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Abstract. The UESMANN (Uniform Excitatory Switching Multifunc-
tion Artificial Neural Network) architecture has been shown to produce
interesting transitions between multiple behaviours using an extremely
simple neuromodulatory regime. Previous work has concentrated on dis-
crete classification tasks. In this work, three different simple neuromod-
ulatory architectures including UESMANN are used to control a robot
in a homeostatic task.

The experiments show that UESMANN produces interesting and useful
transitional behaviour in an embodied system, learning the two tasks in
the same number of parameters (i.e. network weights) as networks which
learned each individual task.
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1 Introduction

This work compares three methods of modulating the behaviour of a neural
network with a single parameter to perform some “blend” between two learned
behaviours. Smooth transitions between behaviours may be useful in situations
where a system’s behaviour should change with environmental conditions, per-
haps to achieve homeostasis. In such systems, a small change in the environment
(or time) should induce a similarly small change in the behaviour. However, often
it can help if this transition is not completely smooth – some complexity in the
transition can help by introducting variety into the output, as our experiments
on a physical robot show.

The three methods compared are neuromodulatory techniques based on feed-
forward artificial neural networks. They are: linear interpolation between the
outputs of two networks (output blending), using an additional input to carry
the modulator value (h-as-input), and the UESMANN architecture. The latter,
introduced in [1], is interesting because it is extremely simple and requires no
extra parameters beyond the weights and biases: it is based on multiplying all
the weights by a function of the modulator. It may be possible to train more
than two functions in a UESMANN network, although this may not converge if



the functions are too dissimilar. The work referenced above has examined the
network in pattern recognition problems.

The present work involves generating homeostatic behaviour in a robot us-
ing two behaviours learned offline: sonar-based wall-avoidant wandering, and
phototropic (simulated) charging. Such homeostatic systems, striking a balance
between task performance and exploitation of resources, are useful in long-term
autonomous settings[11]. While this is a well understood action selection task,
using a real robot with noisy sensors and actuators to perform a neuromodula-
tory task may bring out important differences in the three methods.

2 UESMANN

In biological systems, the behaviour of a group of neurons may be modulated by
neuromodulatory chemicals, typically by acting on the synapses between them[4].
Much work has been done on artificial neuromodulatory systems such as Gas-
Nets[3, 13, 6] and Artificial Endocrine Systems[8, 11, 7]. Because CTRNNs can
realize any dynamical system[2], CTRNNs may also encompass a neuromodu-
latory model. CTRNNs and GasNets are typically generated by evolutionary
algorithms[5].

UESMANN networks, in contrast, are trained using a variant of backprop-
agation of errors[10]. They are much simpler, consisting of a single modulator
with a single, uniform action across all the weights – thus forming an artificial
analogue of a group of neurons acted on by a single modulator.

The UESMANN architecture is a feed-forward network with one or more
hidden layers, with a global modulation parameter h. Each unit has the form
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and will perform one function at h = 0 where the weights take their nominal
values, and one at h = 1 where the weights are doubled. As such, they are close
to the simplest possible form of neuromodulatory ANN. Training the network
is currently done by UESMANN-BP, a stochastic hill-climbing technique. This
involves presenting alternate examples from each function, with h set to the
appropriate value, and backpropagating the errors. Full details are in [1].

3 Methodology

Our aim is to compare the behaviours of different multi-function network ar-
chitectures in a problem domain with continuous outputs and noisy inputs, in
contrast with the discrete classification tasks studied in[1]. Robot control is a
difficult problem which often requires switching or blending different behaviours
in order to balance various objectives, such as data collection and power man-
agement. Robot sensors are also noisy, and actuators often do not respond in an
ideal manner.



The target robot is a Pioneer 2DX with eight sonars and an omnidirectional
camera as light sensor, and our aim is to produce wandering behaviour with
the simulated charge high, and phototaxis with the charge low (i.e. the light is
simulating a power source beacon).

Neural network training is not guaranteed to converge to a solution, partic-
ularly where one network is required to learn two functions. The initial weights
and the training data provided may result in a poor local minimum being found.
Therefore a number of networks are trained for each architecture and tested us-
ing a simple simulator with perfect differential steering and sensors. Using the
simulator allows us to run at a suitably high speed to both generate sufficient
training data (different for each network instance) and evaluate the networks
over a number of runs. 10 networks were generated for each type, and evalua-
tions done on each network.

The best networks are carried forward into the robot experiments, where
they are evaluated at two different levels of charging efficiency and two different
initial directions. Five runs for each combination are performed and analysed to
determine differences in learning ability and transition behaviour.

4 Simulator experiments

Our very simple simulator runs two rule-based controllers to generate training
data. One controller will wander and avoid using sonars, the other will head
towards the light and stop at a particular intensity: this is a simple model of
an “exploration/exploitation” problem. When generating training data, there
is no charge model, just a small probability of the robot switching from one
controller to the other (0.001 per tick). The log of inputs, outputs and controller
ID comprise the training input for the networks. A new set of training data is
generated for each network instance, to avoid any irregularities in an individual
training set skewing the result. Each training set consists of 200000 training
log entries (recorded every 0.01s of simulated time), and the robot’s maximum
speed is 1 ms−1. The training environment is an enclosed 12×12m box, with 2
walls extending from the sides interrupting the space. During training, the robot
is occasionally randomly turned and repositioned to avoid loops and ensure as
many situations are represented in the data as possible. Note that the light
controller will also stop when the light is bright, to add some complexity to the
behaviour and hopefully cause stopping at the light when charge is low. The
IDs stored in the log for the controllers are 0 for sonar and 1 for light. During
evaluation, setting the modulator h to 0 should produce sonar behaviour, and
1 should produce light.

Training the networks is done offline after the data-generating run is com-
plete. Each network is presented with the randomly shuffled examples, with
3× 107 presentations in total (i.e. each example is presented 150 times). In the
case of output blending, the appropriate network is presented with the example;
for UESMANN and h-as-input the network is trained with the controller ID as
the parameter h.



All networks had 8 sonar inputs, 8 light inputs and 2 motor outputs, with a
single hidden layer of 16 nodes. The learning rate η = 0.1.

4.1 Simulator evaluation

Each trained network is evaluated, this time on a simpler arena without the
internal walls: during actual experiments, the arena must be obstacle-free since
the light controller cannot pathfind (we ignore this during the initial training
data generation). 10 runs are performed for each network, each starting at a
random position and orientation. The runs end at a simulated 1000s or when
the system runs out of charge.

The charge and modulator model used is very simple. The virtual battery
has a charge in the range [0,1]. The motor uses power linearly with speed, on
top of a base power usage. Thus, if the commanded speeds are sl and sr (which
are in the range [0,1]), the power input is p, the time step is ∆t, the base usage
is kbase and the motor power factor is km, then the charge Ct and modulator ht
are given by

Ct = clamp
(
Ct−1 +∆t

(
kpowerp− (kbase + km(sl + sr))

))
(2)

where clamp(x) = max
(
0,min(1, x)

)
ht = 1− Ct (3)

The power input p is obtained from the sum of the pixel inputs, multiplied by
the charging efficiency constant kpower: one of the variables modified in the robot
experiments. The values used were km = 0.01, kbase = 0.005, kpower = 0.0025.
Once 10 runs have been obtained for each of the 10 networks generated by the
3 methods, they are evaluated according to three metrics, which are combined

together by
∑

i log2
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)2
, where mi is the obtained value for each measure and

ri is a reference value. This provides a useful measure whereby +1 is “twice as
good” and -1 is “half as good” [9, 12]. The three measures are: the mean of the
standard deviation across time windows of the data (to provide a measure of
variability across the whole time to avoid artificially high values when the robot
only moves in one section of the run), the distance travelled multiplied by the
distance from the origin (the light is at the origin, this shows exploration), and
the total time survived before the charge dropped to zero. This metric requires
three reference values – the obvious value for rt is the maximum run time, the
others were determined from the best runs.
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(time-windowed standard deviation of distance)

mt = max t (5)

(time survived)
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where N is the number of segments for windowing the SD and was set to 10 for
these experiments, m∗ indicates individual metrics, r∗ indicates the reference
values: rd = 2.45, rt = 1000s, rT = 2183. The values for rd and rT are just over
the maxima achieved across all the runs.

4.2 Simulator results

The metric and sub-metric results of all the simulator runs are shown in Fig. 1.
According to the (somewhat arbitrary) combined metric, UESMANN and h-as-
input perform better than output blending, but there is little difference between
the mean performance of the former two. In the individual metrics, h-as-input
has much more variation in performance, with several networks performing con-
sistently very well while others often fail. UESMANN also shows variation, with
fewer failing runs but fewer extremely good performers. Output blending is very
consistent and always survives the full time, but doesn’t appear to travel far.

Typical runs of the best performing networks for all three methods are shown
in Fig. 3. Clearly the best performing network is h-as-input, and this can be seen
in Fig. 1: the best network performs much better than UESMANN, but other
poor networks pull the overall performance down. All networks rapidly con-
verge to a limit cycle, as shown in the distance/charge phase plots. With output
blending, this is a very tight figure-8 around the origin. This is because output
blending is always performing some combination of phototaxis and wandering,
and at anything but a very high charge phototaxis will always draw it back to
the light. Both h-as-input and UESMANN appear to have a narrower transition
region (as shown in previous experiments in [1]), and so show distinctive phase
changes: when the charge drops below a certain point, the behaviour will change
to light-seeking; and when the charge is high enough, the robot will wander again.
The triangular shape in phase space is a consequence of this: the left-hand side
of the triangle is phototaxis, the base is recharging stopped at the light, and the
right-hand side is exploration. The double peak in h-as-input, and the initial
irregularity, is due to the robot wandering far enough to “bounce” off the walls
of the arena. UESMANN appears to show a much more “chaotic” limit cycle
than h-as-input, which gives the positional plot a more “random” appearance:
whereas h-as-input follows a fixed course, UESMANN varies more.

While UESMANN does not perform as well, it is considerably more conserva-
tive than h-as-input: in the latter, the transition to phototaxis occurs at C ≈ 0.3
in h-as-input, leaving it at C ≈ 0.14 at the return. In a larger arena h-as-input
may run out of charge – here it has been helped by the “bounce” off the far wall.
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Fig. 1. Box plots of all runs of all networks, showing the combined and submetrics. The
point shape indicates the network from which the run comes. Significant differences are
indicated by brackets (Mann-Whitney U -test, p < 0.05).

UESMANN transitions to phototaxis at C ≈ 0.55, leaving it with C ≈ 0.4 at
the return.

One interesting feature in the UESMANN run is the “blip” in the base of the
triangle in the phase plot, which manifests in the position plot as a tiny inner
loop: at a certain point in the recharge phase, the robot performs a “microex-
cursion”, and then returns to recharge. This appears to be a consequence of the
interesting dynamics of the UESMANN architecture, and was present in all runs
of this particular network.

In order to examine the transtional behaviour, the three best networks by
combined metric were each run for 100 seconds, for 100 different fixed modulator
values 0 to 1. This was repeated 50 times, and the mean distance-from-light of
the all the runs at each modulator level plotted. No charge model was used.
If the network is predominantly wandering at that modulator level, the mean
distance should be high; if performing phototaxis, the mean distance should
be low. The results are shown in Fig.2. Output blending shows the expected
gradual shift from long distances to short, while h-as-input shows a transition of



width around 0.2. UESMANN is interesting: while it follows the trend of output
blending (the “ideal” blend between two networks), it shows a very complex
transitional behaviour with the robot changing priorities between phototaxis
and wandering in distinct stages, a pattern we came to call “dithering”. This
pattern proved useful in the real robot by supplying a source of complexity
allowing the robot to follow different courses in different runs and by helping
with a steering problem, as the next section will show.
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Fig. 2. Mean distance at different hormone (i.e. modulator) levels for 50 runs of the
simulated robot.

5 Robot experiments

The best networks (according to the combined metric) for the three network
types were taken forward into the robot experiments. The robot used was a
Pioneer 2DX: a differential-drive robot as in the simulator, with 2 large driven
wheels and a caster wheel at the back. It was fitted with an omnidirectional
camera to act as a light sensor, and carried its own sonar sensors of which the
front 8 were used, which were oriented the same way as in the simulator. The
network software was run on a host laptop, communicating over TCP to the
robot, which appeared as a ROS node on the laptop.

The light source was a 60W incandescent bulb in an opaque hood, suspended
∼ 1.5m above the floor, shining a diffuse circle on the floor. The on-board om-
nidirectional camera image was gaussian blurred and summed across 32 radii,
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Fig. 3. Typical runs of best seeds in simulation, position and distance from light/charge

giving 32 pixels around the robot. This was downsampled to 8 pixels on the lap-
top. Fig. 4 shows a picture of the robot with the light source and two on-board
camera views, one for far and one for near light.

(a) Robot and light source (b) Camera image, blurred,
far light

(c) Camera image, blurred,
near light

Fig. 4. Robot and light source, and two omnidirectional camera views showing dots
for the 32 summed radii.



Positional tracking was done by mounting a diffused red LED on the robot
(above the centre of rotation) and using a commodity webcam, filtering for red
blobs, finding the centroid of the largest blob and transforming from screen space
to a plane in 3D space by perspective transform. The accuracy of the tracking
was from ∼ 0.01m close to the camera, to ∼ 0.2m at the far distance. The
tracking data was captured at a frequency of roughly 1Hz, and sent over ROS to
the main program for logging purposes. Some parts of the arena were not visible
to tracking – notably a long section in which the LED was obscured by the light
source hood. In the logs, points for which no tracking data were received have
the same position as the last logged point.

The arena was bounded by a (nearly) sonar-opaque mesh, and was of an
irregular, roughly triangular shape providing the largest possible area. The light
source was suspended (due to environmental constraints) over the narrow end,
and is indicated by a circle in the figures below. Thus, the experiments often
involve cycling around the “safe” narrow area with occasional excursions into
the wide, dark area.

12 experiments were done, with five repetitions each. The factors were: net-
work type (OB/UESMANN/h-as-input), initial direction (“south” into the nar-
row end or “north” into the dark area) and two values of kpower: the constant
used to determine how efficiently the simulated battery charges. The values cho-
sen were 0.0025 and 0.003. Otherwise the same power model was used. One
major difference is that the speeds were scaled down: 1ms−1 is not a viable
speed for a Pioneer. The outputs of the network sl, sr were multiplied by 0.05.
Naturally this makes it difficult to compare the results with the simulator, any
comparisons made must be qualitative.

5.1 Results

During the runs for h-as-input it was found that the best network in simulation
performed extremely badly, colliding frequently with the mesh and putting the
robot and environment in danger. Only eight runs (two for each kpower and di-
rection) were performed before the network was abandoned. Three of these runs,
showing typical behaviour, are shown in Fig. 5. Note that the arena boundary
is approximate: in all these runs, the robot became entangled in the mesh. It
seems that this particular network responded very late to sonar, which allowed
it to traverse very far in simulation but caused problems with the very noisy
sonar on the robot (see below). Therefore the second-best network was used for
all remaining experiments, which was rather more conservative.

Below we present a largely descriptive analysis of the behaviours of the dif-
ferent networks. The survival times for all runs are shown in Table 1, and the
performance metric used in the simulation experiments (with new reference val-
ues obtained from the raw results) is shown in Table 2. Both tables are sorted
by the means. Note that the ordering is nearly the same: h-as-input is penalised
by the metric because it does not travel far. The other sub-metrics show very
similar ordering. The mean metrics for all runs are shown in Fig. 3.



Table 1. Survival times for all runs, sorted by mean. The number in the row name
refers to kpower.

name r1 r2 r3 r4 r5 mean

h-in south 0.0025 1000 1000 1000 1000 1000 1000.00
OB north 0.003 946 1000 1000 1000 1000 989.28
UESMANN south 0.0025 1000 1000 636 1000 1000 927.16
UESMANN south 0.003 1000 1000 1000 955 521 895.30
OB south 0.0025 649 1000 596 639 619 700.64
OB south 0.003 167 383 392 1000 780 544.30
h-in south 0.003 361 364 398 399 884 481.16
UESMANN north 0.003 1000 176 183 169 170 339.62
h-in north 0.003 147 167 150 157 149 153.82
OB north 0.0025 126 122 122 125 120 123.10
UESMANN north 0.0025 117 118 115 116 118 116.78
h-in north 0.0025 110 113 114 112 110 111.74

Table 2. Combined performance metric for all runs, sorted by mean.

name r1 r2 r3 r4 r5 mean

OB north 0.003 -0.15 -0.21 -0.45 -0.40 -0.34 -0.31
h-in south 0.0025 -0.72 -0.66 -0.23 -0.48 -0.35 -0.49
UESMANN south 0.0025 -0.39 -0.48 -1.77 -0.60 -0.65 -0.78
UESMANN south 0.003 -0.31 -0.52 -1.13 -1.16 -2.47 -1.12
OB south 0.0025 -1.69 -0.67 -1.64 -2.04 -1.67 -1.54
OB south 0.003 -5.77 -2.73 -2.68 -0.46 -1.05 -2.53
h-in south 0.003 -2.86 -3.16 -3.02 -3.08 -1.30 -2.68
UESMANN north 0.003 -0.28 -4.92 -5.11 -5.11 -5.12 -4.11
h-in north 0.003 -4.31 -5.53 -5.84 -5.86 -5.91 -5.49
OB north 0.0025 -5.85 -6.15 -5.86 -5.87 -6.01 -5.95
UESMANN north 0.0025 -5.85 -5.90 -5.86 -5.99 -6.27 -5.97
h-in north 0.0025 -6.70 -6.69 -6.64 -6.57 -6.66 -6.65

Table 3. Means of all metrics for all runs.

survival time windowed SD edge-biased travel combined metric

OB 589.33 0.42 79.97 -2.58
UESMANN 569.71 0.36 73.03 -2.99
h-as-input 436.68 0.29 57.03 -3.83
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Fig. 5. h-as-input runs from the best simulator network. The arena walls are shown as
lines in the position plot, and the light source by a grey circle. Charge is indicated by
shading (the paler, the lower). The maximum achieved time is also shown.

Looking at the metrics can be deceptive, because survival and coverage is of-
ten dependent on serendipitous sonar bounces and the modulator level at which
transitions occur, which can easily be changed by modifying the modulator in
some way. We are more interested in the nature of the transition between be-
haviours and how it helps or hinders in this application.

However, there are some general observations to be made. Overall, output
blending fares only slightly better than UESMANN while h-as-input is worst.
This is surprising, given that UESMANN is using a single network with the
same number of weights as each of the two networks used in OB, and has fewer
weights than the h-as-input network (although we are using the second-best h-in
network).

No network does well starting into the dark (“north”) with low power: they
all turn too late to return in time to recharge, but the nature of these turns is
quite different. UESMANN does well facing initially into the light, while output
blending does not. Facing into the dark, the position is reversed: output blending
has a tendency to always follow the same track, which leads it into trouble facing
south: it finds a path into the dark area and cannot return. UESMANN follows
a variety of paths and is more conservative.

All networks occasionally touch the mesh, but turn out of it fairly quickly
(unlike the original h-as-input network). Tests show that this may be due to the
nature of the mesh and the walls behind it, which are strongly sonar-reflective:
the sonars sometimes get echoes from the wall instead of the mesh.

Output blending Fig. 6 shows the position and phase plots for typical output
blending network runs. We are no longer seeing the tight cycling which this
network performed in simulation: this is because the differential steering is not
perfect in the robot. Tests show that the robot will continue to drive straight
while one motor’s requested speed is reduced, until the speeds differ by around
0.3 (if the other is at 1). Thus, the robot can make straight runs even when



it is being commanded (partially) towards the light. The environment here is
imposing a narrower transition between the behaviours than is being produced
by the network outputs.

In general, the runs are very similar within each experiment, although one
run south at kpower = 0.003 succeeds where the others fail by fortuitously being
turned towards the light slightly earlier by sonar reflection.
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Fig. 6. Typical runs for output blending, position and phase plots. See Fig. 5 for an
explanation.

UESMANN Fig. 7 shows the results for UESMANN runs. The turns are tighter
here – inspection of the variable data shows that the motor responses are varying
more during transitions, showing the “dithering” behaviour described earlier in
simulation. These slight oscillations between the two behaviours through the
transition seem to counteract the steering lag which affects output blending by
providing higher rotational accelerations in the motor. UESMANN’s run also
appear more “chaotic” (in the informal sense), with the robot following different
routes in each run by turning at slightly different points and angles. This is also
likely to be due to the complex transition behaviour – small differences in the
modulator can lead to larger changes in behaviour than in the other networks,
although the overall transition is still gradual.

This is particularly notable in south-facing runs with kpower = 0.003, a par-
ticularly interesting instance of which is shown. Here, the robot made its way to
the far corner, stopped to recharge (there is enough light to do so if the motors
are not turning), and then returned. Stopping in darkness seems to be an emer-
gent property of the network (note that the robot did not actually hit the mesh



in this instance – the left-top corner of the arena is slightly further to the left in
reality).
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Fig. 7. Typical runs for UESMANN, position and phase plots. The arena walls are
shown as lines in the position plot, and the light source by a grey circle. Charge is
indicated by shading (the paler, the lower). The maximum achieved time is also shown.

h-as-input Fig. 8 shows the results for this network. This is a conservative
network, as can be seen from the low power 0.0025 plots. All the runs are very
similar within each experiment. At high power, some problems can be seen.
The nature of the turn running north is unusual, with a partial sonar turn
followed by a turn towards the light. The slight drop in power may potentiate
the network towards taking action on a sonar signal here. Many of the south-
facing high power runs resulted in running into the mesh, as shown here. This
is odd, because both behaviours should drive it to turn in the same direction
at this point. It should be borne in mind, however, that this is the second-best
h-as-input network – although the first also had difficulties with turning (see the
opening of this section).

Analysis of motor differential To investigate the behaviour of the motors, a
histogram of |sl − sr| was plotted for all runs: see Fig.9. Output blending shows
large variation in the differential, with many intermediate values used as the
subnetworks blend their outputs, but heavily weighted towards smaller values.
UESMANN shows a similar effect, but the distribution is much more even across
the range (apart from 0 and 1). The h-as-input network shows a tendency to go
either straight ahead (0) or turn (1). UESMANN’s higher use of the entire range
of motor differentials may reflect increased complexity in its behaviour.
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Fig. 8. Typical runs for UESMANN, position and phase plots. The arena walls are
shown as lines in the position plot, and the light source by a grey circle. Charge is
indicated by shading (the paler, the lower). The maximum achieved time is also shown.
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Fig. 9. Histogram of motor differential across all runs

6 Conclusion

It is often useful to move smoothly from one behaviour to another, particularly in
embodied systems. While it is generally true that a small change in environment
should lead to a small response in behaviour, it is also true that some complexity
in the transition between behaviours can be useful. It may allow the system to
find fortuitious escapes from difficult situations, or new ways of exploring and
exploiting its environment.

Whereas näıve output blending produces a smooth, “ideal” transition, and
using the modulator as just another input gives a fairly sharp transition (and
sometimes does not learn well) the UESMANN architecture seems to provide



such a complex transition, while maintaining the essential nature of the blend
between the behaviours.

It is remarkable that UESMANN is able to learn two complex functions fairly
well using the same number of weights as a network which performs one of those
functions only a little better, and with such a simple modulatory and learning
technique. Currently work is being done on analysing the behaviour of single
UESMANN nodes to gain insights into how this is achieved, starting at first
principles with 2-2-1 networks blending boolean operators. The study of such
a simple system’s capacity to learn multiple behaviours may yield important
results for more complex systems. Future work should include testing the cur-
rent application with lower hidden node counts, before moving onto dynamical
systems analysis of the UESMANN training process and the resulting networks,
consideration of other learning methods (such as artificial evolution) and incor-
porating UESMANN-like layers into deep learning networks to perform multiple
functions.
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