D. H. Hubel and T. N. Wiesel.

“Receptive fields of single neurones in

the cat’s striate cortex”. In: The Journal of
Physiology 148.3 (1959), pp. 574–591.

[128] R. Humza et al. “Towards energy

homeostasis in an autonomous

self-reconfigurable modular robotic

organism”. In: Proceedings of
Computation World: Future Computing,
Service Computation, Cognitive, Adaptive,
Content, Patterns. Athens, Greece, 2009,

pp. 21–26.

[129] P. Husbands and I. Harvey. “Evolution

Versus Design: Controlling

Autonomous Robots”. In: Proceedings of
the Third Annual Conference of AI,
Simulation, and Planning in High
Autonomy Systems ’Integrating Perception,
Planning and Action’. Los Alamitos, CA,

USA: IEEE Computer Society, 1992,

pp. 139–146.

[130] P. Husbands. “Evolving robot

behaviours with diffusing gas

networks”. In: Evolutionary Robotics:
Proceedings of the European Workshop on
Evolutionary Robotics. Paris, France, 1998,
pp. 71–86.

[131] P. Husbands et al. “Brains, Gases and

Robots”. In: ICANN’98:Proceedings of the
8th International Conference on Artificial
Neural Networks. Skövde, Sweden, 1998,

pp. 51–63.

[132] P. Husbands et al. “Volume signalling in

real and robot nervous systems”. In:

Theory in Biosciences 120.3-4 (2001),
pp. 253–269.

[133] M. Hutson. “Has artificial intelligence

become alchemy?” In: Science 360.6388
(2018), p. 478.

[134] S. Ioffe and C. Szegedy. “Batch

Normalization: Accelerating Deep

Network Training by Reducing Internal

Covariate Shift”. In: International

Conference on Machine Learning. Lille,
2015, pp. 448–456.

[135] W. Isaacson. The Innovators: How a Group
of Hackers, Geniuses, and Geeks Created the
Digital Revolution. Simon & Schuster,

Limited, 2015.

[136] H. Jaeger. The “echo state” approach to
analysing and training recurrent neural
networks. Tech. rep. 148. Bonn, Germany:

GMD-Forschungszentrum

Informationstechnik, 2001.

[137] H. Jaeger. Tutorial on training recurrent
neural networks, covering BPPT, RTRL,
EKF and the “echo state network” approach.
Tech. rep. 159. Bonn, Germany:

GMD-Forschungszentrum

Informationstechnik, 2002.

[138] N. Jakobi. “Evolutionary robotics and

the radical envelope-of-noise

hypothesis”. In: Adaptive Behavior 6.2
(1997), pp. 325–368.

[139] N. Jakobi. “Half-baked, ad-hoc and

noisy: Minimal simulations for

evolutionary robotics”. In: Fourth
European Conference on Artificial Life.
Vol. 4. Brighton, UK, 1997, p. 348.

[140] N. Jakobi, P. Husbands and I. Harvey.

“Noise and the reality gap: The use of

simulation in evolutionary robotics”. In:

Advances in Artificial Life. ECAL 1995.
Granada, Spain, 1995, pp. 704–720.

[141] F. Jenkins. “Practical requirements for a

domestic vacuum-cleaning robot”. In:

Proceedings of AAAI 1993 Fall Symposium
Series: Instantiating Real-World Agents.
1993, pp. 85–90.

[142] N. K. Jerne. “Towards a network theory

of the immune system.” In: Annales
d’Immunologie 125.1-2 (1974), p. 373.

[143] S. Józefowski. “The danger model:

questioning an unconvincing theory”.

In: Immunology and Cell Biology 94.2

(2016), pp. 164–168.

Bibliography 347

[144] K. Kaneko. “Chaos as a source of

complexity and diversity in evolution”.

In: Artificial Life 1.1_2 (1993),
pp. 163–177.

[145] D. Katz, J. Kenney and O. Brock. “How

can robots succeed in unstructured

environments”. In: Workshop on Robot
Manipulation: Intelligence in Human
Environments at Robotics: Science and
Systems (RSS 2008). Atlanta, GA, USA,

2008.

[146] S. A. Kauffman. The Origins of Order:
Self-Organization and Selection in
Evolution. Oxford University Press, 1993.

[147] S. Kernbach et al. “Symbiotic robot

organisms: REPLICATOR and

SYMBRION projects”. In: Proceedings of
the 8th Workshop on Performance Metrics
for Intelligent Systems. 2008, pp. 62–69.

[148] K. Kirby. “Context dynamics in neural

sequential learning”. In: Proc. Florida AI
Research Symposium. 1991, pp. 66–70.

[149] D. E. Knuth. “Two Notes on Notation”.

In: The American Mathematical Monthly
99.5 (1992), pp. 403–422.

[150] Y. Kochura et al. “Performance analysis

of open source machine learning

frameworks for various parameters in

single-threaded and multi-threaded

modes”. In: Conference on Computer
Science and Information Technologies.
2017, pp. 243–256.

[151] N. Koenig and A. Howard. “Design and

use paradigms for Gazebo, an

open-source multi-robot simulator”. In:

IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).
Vol. 3. Sendai, Japan, 2004,

pp. 2149–2154.

[152] S. Kohlbrecher and J. Meyer.

hector_gazebo. Technische Universität
Darmstadt. url:

https://github.com/tu-darmstadt-

ros-pkg/hector_gazebo (visited on

04/11/2019).

[153] T. Kohonen. “The self-organizing map”.

In: Proceedings of the IEEE 78.9 (1990),

pp. 1464–1480.

[154] S. Koos, J.-B. Mouret and S. Doncieux.

“The transferability approach: Crossing

the reality gap in evolutionary robotics”.

In: IEEE Transactions on Evolutionary
Computation 17.1 (2012), pp. 122–145.

[155] E. A. Kravitz. “Hormonal control of

behavior: amines and the biasing of

behavioral output in lobsters”. In:

Science 241.4874 (1988), p. 1775.

[156] K. Krippendorf. A Dictionary of
Cybernetics. Tech. rep. 1986.

[157] A. Krizhevsky, I. Sutskever and

G. E. Hinton. “Imagenet classification

with deep convolutional neural

networks”. In: Advances in Neural
Information Processing Systems 25 (2012),

pp. 1097–1105.

[158] A. Krogh and J. A. Hertz. “A simple

weight decay can improve

generalization”. In: Advances in Neural
Information Processing Systems. 1992,
pp. 950–957.

[159] J. D. Kropotov and S. C. Etlinger.

“Selection of actions in the basal

ganglia–thalamocortical circuits:

Review and model”. In: International
Journal of Psychophysiology 31.3 (1999),

pp. 197–217.

[160] B. J. A. Kröse and M. Eecen. “A

self-organizing representation of sensor

space for mobile robot navigation”. In:

Proceedings of the IEEE/RSJ/GI
International Conference on Intelligent

348 Bibliography

Robots and Systems ’94. Vol. 1. 1994, 9–14
vol.1.

[161] V. Kyrylov, L. A. Severyanova and

A. Vieira. “Modeling robust oscillatory

behavior of the

hypothalamic-pituitary-adrenal axis”.

In: IEEE Transactions on Biomedical
Engineering 52.12 (2005), pp. 1977–1983.

[162] P. L’Ecuyer and R. Simard. “TestU01: A

C library for empirical testing of

random number generators”. In: ACM
Transactions on Mathematical Software
(TOMS) 33.4 (2007), p. 22.

[163] J. E. Laird, A. Newell and

P. S. Rosenbloom. “Soar: An architecture

for general intelligence”. In: Artificial
Intelligence 33.1 (1987), pp. 1–64.

[164] C. G. Langton. “Computation at the

edge of chaos: phase transitions and

emergent computation”. In: Physica D:
Nonlinear Phenomena 42.1-3 (1990),
pp. 12–37.

[165] Y. LeCun. My take on Ali Rahimi’s “Test of
Time” award talk at NIPS. 2017. url:

https://www.facebook.com/yann.

lecun/posts/10154938130592143

(visited on 17/08/2019).

[166] Y. A. LeCun et al. “Efficient backprop”.

In: Neural Networks: Tricks of the Trade.
Springer, 2012, pp. 9–48.

[167] Y. LeCun, Y. Bengio and G. Hinton.

“Deep learning”. In: Nature 521.7553
(2015), p. 436.

[168] Y. Lecun and C. Cortes. The MNIST
database of handwritten digits. url:

http://yann.lecun.com/exdb/mnist/

(visited on 15/08/2019).

[169] Y. LeCun et al. “Backpropagation

applied to handwritten zip code

recognition”. In: Neural Computation 1.4

(1989), pp. 541–551.

[170] S. Lee et al. “Evolving Gaits for Physical

Robots with the HyperNEAT

Generative Encoding: The Benefits of

Simulation”. In: European Conference on
the Applications of Evolutionary
Computation. Vienna, 2013, pp. 540–549.

[171] W. B. Levy and O. Steward. “Temporal

contiguity requirements for long-term

associative potentiation/depression in

the hippocampus”. In: Neuroscience 8.4
(1983), pp. 791–797.

[172] G. Li, B. Liu and Y. Liu. “A dynamical

model of the pulsatile secretion of the

hypothalamo-pituitary-thyroid axis”.

In: Biosystems 35.1 (1995), pp. 83–92.

[173] P. J. G. Lisboa and S. J. Perantonis.

“Complete solution of the local minima

in the XOR problem”. In: Network:
Computation in Neural Systems 2.1 (1991),

pp. 119–124.

[174] B. Liu. Web Data Mining: Exploring
Hyperlinks, Contents, and Usage Data.
Springer Science & Business Media,

2007.

[175] K. Z. Lorenz. “The comparative method

in studying innate behavior patterns”.

In: Symposia of the Society for Experimental
Biology 4 (1950), pp. 221–268.

[176] K. Z. Lorenz. The Foundations of Ethology.
Springer-Verlag, 1981.

[177] H. Lövheim. “A new three-dimensional

model for emotions and monoamine

neurotransmitters”. In: Medical
Hypotheses 78.2 (2012), pp. 341–348.

[178] G. W. Lucas. A Tutorial and Elementary
Trajectory Model for the Differential
Steering System of Robot Wheel Actuators.
The Rossum Project. url:

http://rossum.sourceforge.net/

papers/DiffSteer/DiffSteer.html

(visited on 12/10/2017).

Bibliography 349

[179] A. L. Maas, A. Y. Hannun and A. Y. Ng.

“Rectifier nonlinearities improve neural

network acoustic models”. In: ICML
Workshop on Deep Learning for Audio,
Speech, and Language Processing
(WDLASL 2013). Atlanta, GA, USA,

2013.

[180] W. Maass, T. Natschläger and

H. Markram. “Real-time computing

without stable states: A new framework

for neural computation based on

perturbations”. In: Neural Computation
14.11 (2002), pp. 2531–2560.

[181] S. Magg and A. Philippides. “GasNets

and CTRNNs – a comparison in terms

of evolvability”. In: From Animals to
Animats 9 (Proceedings of the Ninth
International Conference on Simulation of
Adaptive Behavior). Rome, Italy, 2006,

pp. 461–472.

[182] E. Marder and V. Thirumalai. “Cellular,

synaptic and network effects of

neuromodulation”. In: Neural Networks
15.4-6 (2002), pp. 479–493.

[183] J. Martens. “Deep Learning via

Hessian-free Optimization”. In:

Proceedings of the 27th International
Conference on Machine Learning
(ICML-10). ICML’10. Haifa, Israel, 2010,

pp. 735–742.

[184] L. M. Martinez and J.-M. Alonso.

“Complex receptive fields in primary

visual cortex”. In: The Neuroscientist 9.5
(2003), pp. 317–331.

[185] M. T. Mason. “Creation myths: The

beginnings of robotics research”. In:

IEEE Robotics & Automation Magazine
19.2 (2012), pp. 72–77.

[186] T. d. J. Mateo Sanguino. “50 years of

rovers for planetary exploration: A

retrospective review for future

directions”. In: Robotics and Autonomous
Systems 94 (2017), pp. 172–185.

[187] H. R. Maturana and F. G. Varela.

Autopoiesis and Cognition: The Realization
of the Living. Springer, 1980.

[188] P. Matzinger. “Tolerance, danger, and

the extended family”. In: Annual Review
of Immunology 12.1 (1994), pp. 991–1045.

[189] J. McCarthy and P. J. Hayes. “Some

philosophical problems from the

standpoint of artificial intelligence”. In:

Machine Intelligence 4 (1969),

pp. 463–502.

[190] W. S. McCulloch and W. Pitts. “A logical

calculus of the ideas immanent in

nervous activity”. In: The Bulletin of
Mathematical Biophysics 5.4 (1943),

pp. 115–133.

[191] W. McCune. “Solution of the Robbins

problem”. In: Journal of Automated
Reasoning 19.3 (1997), pp. 263–276.

[192] D. McFarland and E. Spier. “Basic

cycles, utility and opportunism in

self-sufficient robots”. In: Robotics and
Autonomous Systems 20.2-4 (1997),

pp. 179–190.

[193] G. McHale. “Adaptive Networks for

Robotics and the Emergence of Reward

Anticipatory Circuits”. PhD thesis.

University of Sussex, 2012.

[194] M. Mendao. “A neuro-endocrine control

architecture applied to mobile robotics”.

PhD thesis. Kent University, 2008.

[195] J. S. Milton and J. C. Arnold. Introduction
to Probability and Statistics: Principles and
Applications for Engineering and the
Computing Sciences. 4th. New York, NY,

USA: McGraw-Hill, Inc., 2002.

[196] M. L. Minsky. The Society of Mind. Simon

and Schuster, 1988.

[197] M. L. Minsky and S. A. Papert.

Perceptrons - Expanded Edition: An
Introduction to Computational Geometry.
MIT press Boston, MA: 1987.

350 Bibliography

[198] V. Mnih et al. “Human-level control

through deep reinforcement learning”.

In: Nature 518.7540 (2015), p. 529.

[199] R. C. Moioli et al. “Towards the

evolution of an artificial homeostatic

system”. In: IEEE Congress on
Evolutionary Computation. 2008,
pp. 4023–4030.

[200] D. J. Montana and L. Davis. “Training

Feedforward Neural Networks Using

Genetic Algorithms”. In: Proceedings of
the 11th International Joint Conference on
Artificial Intelligence. 1989, pp. 762–767.

[201] D. E. Moriarty and R. Mikkulainen.

“Efficient Reinforcement Learning

through Symbiotic Evolution”. In:

Machine Learning 22.1 (1996), pp. 11–32.

[202] G. J. Morton, T. H. Meek and

M. W. Schwartz. “Neurobiology of food

intake in health and disease”. In: Nature
Reviews Neuroscience 15.6 (2014), p. 367.

[203] D. Moser, R. Thenius and T. Schmickl.

“First Investigations into Artificial

Emotions in Cognitive Robotics”. In:

International Workshop on Medical and
Service Robots. 2016, pp. 213–227.

[204] A. C. Müller, S. Guido et al. Introduction
to Machine Learning With Python: A Guide
for Data Scientists. O’Reilly Media, Inc.,

2016.

[205] V. Nair and G. E. Hinton. “Rectified

linear units improve restricted

Boltzmann machines”. In: Proceedings of
the 27th International Conference on
Machine Learning (ICML-10). 2010,
pp. 807–814.

[206] A. Nanty and R. Gelin. “Fuzzy

controlled PAD emotional state of a

NAO robot”. In: Conference on
Technologies and Applications of Artificial
Intelligence, TAAI 2013. Taipei, Taiwan,

2013, pp. 90–96.

[207] S. Nason and J. E. Laird. “Soar-RL:

Integrating reinforcement learning with

Soar”. In: Cognitive Systems Research 6.1

(2005), pp. 51–59.

[208] M. Neal and J. Timmis. “Once More

Unto the Breach: Towards Artificial

Homeostasis?” In: Recent Developments
in Biologically Inspired Computing. Ed. by
L. N. De Castro and F. J. Von Zuben.

Idea Group, 2005, pp. 340–365.

[209] M. Neal and J. Timmis. “Timidity: a

useful emotional mechanism for robot

control?” In: Informatica (Slovenia) 27.2
(2003), pp. 197–204.

[210] A. Newell and H. A. Simon. “Computer

science as empirical inquiry: symbols

and search”. In: Communications of the
ACM 19.3 (1976), pp. 113–126.

[211] M. A. Nielsen. Neural Networks and Deep
Learning. Determination Press, 2015.

[212] S. Nolfi and D. Floreano. Evolutionary
Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines.
MIT press, 2000.

[213] E. Oja. “Simplified neuron model as a

principal component analyzer”. In:

Journal of Mathematical Biology 15.3

(1982), pp. 267–273.

[214] M. Oku, T. Makino and K. Aihara.

“Pseudo-orthogonalization of memory

patterns for associative memory”. In:

IEEE Transactions on Neural Networks and
Learning Systems 24.11 (2013),

pp. 1877–1887.

[215] N. H. Packard. “Adaptation toward the

edge of chaos”. In: Dynamic Patterns in
Complex Systems 212 (1988), pp. 293–301.

[216] R. Pascanu, T. Mikolov and Y. Bengio.

“On the difficulty of training recurrent

neural networks”. In: International
Conference on Machine Learning. Atlanta,
USA, 2013, pp. 1310–1318.

Bibliography 351

[217] Y. Pazos, F. F. Casanueva and

J. P. Camiña. “Basic aspects of ghrelin

action”. In: Vitamins & Hormones 77
(2007), pp. 89–119.

[218] B. A. Pearlmutter. Dynamic recurrent
neural networks. Tech. rep.
CMU-CS-90-196. Pittsburgh, PA, USA:

School of Computer Science, Carnegie

Mellon University, 1990.

[219] H. Peng et al. “Hormone-Inspired

Cooperative Control for Multiple UAVs

Wide Area Search”. In: ICIC 2008:
Advanced Intelligent Computing Theories
and Applications: With Aspects of
Theoretical and Methodological Issues.
Ed. by D.-S. Huang et al. Shanghai,

China, 2008, pp. 808–816.

[220] T. Peng. LeCun vs Rahimi : Has Machine
Learning Become Alchemy ? AMedium

Corporation. 2017. url:

https://medium.com/@Synced/lecun-

vs-rahimi-has-machine-learning-

become-alchemy-21cb1557920d

(visited on 10/08/2019).

[221] C. M. A. Pennartz. “Reinforcement

learning by Hebbian synapses with

adaptive thresholds”. In: Neuroscience
81.2 (1997), pp. 303–319.

[222] A. Philippides et al. “Flexible couplings:

Diffusing neuromodulators and

adaptive robotics”. In: Artificial Life
11.1-2 (2005), pp. 139–160.

[223] D. M. W. Powers. “Evaluation: From

Precision, Recall and F-Measure to ROC,

Informedness, Markedness &

Correlation”. In: Journal of Machine
Learning Technologies 2.1 (2011),
pp. 37–63.

[224] W. H. Press et al. Numerical Recipes: The
Art of Scientific Computing. 3rd ed.

Cambridge University Press, 2007.

[225] M. Quigley et al. “ROS: an open-source

Robot Operating System”. In: ICRA
Workshop on Open Source Software. Vol. 3.
3.2. Kobe, Japan, 2009, pp. 5–10.

[226] A. Rahimi. Test-of-time Award
Presentation, NIPS 2017. 2017. url:

https://www.youtube.com/watch?v=

ORHFOnaEzPc (visited on 10/08/2019).

[227] A. Rahimi and B. Recht. An Addendum to
Alchemy. 2017. url:

http://www.argmin.net/2017/12/11/

alchemy-addendum/ (visited on

10/08/2019).

[228] A. Raza and B. R. Fernandez.

“Immuno-inspired robotic applications:

a review”. In: Applied Soft Computing 37

(2015), pp. 490–505.

[229] P. Redgrave, T. J. Prescott and

K. Gurney. “The basal ganglia: a

vertebrate solution to the selection

problem?” In: Neuroscience 89.4 (1999),

pp. 1009–1023.

[230] J. D. M. Rennie. On L2-norm
Regularization and the Gaussian Prior.
Massachusetts Institute of Technology.

2003. url: http://qwone.com/~jason/

writing/l2gaussian.pdf (visited on

10/08/2019).

[231] M. Riedmiller. “Neural fitted Q iteration

- first experiences with a data efficient

neural reinforcement learning method”.

In: European Conference on Machine
Learning. Vol. 3720 LNAI. Porto,

Portugal, 2005, pp. 317–328.

[232] M. Röder. Precision, Recall and the F1
measure. DICE Group, Paderborn

University. 2015. url:

https://github.com/dice-

group/gerbil/wiki/Precision,-

Recall-and-F1-measure (visited on

10/08/2019).

352 Bibliography

[233] G. Rodriguez and C. R. Weisbin. “A

new method to evaluate human-robot

system performance”. In: Autonomous
Robots 14.2-3 (2003), pp. 165–178.

[234] P. Rohlfshagen and J. J. Bryson.

“Flexible latching: A

biologically-inspired mechanism for

improving the management of

homeostatic goals”. In: Cognitive
Computation 2.3 (2010), pp. 230–241.

[235] A. Roli et al. “Dynamical criticality:

overview and open questions”. In:

Journal of Systems Science and Complexity
31.3 (2018), pp. 647–663.

[236] F. Rosenblatt. “The perceptron: a

probabilistic model for information

storage and organization in the brain.”

In: Psychological Review 65.6 (1958),

p. 386.

[237] D. E. Rumelhart, G. E. Hinton and

R. J. Williams. “Learning

representations by back-propagating

errors”. In: Nature 323.6088 (1986),
pp. 533–536.

[238] D. E. Rumelhart, J. L. McClelland and

R. J. Williams. Parallel Distributed
Processing: Explorations in the
Microstructure of Cognition. Ed. by
D. E. Rumelhart and J. L. McClelland.

Vol. 1. Computational Models of

Cognition and Perception 1. MIT Press,

1986.

[239] I. Sakata and T. Sakai. “Ghrelin cells in

the gastrointestinal tract”. In:

International Journal of Peptides 2010
(2010).

[240] T. D. Sanger. “Optimal unsupervised

learning in a single-layer linear

feedforward neural network”. In: Neural
Networks 2.6 (1989), pp. 459–473.

[241] W. S. Sarle. Neural network FAQ (Periodic
posting to the Usenet newsgroup
comp.ai.neural-nets). SAS Institute. 1997.

url: ftp:

//ftp.sas.com/pub/neural/FAQ.html

(visited on 10/08/2019).

[242] C. Sauzé and M. Neal. “A

neuro-endocrine inspired approach to

long term energy autonomy in sailing

robots”. In: Proceedings of TAROS
(Towards Autonomous Robotic Systems).
Plymouth, UK, 2010, pp. 255–262.

[243] C. Sauzé and M. Neal. “Artificial

endocrine controller for power

management in robotic systems”. In:

IEEE Transactions on Neural Networks and
Learning Systems 24.12 (2013),

pp. 1973–1985.

[244] C. Sauzé and M. Neal. “Long term

power management in sailing robots”.

In: Oceans 2011. Santander, Spain, 2011,
pp. 1–8.

[245] J. B. Saxon and A. Mukerjee. “Learning

the motion map of a robot arm with

neural networks”. In: ĲCNN
International Joint Conference on Neural
Networks. 1990, 777–782 vol.2.

[246] J. D. Schaffer, D. D. Whitley and

L. J. Eshelman. “Combinations of

genetic algorithms and neural networks:

A survey of the state of the art”. In:

COGANN-92: International Workshop on
Combinations of Genetic Algorithms and
Neural Networks. Baltimore, MD, USA,

1992, pp. 1–37.

[247] T. Schmickl, H. Hamann and

K. Crailsheim. “Modelling a

hormone-inspired controller for

individual-and multi-modular robotic

systems”. In:Mathematical and Computer
Modelling of Dynamical Systems 17.3
(2011), pp. 221–242.

Bibliography 353

[248] J. Schmidhuber. “Deep Learning in

Neural Networks: An Overview”. In:

Neural Networks 61 (2015), pp. 85–117.

[249] W. Schultz. “Predictive reward signal of

dopamine neurons”. In: Journal of
Neurophysiology 80.1 (1998), pp. 1–27.

[250] M. J. Schuster et al. “Towards

Autonomous Planetary Exploration”.

In: Journal of Intelligent & Robotic Systems
93.3-4 (2019), pp. 461–494.

[251] H. Schütze, C. D. Manning and

P. Raghavan. Introduction to Information
Retrieval. Vol. 39. Cambridge University

Press, 2008.

[252] J. R. Searle. “Minds, brains, and

programs”. In: Behavioral and Brain
Sciences 3.3 (1980), pp. 417–424.

[253] A. K. Seth. “The cybernetic Bayesian

brain”. In: Open MIND. Ed. by

T. K. Metzinger and J. M. Windt. MIND

Group, 2014, pp. 1–24.

[254] A. K. Seth, J. J. Bryson and T. J. Prescott.

“Introduction. Modelling natural action

selection”. In: Philosophical Transactions
of the Royal Society B: Biological Sciences
362.1485 (2007), pp. 1521–1529.

[255] W. M. Shen et al. “Hormone-inspired

self-organization and distributed

control of robotic swarms”. In:

Autonomous Robots 17.1 (2004),
pp. 93–105.

[256] W.-M. Shen, C.-M. Chuong and P. Will.

“Digital Hormone Models for

Self-Organization”. In: Artificial Life VIII.
2003, pp. 116–120.

[257] P. Smolensky. “On the proper treatment

of connectionism”. In: Philosophy, Mind,
and Cognitive Inquiry. Springer, 1990,
pp. 145–206.

[258] A. Soltoggio, K. O. Stanley and S. Risi.

“Born to Learn: the Inspiration,

Progress, and Future of Evolved Plastic

Artificial Neural Networks”. In: Neural
Networks 108 (2018), pp. 48–67.

[259] A. Soltoggio et al. “Evolving

neuromodulatory topologies for

reinforcement learning-like problems”.

In: 2007 IEEE Congress on Evolutionary
Computation, CEC 2007. 2007,
pp. 2471–2478.

[260] S. Song, K. D. Miller and L. F. Abbott.

“Competitive Hebbian learning through

spike-timing-dependent synaptic

plasticity”. In: Nature Neuroscience 3.9
(2000), p. 919.

[261] I. G. Sprinkhuizen-Kuyper and

E. J. W. Boers. “The error surface of the

simplest XOR network has only global

minima”. In: Neural Computation 8.6

(1996), pp. 1301–1320.

[262] K. O. Stanley, B. D. Bryant and

R. Miikkulainen. “Real-time

neuroevolution in the NERO video

game”. In: IEEE Transactions on
Evolutionary Computation 9.6 (2005),

pp. 653–668.

[263] K. O. Stanley, D. B. D’Ambrosio and

J. Gauci. “A hypercube-based encoding

for evolving large-scale neural

networks.” In: Artificial Life 15.2 (2009),

pp. 185–212.

[264] K. O. Stanley and R. Miikkulainen.

“Evolving neural networks through

augmenting topologies”. In:

Evolutionary Computation 10.2 (2002),

pp. 99–127.

[265] A. Stocco. “A Biologically Plausible

Action Selection System for Cognitive

Architectures: Implications of Basal

Ganglia Anatomy for Learning and

Decision-Making Models”. In: Cognitive
Science 42.2 (2018), pp. 457–490.

354 Bibliography

[266] A. Storkey. “Increasing the capacity of a

Hopfield network without sacrificing

functionality”. In: International
Conference on Artificial Neural Networks.
1997, pp. 451–456.

[267] J. Stradner et al. “Evolving a novel

bio-inspired controller in reconfigurable

robots”. In: Advances in Artificial Life
(ECAL 2009). Budapest, Hungary:

Springer, 2009, pp. 132–139.

[268] H. Strömfelt, Y. Zhang and

B. W. Schuller. “Emotion-augmented

machine learning: Overview of an

emerging domain”. In: 7th International
Conference on Affective Computing and
Intelligent Interaction, ACII 2017. 2017,
pp. 305–312.

[269] L. Suchman. Plans and Situated Actions.
Cambridge University Press, 1987,

p. 224.

[270] I. Sutskever et al. “On the importance of

initialization and momentum in deep

learning”. In: International Conference on
Machine Learning. Atlanta, GA, USA,

2013, pp. 1139–1147.

[271] R. S. Sutton. “Learning to predict by the

methods of temporal differences”. In:

Machine Learning 3.1 (1988), pp. 9–44.

[272] R. S. Sutton and A. G. Barto.

Reinforcement Learning: An Introduction.
Vol. 1. 1. Cambridge, MA, USA: MIT

Press, 1998.

[273] M. Talanov and A. Toschev.

“Computational emotional thinking

and virtual neurotransmitters”. In:

International Journal of Synthetic Emotions
5.1 (2014), pp. 1–8.

[274] G. Tanaka et al. “Recent advances in

physical reservoir computing: A

review”. In: Neural Networks 115 (2019),
pp. 100–123.

[275] P. Teerakittikul. “Artificial Hormone

Network for Adaptable Robots”.

PhD thesis. York, 2013.

[276] P. Teerakittikul, G. Tempesti and

A. M. Tyrrell. “Artificial hormone

network for adaptive robot in a dynamic

environment”. In: Conference on Adaptive
Hardware and Systems (AHS), 2012
NASA/ESA. 2012, pp. 129–136.

[277] R. Thenius, P. Zahadat and T. Schmickl.

“EMANN - a model of emotions in an

artificial neural network”. In: Advances
in Artificial Life (ECAL 2013). Vol. 12.
2013, pp. 830–837.

[278] J. Timmis, L. Murray and M. Neal. “A

Neural-Endocrine Architecture for

Foraging in Swarm Robotic Systems”.

In: Nature Inspired Cooperative Strategies
for Optimization (NICSO 2010). Springer,
2010, pp. 319–330.

[279] J. Timmis, M. Neal and J. Thorniley. “An

adaptive neuro-endocrine system for

robotic systems”. In: IEEE Workshop on
Robotic Intelligence in Informationally
Structured Space, 2009 (RIISS’09). 2009,
pp. 129–136.

[280] N. Tinbergen. The Study of Instinct.
Oxford, UK: Clarendon Press, 1951.

[281] S. S. Tomkins. Affect Imagery
Consciousness: The Complete Edition: Two
Volumes. Springer Publishing Company,

2008.

[282] E. Tunstel. “Operational performance

metrics for Mars exploration rovers”. In:

Journal of Field Robotics 24.8-9 (2007),

pp. 651–670.

[283] A. M. Turing. “The chemical basis of

morphogenesis”. In: Philosophical
Transactions of the Royal Society of London.
Series B, Biological Sciences 237.641
(1952), pp. 37–72.

Bibliography 355

[284] T. Tyrrell. “Computational mechanisms

for action selection”. PhD thesis.

University of Edinburgh, Scotland, 1993.

[285] F. J. Valverde-Albacete and

C. Peláez-Moreno. “100% Classification

Accuracy Considered Harmful: The

Normalized Information Transfer Factor

Explains the Accuracy Paradox”. In:

PLoS ONE 9.1 (2014). Ed. by

M. G. A. Paris, e84217.

[286] P. A. Vargas, E. A. Di Paolo and

P. Husbands. “A study of GasNet spatial

embedding in a delayed-response task.”

In: Artificial Life XI, Proceedings of the
Eleventh International Conference on the
Simulation and Synthesis of Living
Systems. 2008, pp. 640–647.

[287] P. A. Vargas, E. A. Di Paolo and

P. Husbands. “Preliminary

investigations on the evolvability of a

non-spatial GasNet model”. In:

Advances in Artificial Life (ECAL 2007).
Springer, 2007, pp. 966–975.

[288] P. A. Vargas et al. The Horizons of
Evolutionary Robotics. MIT press, 2014.

[289] P. A. Vargas et al. “Artificial homeostatic

system: A novel approach”. In: Advances
in Artificial Life (ECAL 2005) (2005),
pp. 754–764.

[290] P. A. Vargas et al. “Homeostasis and

evolution together dealing with

novelties and managing disruptions”.

In: International Journal of Intelligent
Computing and Cybernetics 2.3 (2009),

pp. 435–454.

[291] F. Vaussard et al. “Cutting down the

energy consumed by domestic robots:

Insights from robotic vacuum cleaners”.

In: Towards Autonomous Robotic Systems.
Bristol, UK, 2012, pp. 128–139.

[292] P. F. M. J. Verschure and P. Althaus.

“The study of learning and problem

solving using artificial devices:

Synthetic Epistemology”. In: Bildung
Und Erziehung 52.3 (1999), pp. 317–334.

[293] T. P. Vogl et al. “Accelerating the

Convergence of the Back-Propagation

Method”. In: Biological Cybernetics 59.4-5
(1988), pp. 257–263.

[294] K. Wada et al. “Effects of robot-assisted

activity for elderly people and nurses at

a day service center”. In: Proceedings of
the IEEE 92.11 (2004), pp. 1780–1788.

[295] J. Walker and M. Wilson. “A

performance sensitive

hormone-inspired system for task

distribution amongst evolving robots”.

In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2008,
pp. 1293–1298.

[296] J. Walker and M. Wilson.

“Hormone-inspired control for group

task-distribution”. In: Proceedings of
TAROS (Towards Autonomous Robotic
Systems) (2007), pp. 1–8.

[297] C. J. C. H. Watkins and P. Dayan.

“Q-learning”. In: Machine Learning 8.3-4

(1992), pp. 279–292.

[298] P. Werbos. “Beyond regression: New

tools for prediction and analysis in the

behavioral sciences”. PhD thesis.

Harvard, 1974.

[299] P. J. Werbos. “Generalization of

backpropagation with application to a

recurrent gas market model”. In: Neural
Networks 1.4 (1988), pp. 339–356.

[300] B. Widrow and M. E. Hoff. Adaptive
switching circuits. Tech. rep. 1553-1.
Stanford Electronics Laboratories,

Stanford University, 1960.

356 Chapter B. Bibliography

[301] B. Widrow and M. A. Lehr. “30 Years of

Adaptive Neural Networks: Perceptron,

Madaline, and Backpropagation”. In:

Proceedings of the IEEE 78.9 (1990),

pp. 1415–1442.

[302] R. J. Williams and D. Zipser. “A

Learning Algorithm for Continually

Running Fully Recurrent Neural

Networks”. In: Neural Computation 1.2

(1989), pp. 270–280.

[303] D. R. Wilson and T. R. Martinez. “The

general inefficiency of batch training for

gradient descent learning”. In: Neural
Networks 16.10 (2003), pp. 1429–1451.

[304] A. Wolf et al. “Determining Lyapunov

exponents from a time series”. In:

Physica D: Nonlinear Phenomena 16.3
(1985), pp. 285–317.

[305] Q.-z. Xu and L. Wang. “Recent advances

in the artificial endocrine system”. In:

Journal of Zhejiang University Science C
12.3 (2011), pp. 171–183.

[306] M. Yamamoto. “Sozzy: A

hormone-driven autonomous vacuum

cleaner”. In: Proceedings of the SPIE
Mobile Robots VIII Conference. 1993,
pp. 292–305.

[307] J. Yoder. “Evolving neuromodulator

architectures on non-associative

learning tasks”. In: IEEE Symposium
Series on Computational Intelligence
(SSCI). 2017, pp. 1–9.

Colophon

This thesis was typeset in pdfLAT
E
X3.14159265-2.6-1.40.18, using the Palatino-like

fonts supplied by the newpx package. The code herein was largely written in C++,

taking the form of a set of shared libraries acting as plugins for the Angort concat-

enative language. Plots were generated largely with R and Angort, and explanatory

figures were drawn in Inkscape by the author. Photographs were provided by the

author.

The git commit ID for this version is d9a433f .

357

