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Abstract

We investigate the interaction that occurs between a light solid object and a horizontal soap

film of a “bamboo” foam contained in a cylindrical tube. We vary the shape of the descending

object from a sphere to a cube by changing a single shape parameter. We investigate in detail

how the soap film deforms and determine the forces that the film exerts on the object, depending

on the radius of the cylindrical tube, and the shape, orientation and position of the object. We

show that a cubic particle in a particular orientation experiences the largest drag force, and that

this orientation is also the most likely outcome of dropping a cube from an arbitrary orientation

through a bamboo foam.
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I. INTRODUCTION

Liquid foams are a class of materials that are widely-used both domestically and indus-

trially [1, 2]. They are classified as complex fluids because their response to applied stress

is highly non-linear: they behave as elastic solids at low stresses, exhibit plasticity at higher

stresses and have an apparent yield stress above which they flow. They are two-phase ma-

terials consisting mainly of gas, with consequently a low density but also a large surface

area. As a result of these remarkable properties, aqueous foams are desirable for example

in personal hygiene and food products and are also integral in industrial processes such as

enhanced oil-recovery [3, 4] and froth flotation for mineral separation, paper deinking, waste

water treatment and soil remediation [5–9]. The process of froth flotation in particular is

driven by how the surfaces within a foam interact with solid particles and objects, and

gaining a better understanding of this interaction is one of the main objectives of this work.

Foams have also been studied at the microfluidic scale [10–12] where they have found

new applications in medical procedures such as foam sclerotherapy for spider and varicose

veins and for building new materials such as scaffolds for tissue engineering [13, 14]. In this

work, we consider how the precise structure of an ordered foam could be used to control the

position and orientation of particles or small objects. This has many potential applications,

for example in pharmaceuticals and medicine, where controlled transportation of particles,

objects or solvents through confined geometries at the micro-scale is needed [10].

We focus our attention on the interaction that occurs between a horizontal soap film

contained in a vertical cylinder and a solid object that descends through it under gravity.

The soap film can be thought of as one film of a “bamboo” foam, a structure in which a

cylindrical container is filled with a single column of bubbles of equal volume. Previously we

predicted that the motion of a spherical object could be controlled by an ordered foam [15].

Here, we develop 3D Surface Evolver [16] simulations to investigate how this interaction

affects the final position and orientation of a non-spherical descending object. The object

that we consider is small (compared to the foam’s bubbles) and light, with its size and weight

chosen so that the Bond number is equal to one (see §II for more details). This corresponds

roughly to particles that would be found in the process of froth flotation and those that could

easily be constructed for microfluidic experiments. For this value of the Bond number,

surface tension effects are not dominated by the effects of gravity, and therefore a foam
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should be able to strongly influence the position and orientation of the object. This is in

contrast to the work of Courbin and Stone [17] and Le Goff et al. [18], for example, who

showed that soap films and foams can absorb energy from fast moving objects with a much

larger Bond number, where gravitational and inertial effects dominate any surface tension

effects. They also showed that when a spherical object falls through a soap film, small

bubbles can form due to air becoming trapped on impact or during the pinch off of the soap

film during detachment. Our simulations do not allow for the formation of new bubbles,

and we propose that the effect that such small bubbles have on the motion of a descending

object is negligible. Due to the lightness of the objects that we consider, we assume that

their motion as a result of the forces exerted on them by a soap film is slow compared to

how fast the soap film relaxes, so our work is confined to a quasi-static regime (see §II).

Probing a foam’s response to solid objects is a standard tool that has been used to

develop a better understanding of their complex behaviour. In 3D, Cantat and Pitois [19, 20]

measured the forces exerted by a disordered foam on a spherical bead, and detected elastic

loading and topological changes, while de Bruyn [21, 22] showed that the forces exerted by

a spherical bead induce a local fluidized region in the foam. In 2D, where the response of

a foam to solid objects can be easily visualized, Raufaste et al. [23] showed that the drag

force exerted on a circular object by a flowing foam increases with the size of the object

and decreases with the liquid fraction of the foam. Furthermore, it was shown by Dollet

et al. [24], and in our previous work [25], that liquid foams, due to their elasticity, can be

used to reorient an elliptical object so that it becomes aligned with the direction of flow.

Simulations by Boulogne and Cox [26] confirmed that the forces exerted by a flowing 2D

foam on solid objects are highly dependent on the shape of the object. We extend this study

into how the shape of the object affects how it interacts with a foam in 3D.

We will use Surface Evolver [16] simulations to study how a soap film of a bamboo foam

interacts with super-quadric objects, ranging from a sphere to a rounded cube, descending

under gravity from different initial positions and orientations. We assume that the object

is covered by a wetting film so that the soap film always contacts the object normal to its

surface. We investigate how a bamboo foam repositions and reorients such objects, and

probe in detail the forces exerted on the descending object by the foam as well as the

perturbation caused to the film. Our work extends the contributions by Morris et al. [27–

29], which probe how objects such as cubes or ellipsoids and their orientations and surface
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properties affect the stability of a thin film by which they are held. There are also many

related contributions in biology, as reviewed by Dasgupta et al. [30], that show how fluid

interfaces and biological membranes interact with particles of different shapes, and we see

similar perturbations of the soap film in this work.

The remainder of the paper is organised as follows: The simulation model and method-

ology are described in detail in section II. The results of our simulations are discussed in

section III, where we vary the the radius of the cylindrical container (§III A), the shape of

the descending object (§III B), its initial orientation (§III C) and its initial position above

the film (§IIID). This is followed by our conclusions and discussion of future work in section

IV.

II. METHOD

The Surface Evolver [16] allows us to resolve bubble pressures and the geometry of thin

films for foams at equilibrium under given constraints. Our simulations consists of a single

soap film, initially flat and horizontal, that separates two bubbles contained in a cylindrical

tube. The tube has radius rc, height h = 10 (which is fixed throughout) and a vertical

centre-line that coincides with the z-axis of the Cartesian coordinate system, so that the

centre of the cylinder’s base defines the origin.

The surface of the solid object that falls through the soap film is defined by the super-

quadric equation

(x− x0)
λ + (y − y0)

λ + (z − z0)
λ = rλs , (1)

where (x0, y0, z0) denotes its centre coordinates, rs its radius, and λ is a shape parameter

that satisfies λ = 2n where n ∈ N
+. When λ = 2 the object is a sphere, while increasing

λ yields a cube with rounded edges and corners (and letting λ → ∞ would yield a cube)

[31, 32]. For a cube, rs describes the minimum distance from its centre to its surface, and

for convenience we shall refer to this as the radius of the cube. The solid object is initially

positioned above the soap film such that they do not touch (see figure 1a).

The surface tension of the soap film is 2γ and this is set to be equal to 1 throughout

this work. The actual volume of bubble k (where k = 1, 2) is denoted by Vk. The soap film

is represented by a triangulated mesh. It is equilibrated by minimizing its surface area A,
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bubble 1

bubble 2

(a) (b) (c)

FIG. 1: (a) The initial set-up in which a cube is positioned above a horizontal film that

separates two bubbles in a cylindrical tube with radius rc and height h. The orientation of

the cube is prescribed and then traced by recording the angle that the normal vectors that

define it, ~N1, ~N2 (obscured by the cube in the image) and ~N3 make with the z-axis. (b)

The object (of radius rs) is allowed to fall through the soap film under gravity, and

therefore deforms the soap film during contact. Its motion is governed by the resultant of

its weight, mg, and the pressure and network forces that the foam exerts on it. (c) For

each edge i of the triangulated surface of the soap film that contacts the object, an

outward network force is exerted in the normal direction, ~ni over its length li. Similarly, a

pressure force is exerted by contacting bubbles, now in the inward normal direction to the

surface, −~nk, over all facets k. In the same way, bubble pressures and surface tension

contribute towards a network and pressure torque which rotate the object.

using the energy functional:

E = 2γA+
∑

k

pk
(

Vk − V t
k

)

, (2)

where pk is a Lagrange multiplier that denotes the pressure of bubble k. Both bubbles are

assigned the same target volume,

V t
k =

1

2
(volume of cylinder - volume of solid object) =

1

2
(2πrch− Vs) , (3)

where the volume of the super-quadric object is given by

Vs =
8r2s
3λ2

Γ
(

1

λ

)3

Γ
(

3

λ

) , (4)
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(as derived in [31]) and its calculation requires numerical computation of gamma functions,

such as Γ (a/λ) =
∫

∞

0
ta/λ−1e−tdt.

We set the initial orientation of the object by rotating it by prescribed angles φj, θj and

ψj around the x, y and z axes respectively. This involves multiplying the surface constraint

given in equation 1 by the rotation matrices

Rx,j =











1 0 0

0 cosφj − sinφj

0 sinφj cosφj











, Ry,j =











cos θj 0 sin θj

0 1 0

− sin θj 0 cos θj











, Rz,j =











cosψj − sinψj 0

sinψj cosψj 0

0 0 1











, (5)

in this order, equivalent to applying the combined rotation matrix

Rj = Rz,jRy,jRx,j, (6)

where the index j represents the current time step.

The object is assigned a weight, mg, chosen so that the Bond number Bo = mgr2s/2γVs is

equal to one. We fix the volume of the object at Vs =
4

3
π, that is the volume of a sphere with

radius rs = 1. Thus when the shape parameter λ is increased, the value of rs is decreased (to

keep the volume of the object fixed), and its weight is increased (to keep the Bond number

fixed). The object is allowed to descend through the soap film under gravity. We assume

that the motion of the object when in contact with the soap film is slow and overdamped

so that inertial effects can be neglected. Thus we use a quasi-static model as described in

previous work [15]. This model is only appropriate when the object is in contact with the

soap film, which is the focus of this work. The object is lowered, and once its surface begins

to overlap the soap film, the nearest facets of the soap film and the object are merged and

the soap film is equilibrated using a combination of gradient descent and conjugate gradient

energy minimization steps. The minimization procedure continues until convergence of E

to within a tolerance of 1× 10−5 has been achieved.

The contacting soap film exerts a network force, ~F n on the solid object due to the pull

of surface tension. This force is calculated geometrically as

~F n = 2γ
∑

i

li~ni, (7)

where li denotes the contact length of the triangular facet i of the soap film that is in contact

with the object and ~ni denotes the unit normal vector to the surface at (xi, yi, zi), the mid-

point of edge i (see figure 1c). Since the surface of the film contacts the object at 90◦, it
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applies a network torque, ~τn, on the object. Letting ~ri = (xi − x0, yi − y0, zi − z0) denote

the vector that connects the centre of the object with the midpoint of edge i, it is clear that

~ri and ~ni are in general not parallel when λ > 2. The network torque is calculated as the

sum of vector cross-products

~τn = 2γ
∑

i

li~ri × ~ni. (8)

Similarly, bubbles in contact with the object apply a pressure force, ~F p, over its surface

and this is calculated by the summation

~F p = −
∑

k

pkAk~nk, (9)

where Ak denotes the area of the k-th triangular facet of the object, pk refers to the pressure

of the bubble adjacent to the facet k, and ~nk denotes the outward unit normal vector

positioned at the midpoint of this facet, say (xk, yk, zk). Note that the negative sign is

due to the fact that the bubble applies an inward push due to its pressure. As for the

network force, there is a contribution from this pressure force towards a torque, ~τ p. Let

~rk = (xk − x0, yk − y0, zk − z0) denote the vector that connects the centre coordinates of the

object with the mid-point of the k-th triangular facet of the object. The pressure torque is

given by the summation

~τ p = −
∑

k

Akpk~rk × ~nk. (10)

Therefore the resultant force and torque exerted on the super-quadric object are

~F = −mg~z + ~F n + ~F p, (11)

~τ = ~τn + ~τ p, (12)

respectively, where ~z denotes the unit vector in the positive z direction. We will from now

on use the component form of these forces, that is ~F = (Fx, Fy, Fz) and ~τ = (τx, τy, τz).

Each time step of a simulation involves equilibrating the soap film while the position and

orientation of the object are fixed, calculating the forces it exerts on the object, and then

moving the object in the direction of the resultant force by a small amount. We choose a

small constant ε that sets the effective time-scale of our simulations. At each time step we

move the object by ε ~F and rotate it by ε~τ , using the standard right hand convention for

rotation. We choose ε = 1/400Bo, which ensures convergence in the sense that the results

do not change by making ε smaller. Rotating the object requires applying the matrix given
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in eq. (6) where the angles of rotation around the x, y and z axes are φj = ε~τx, θj = ε~τy

and ψj = ε~τz respectively for the j-th time step, where j = 1, 2, 3, ... . Thus after n time

steps, the orientation of the object is given by the 3× 3 matrix

R =

j=0
∏

j=n

Rj =











r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3











. (13)

The columns of this matrix can be thought of as the unit normal vectors that define the

orientation of the super-quadric object, which we denote by ~N1, ~N2 and ~N3 respectively (see

figure 1a). We will record the orientation of the descending object by determining the angles

that these three vectors make with the vertical z-axis, which we denote by α1 = cos−1 (r3,1),

α2 = cos−1 (r3,2) and α3 = cos−1 (r3,3) respectively.

At each time step, the soap film is at equilibrium. We accept that an equilibrium state

has been reached when the energy of the soap film has converged to within a tolerance

of 1 × 10−5, using a combination of gradient descent and conjugate gradient minimization

iterations. It can take up to 10,000 iterations of these numerical methods to reach the given

tolerance. The iterations are interspersed with upkeep of the tessellation and checks for

soap film detachment. We also apply small perturbations to the surface of the soap film

during the equilibration process by jiggling the vertices slightly. In this case, a random

displacement is applied to each vertex independently using a Gaussian distribution with a

deviation of 0.02 times the mean edge length of the triangular mesh [16]. This perturbation

was found to be robust enough to optimize the process of reaching a minimum energy for

the soap film under the given constraints.

III. RESULTS

Although the simulation that we model is relatively simple, it provides a rich system to

study the interaction between a descending object and a soap film as we can vary many

parameters. In this section, we summarise the results of varying the radius of the cylindrical

container and the shape, initial orientation and position of the object.
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FIG. 2: Variation of the radius, rc, of the cylindrical container: (a) Snapshots of the

simulation when a sphere reaches heights of z0 = 5.5 (top row) and z0 = 4.5 (bottom row)

as it falls through a soap film contained in a cylinder with radius rc = 2, 3, 4 (from left to

right respectively). The height of the centre of the sphere matches the height of the film on

the boundary of the cylinder when z = 5. The drag force exerted by the foam on the

object is plotted versus the height of the sphere, and is split into a (b) network

contribution and a (c) pressure contribution.

A. Variation of tube radius

Let us first consider the effect that varying the radius of the cylindrical container has on

the interaction between a soap film and a descending spherical object. We set the radius of

the sphere and the Bond number to one, and initially position it at the centre of the cylinder

above the soap film. We vary the radius of the cylindrical container between rc = 1.5 and

rc = 4 in increments of 0.5, and probe how the soap film is perturbed by the sphere and the

forces exerted on the object in each case.
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Figure 2a shows how a film is perturbed when it contacts a sphere that is at a height

of z0 = 5.5 (after attachment) and z0 = 4.5 (before detachment) for a cylindrical container

with radius rc = 2, 3, 4, increasing from left to right. Note that the film lies at a height of

z = 5 when its height matches that of the sphere. Two things stand out from these images:

(i) The height of the contact line of the film with the container increases in range when

decreasing the radius of the container. This is a direct consequence of the bubble volume

constraints we set, and the smaller the radius of the tube, the more the film has to move

relative to the descending sphere to satisfy these constraints. (ii) The mean curvature of

the film decreases when increasing the radius of the container. Since the soap film contacts

both the sphere and the wall of the container at ninety degrees, its curvature must decrease

when we increase the tube radius. It follows from the Laplace-Young law that the pressure

differences across this film decreases when we increase the radius of the container. Thus, the

resultant pressure drag force exerted on the sphere from the contacting bubbles decreases

in magnitude for increasing tube radius (as shown in figure 2c).

The network drag force applied by the soap film on the sphere is shown in figure 2b.

Film attachment to the sphere is shown by the sharp negative jump in the network drag as

the film pulls the sphere downwards at this stage. The network drag force then increases as

the sphere descends. It is equal to zero when z0 = 5, that is when the height of the sphere

matches that of the film, and the film is perfectly horizontal (not shown). The film then

becomes perturbed again as the sphere falls further, so that it applies a positive (upward)

network drag on the sphere, resisting its downward motion. The network force goes to zero

again when the film detaches from the sphere. The magnitude of the network drag force after

attachment and before detachment of the film from the sphere is unchanged for all values of

the tube radius that we consider. The heights of the sphere at which film attachment and

detachment occur depends on the radius of the tube, as has already been explained to be

the consequence of the bubble volume constraints.

The pressure contribution to the drag force that the foam exerts on the sphere is in the

same direction as the network contribution (see figure 2c). Unlike the network contribu-

tion, the magnitude of the pressure drag force increases when decreasing the radius of the

cylindrical container: The pressure contribution to the drag force is around half the network

contribution when rc = 1.5 but decreases to around a tenth of the network contribution

when rc = 4.
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In the sections that follow, we keep the radius of the cylindrical container fixed at rc = 4

so that we can assume that the pressure forces applied on a descending object are small

compared to the network forces.

B. Variation of shape

We now vary λ, the shape parameter from equation 1. We consider values between

λ = 2 (a sphere) and λ = 20 (a cube with smooth rounded edges and corners). The initial

orientation of the object is constant throughout this section, with the angles used for setting

up its orientation all set to zero so that a cube presents a flat face to the soap film. The

object is free to rotate as it falls through the soap film. The initial position of the object is

again set so that its centre coordinates lie at x0 = y0 = 0 and z0 > 6, so that it is at the

centre of the cylinder and above the soap film.

We focus on the deformation caused to the soap film by the descending object, and the

forces exerted by the soap film on the object as a result. Snapshots of the simulation just

after the film attaches itself to the descending object and just before it detaches are given in

figure 3a. These show how the deformation differs for three examples; a sphere (λ = 2), an

object that is between a sphere and a cube (λ = 4) and a cube with smooth rounded edges

(λ = 20).

The shape of the descending object clearly affects how the soap film deforms directly after

attachment, as shown in the top row of images in figure 3a. Since the contact angle between

the film and the object is 90◦, the contact line between the soap film and the object after

attachment is highest for the sphere. In this case, the film has to bend upwards the most

to reach its energy minimum under the given boundary conditions and volume constraints.

For the more cubic objects (where λ = 4 and λ = 20), the soap film is not perturbed as

much after attachment, and does not have to bend as much upwards to satisfy the boundary

conditions. As λ is increased, the vertical faces of the object become flatter, and therefore

the soap film does not need to rise as far during the equilibration process. As a result,

the perturbation caused to the soap film directly after attachment decreases with increasing

values of λ.

Conversely, it is clear from the bottom row of images in figure 3a that the soap film’s

deformation prior to detachment from the object increases with λ. The rounded shape of a
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FIG. 3: Variation of the shape parameter λ: (a) A side view of the simulation after

attachment of the soap film to the object (top) and before detachment of the soap film

from the object (bottom) for λ = 2, 4 and 20 (from left to right). These images have been

positioned so that the height of the film matches for each row, and so should not be used

to compare the position of the object. (b) The network drag force, F n
z , exerted on the

objects as they fall through a soap film versus their height, z0. The inset snapshots

indicate the position of a cube with λ = 20 for different values of z0. (c) The maximum

(absolute) value of the network drag force exerted on the object by the soap film after

attachment and before detachment. (d) The pressure drag force, F p
z , exerted on the object

and (e) the energy E (i.e. surface area) of the soap film versus the height of the object, z0.
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sphere means that the contact line of the soap film moves steadily up over its surface as the

sphere descends, resulting in the earliest detachment. For the more cubic objects, the film

comes into contact with the rounded edges that surround the upper face of the object prior

to detachment. Here, the film does not have to move very far to retain its 90◦ contact angle

with the object while still satisfying the volume constraints. This is particularly true when

λ is high, where the curvature of the rounded edges is large. As a result, the film stays in

contact with the rounded edge of the cube for longer, becoming more stretched as the cube

descends. In fact the film bends downwards so much when λ = 20 that it is near vertical

at its contact line with the object (see figure 3a, bottom right). The film detaches from

a cubic object once it has moved past the rounded edges and corners and onto the upper

(horizontal) face.

Figure 3b shows how the network drag, ~F n
z , varies with the height of the super-quadric

object in the cylinder for different values of λ. The attachment of the soap film to the object

is evident in figure 3b by a sharp negative (downward) network drag, which is a result of

the angle that the soap film makes with the vertical axis as it contacts the object. The

magnitude of the network drag just after the soap film attaches itself to the solid object

decreases slightly for increasing λ (see figure 3c). This can be explained by the fact that

the angle made between the vertical direction and the soap film over its contact length with

the object increases with λ, and therefore the contribution of the network force towards the

drag reduces.

Once the soap film is attached to the object, the network force increases to zero when the

height of the object’s centre is aligned with the height at which the soap film contacts the

cylinder wall (see figure 3b). Once the object passes this point, the network force becomes

positive, thus contributing to resisting the downward motion of the object. The maximum

value of the network drag is achieved for the most cubic object (where λ = 20). Note also

that the interval of height where the object is in contact with the soap film increases with

λ. This is a result of the soap film’s contact line with the object becoming more stagnant on

the rounded edges of the cube’s upper face. As these rounded edges become more curved as

λ increases, the minimal surface remains in contact with the edges for longer, and the soap

film becomes more stretched in the vertical direction before detaching from the object. This

result is confirmed in figure 3c, which shows that the absolute value of the network drag

instantaneously before the soap film detaches from the object increases with λ. We propose
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that under the given conditions, the network drag tends to 2πrs as λ increases without

bound (for a surface tension of 2γ = 1). This is the circumference of the largest circle that

can be inscribed within the upper square surface of the cube. Once the film is no longer

contacting the rounded edges of the cube, its surfaces slips along the upper flat surface of

the cube before detaching.

The pressure drag, ~F p
z , versus the height, z0, of the object in the cylinder is shown in

figure 3d for the same set of values of λ. As we discussed in the previous section, the pressure

contribution to the drag force is an order of magnitude smaller than that of the network

force when rc = 4, and they both act in the same direction. This was also seen to be the case

in previous work by Davies and Cox [15]. For a sphere, the pressure drag exhibits symmetry

between attachment and detachment. This is not the case for objects where λ > 2. Recall

that the pressure force depends on the pressure difference between the two bubbles, and

therefore the curvature of the film that separates them. After attachment, the curvature of

the soap film is such that the pressure in the lower bubble is less than the pressure of the

upper bubble. In this case, the pressure drag force is negative during the attachment (and

therefore it contributes to drag the object downwards). As for the network force, it increases

to zero when the centre of the object is perfectly aligned with the position of the soap film.

This is to be expected as the shape of the soap film is such that its overall curvature is

zero here, and therefore the pressure difference between the two bubbles is zero. As the

object descends further, the curvature of the soap film switches sign so that the pressure

drag becomes positive, increasing until reaching a maximum value just before detachment.

The maximum pressure drag exerted increases with λ in a similar fashion to the network

contribution to the drag force.

Figure 3e shows how the surface area of the soap film varies with the height of the object

in the cylinder for different values of λ. Before the soap film attaches to the object, its area

is simply 2πrc. That area sharply decreases after the soap film attaches itself to the object,

reaching a minimum when the height of the centre of the object is perfectly aligned with

that of the soap film. The cross-sectional area of the object is at its largest here for all values

of λ, and therefore it is to be expected that the minimum energy is attained here. The soap

film is then stretched by the object as it falls beyond this point, with a maximum energy

reached just before detachment. Again, is is clear from this figure that the amount of film

stretching required before detachment increases with λ.
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FIG. 4: The drag force exerted on a cube descending through the centre of a soap film in

three orientations: a flat orientation where the angles between the normal vectors defining

the cube, ~N1, ~N2 and ~N3 and the z axis are α1 = α2 = π/2 and α3 = 0 respectively, a

diagonal orientation where α1 = α2 = π/4 and α3 = π/2, and a rotated orientation where

α1 = α2 = α3 = π/2− tan−1
(

1/
√
2
)

. The drag force is separated into (a) a network

component, F n
z , and (b) a pressure component, F p

z , and plotted versus the height, z0, of

the object in the cylindrical container. Note that the forces exerted on a sphere are also

included for comparison.

C. Variation of initial orientation

In this section we inspect how the orientation of the object affects how it perturbs a

soap film that it falls through. We investigate whether or not a bamboo foam can be used

to re-orient a cubic object in a controlled and predictable way. To isolate the effect of the

object’s orientation, we keep the shape parameter of the object fixed at λ = 10. We vary

the initial orientation of the cube by choosing different values for φ0 and θ0, the angles by

which the object is rotated around the x and y axes during the initial setup respectively.

We keep ψ0, the angle of rotation around the z axis, equal to zero, and allow the cube to

fall from the centre of the cylinder.
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1. Stable orientations

Let us first consider three initial orientations of the cube which do not change as the cube

falls through the centre of the soap film. In fact we have already considered the first of these

orientations in the previous section. In that case the angles between the normal vectors ~N1,

~N2 and ~N3 and the z axis are α1 = α2 = π/2 and α3 = 0 respectively (as shown in figure

1a). We call this the flat orientation.

The diagonal orientation has α1 = α2 = π/4 and α3 = π/2.

In the rotated orientation all three normal vectors have the same angle with the z axis,

that is α1 = α2 = α3 = π/2 − tan−1
(

1/
√
2
)

. These three orientations are shown in figure

5 just after soap film attachment. Their stability when the cube falls through the centre of

the foam can be explained by symmetry: the deformation of the soap film will be symmetric

around the z axis, meaning the torque will be negligible. In fact, we will show later that

the flat orientation is the only stable orientation for a cube descending down the centre of

a bamboo foam, and that the diagonal and rotated orientations are meta-stable.

Figure 4 shows the drag force the soap film exerts on the cube in these three orientations.

The network component of the drag force is shown in figure 4a, which demonstrates the

importance of the object’s orientation to the forces it experiences. The negative drag that

the soap film exerts instantaneously after attaching itself to the cube is smallest in magnitude

for the cube in the rotated orientation, where the soap film finds its minimal area without

deforming as much, only needing to engulf the leading apex of the cube. The initial network

force exerted on the cube in the diagonal orientation is larger in magnitude than for any

other orientation, as in this case the soap film contacts the object over a greater length than

for the rotated cube and at a larger angle to the horizontal than for the cube in the flat

orientation (see figure 5).

As the cube falls further, the downward network force increases to its largest magnitude

for the cube in the rotated orientation, for which the cross-sectional area to be navigated

by the soap film is largest. The negative network drag is also greater in magnitude for the

cube in the diagonal orientation compared to the flat orientation, as the angle the soap film

makes with the horizontal here while contacting the cube is larger. The network drag then

increases to zero as z0 approaches the vertical position of the soap film. Here, the soap film

becomes completely horizontal for a cube in the diagonal and flat orientations. However, for
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FIG. 5: Snapshots of the simulation when a cube (with λ = 10) in the (a) flat, (b) diagonal

and (c) rotated orientation reaches a height of z0 ≈ 5.9 in the centre of the cylinder, thus

contacting and deforming the soap film. The shape of the surface of the film for these

three cases is visualized by surface plots directly below the snapshots in (d), (e) and (f)

respectively, with the height of the film indicated by colour.
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FIG. 6: (a) Snapshot of the simulation and a (b) surface plot of the soap film where the

height of the centre of the cube in the rotated orientation is aligned with the height of the

soap film.
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FIG. 7: Snapshots of the simulation where a cube in the (a) flat, (b) diagonal and (c)

rotated orientation reaches a height of 3.5 in the cylinder, thus approaching the point at

which the soap film detaches. The shape of the soap film for these three snapshots is

visualized by the surface plots in (d), (e) and (f) respectively, with the height of the

surface denoted by colour.

the cube in the rotated orientation it takes a hexapolar deformation that includes three rises

and three depressions that are symmetric around the z-axis (see figure 6). This deformation

was seen for a cube in thin films in the work of Morris et al. [28] and for cubes lying at

fluid-fluid interfaces in the work of Soligno et al. [33].

The forces exerted on the cube by the soap film just before detachment vary considerably

with the orientation of the object, as shown in figure 4a. In this case, the network drag

exerted on the cube in the rotated and diagonal orientations is smaller in magnitude than

for the cube in the flat orientation. Leading up to detachment, the soap film surrounds only

one corner of the cube in the rotated orientation, compared to two corners for a cube in the

diagonal orientation and four corners for a cube in the flat orientation. As a result, the soap

film’s catenoid-like shape has a thinner neck leading up to detachment from a cube in the

rotated orientation. Therefore the instability that triggers the film to detach from a cube

happens sooner when a cube is in the rotated orientation compared to the diagonal and flat
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orientations, for which the neck of the soap film catenoid is wider. This is shown to be the

case in figure 7, which includes snapshots taken from the three simulations just before the

soap film detaches from the cube.

More insight can be gained by looking at how the pressure drag force varies with the height

of the cube in the cylinder (see figure 4b). The most striking result here is how antisymmetric

the pressure drag force is between when the soap film attaches to and detaches from the cube

for the rotated and diagonal orientations. For these orientations, the deformation caused to

the soap film by the cube is close to being symmetric about the point at which the centre

of the cube is perfectly aligned with the height of the soap film. Note that the direction of

the curvature of the film’s surface just before detachment is the opposite of the direction of

curvature after attachment, and that the similarity between the geometry of the film does

not extend to the instances directly after attachment and before detachment (as shown in

figures figures 5e,f and 7e,f). We previously discussed how the soap film deformation was

not symmetric at all for the cube in the flat orientation, and this is reflected in the forces

exerted on it by the soap film.

2. Unstable orientations

Let us now consider initial orientations for the cube which cause the soap film to deform

in a non-symmetric way, and therefore where the torque exerted by the foam becomes non-

negligible. We first consider initial orientations which are set by rotating the cube around

only one axis. Here we fix φ0 = ψ0 = 0 and vary θ0 between zero and π/2. In this case,

the angle α1 is initially equal to π/2 while α2 is varied and α3 = π/2− α2. Figure 8a shows

how the orientation of the cube, given in terms of α2, varies as the cube descends through

the soap film. Note that when α2 is initially zero or π/2, the cube is in the flat orientation,

which we investigated in the previous section. The stability of this orientation is confirmed

here by the fact that α2 does not change with the height of the cube in both cases. Similarly,

when the initial value of α2 is π/4, we have the diagonal orientation, and again the angle

recorded here does not change as the cube interacts with the soap film.

The new and interesting result here is what happens in between these two orientations.

As expected from symmetry, the results for α2 = 0.1π and α2 = 0.4π are equivalent, as are

the results for α2 = 0.2π and α2 = 0.3π. In all of these cases, when the soap film attaches
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FIG. 8: Variation of the orientation of a cube (with λ = 10): (a) The variation in the angle

α2 (from various initial values) versus the height of the cube in the cylindrical tube, where

α1 is initially set to π/2 and therefore α3 = π/2− α2. (b) Here, we consider many initial

orientations of the cube by considering every possible pairwise combination of φ0 and θ0

from the set of values {0, 0.1π, 0.2π, 0.3π, 0.4π, 0.5π}. The orientation of the cube is plotted

in terms of the angle α2 versus α3. An empty circle represents the starting orientation of

the cube, a dashed line shows how the orientation varies throughout the simulation and the

filled circle shows the final orientation of the cube after it has detached from the soap film.

itself to the cube it exerts a slight non-zero torque that acts to rotate the object towards the

flat orientation. Here, the soap film moves above the lowest side of the cube’s lower face,

but remains below the opposite edge of the same face (see figure 9a). As a result the shape

of the soap film is not symmetric around the z-axis, as shown in figure 9d. In figure 9a,

the contribution to the torque exerted by the film on the cube is largest on the right hand

side, where the film reaches its highest point. This contributes to rotate the cube in figure

9a in the clockwise direction, and therefore towards the flat orientation. This is cancelled

out by an opposite torque that occurs after the cube falls further and its centre coordinates

become closer to the vertical position of the soap film. It is shown in figure 9b and 9e that

the film is slightly higher on the opposite side to what it was previously. However, as the

soap film slips further along the surface of the cube the torque that the foam exerts increases

dramatically. The soap film slips towards the rounded edge of the cube that surrounds its
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FIG. 9: Snapshots of the simulation when the centre of a cube that is initially oriented so

that α1 = 0.5π, α2 = 0.3π and α3 = 0.2π, reaches a height of (a) z0 ≈ 6, (b) z0 ≈ 5 and (c)

z0 ≈ 3.5. The shape of the soap film for these three snapshots is visualized by the surface

plots in (d), (e) and (f) respectively, with the height of the surface denoted by colour.

upper face (see figures 9c and f). The film is in contact with this rounded edge for many

time steps, exerting a network torque that in effect rotates the cube strongly towards the

flat orientation. For example, in figure 9c, the contribution to the torque is much higher

from the left hand side as the film contacts the cube nearly vertically here, thus applying

a large upward pull on this side. It is clearly shown in figure 8a that the flat orientation

is the most likely outcome of dropping a cube that has been rotated around only one axis

through a soap film, and that it is the highly non-symmetric deformation of the soap film

that occurs before detachment that is the main driving force for this result.

We now vary the values of both the angles φ0 and θ0 used to set the initial orientation of

the cube, doing so in increments of π/10 between zero and π/2, considering every possible

combination. Figure 8b shows how the orientation of the cube changes as it interacts with a

soap film. Here, the angles that two of the normal vectors that define the cube make with the

z axes are plotted against each other. The stable orientations are the ones where the cube

doesn’t rotate as it falls through the soap film. This is the case when the angles (α2, α3) are
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equal to (0, π/2), (π/2, 0) and (π/2, π/2), which are all representations of the flat orientation.

It is also the case when (α2, α3) = (π/4, π/4) and (π/2, π/4), which are two representations

of the cube in the diagonal orientation. We also include the result for the rotated orientation

that we previously discussed, which is shown at
(

π/2− tan−1
(

1/
√
2
)

, π/2− tan−1
(

1/
√
2
))

here. All other initial orientations are unstable. It is shown in figure 8b that the orientation

of the cube in these unstable orientations also changes in a zigzag manner: The cube is

initially rotated towards the flat orientation after film attachment, and then it is rotated in

the opposite direction for a short period before being rotated towards the flat orientation

again leading up to film detachment. As previously discussed, the forces exerted by the

film on the object leading up to detachment are dominant in setting the final orientation of

the object. This is shown by the large collection of filled circles at the three corners that

represent this orientation in figure 8b. It is clear from this figure that unless the cube is

initially in the rotated or diagonal meta-stable orientations, then it is highly likely to be

reoriented to the flat orientation as it falls through the centre of a soap film.

D. Variation of initial position

So far we have considered what happens when a super-quadric object falls through the

centre of a horizontal soap film contained in a cylindrical tube. We now vary the initial

position of the object in the cylinder and inspect how its radial position varies as it interacts

with the soap film it falls through. We vary the initial radial distance, rxy =
√

x20 + y20,

between the centre of the object and the centre-line of the cylinder (where x = 0 and y = 0)

by varying x0, the x coordinate of the object’s centre. A simulation is terminated once the

descending object comes into contact with the boundary of the cylinder container.

Figure 10 shows how the radial position of the object changes as the object interacts

with a soap film, starting from different initial positions. When a sphere is allowed to fall

through a horizontal soap film from an off-centre position in the cylinder, the effects of the

asymmetry of the deformation to the film are weak (see figure 10a). There are small increases

in rxy as the sphere falls through the soap film, so that its path deviates slightly towards

the wall of the cylinder. This tendency becomes more apparent the further the sphere is

away from the centre of the cylinder initially. If the sphere fell through a long bamboo foam

containing many bubbles, it would eventually fall towards the wall of the cylinder, and the
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FIG. 10: Variation in the radial position, rxy/rc = 0.25
√

x20 + y20, of objects versus their

height in the foam, with points included every 40 time steps. Four initial positions are

considered: rxy/rc = 0.125, 0.25, 0.375, 0.5 for (a) a sphere, (b) a cube in the flat

orientation with λ = 6, (c) a cube in the flat orientation with λ = 10, (d) a cube in the

diagonal orientation with λ = 10 where the nearest face to the side of the cylinder is

vertical, (e) a cube in the diagonal orientation with λ = 10 where the nearest faces to the

side of the cylinder are slanted and (f) a cube in the rotated orientation with λ = 10.

foam would not control its motion.

Figures 10b and 10c show how the radial position of cubes in the flat orientation, with

λ = 6 and λ = 10 respectively, varies with their height. It is clear here that the effects of

positioning the cube off-centre in the cylinder are stronger than for a sphere. The radial

distance of the cube from the centre of the cylinder deviates more here, especially just before

it detaches from the soap film, which causes the cube to fall towards the wall of the cylinder.

We also note that this effect is stronger for the largest value of λ, where the deformation

caused to the soap film is greater.
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(a) (b)

FIG. 11: Snapshots of simulations where (a) a sphere and (b) a cube (initially) in the flat

orientation fall through a soap film from an off-centre position in the cylinder, causing

non-symmetric deformation to the soap film.

An indication of why wall effects are more prevalent for a cube compared to a sphere is

offered in figure 11. The angles that the soap film makes with the horizontal as it contacts

the cube from the left and the right are clearly different, which is not the case for the

sphere. On the side of the cube that is nearest to the cylinder wall (to the left in figure

11), the soap film makes a smaller angle with the horizontal than on the other side of the

cube. As a result, there is a resultant network force that drags the cube further towards

the nearest wall. We also note that the unbalanced deformation of the soap film also tilts

the cube slightly, which indicates that the flat orientation is no longer stable when the cube

is positioned off-centre in the cylinder. The deformation is more symmetric for the sphere,

explaining why it deviates less from a vertical path compared to the cube.

Figures 10d and 10e show that a cube in two different diagonal orientations also move

towards the nearest wall when positioned off-centre in the cylinder. Two different represen-

tations of the diagonal orientation are considered: one in which the cube has a vertical face

nearest to the wall and the other where the cube has two slanted faces nearest to the wall.

It is clear from figure 10d that the effect the asymmetric deformation has on the motion

of the cube is weaker for the first case than for the second diagonal orientation shown in

figure 10e. When the cube has two slanted faces nearest to the wall, the film between the
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object and the wall comes into contact with a (horizontal) rounded edge of the cube. The

angle the soap film makes with the horizontal plane at this stage is close to zero, therefore it

pulls the object towards this nearest wall with a large network force. This is similar to what

happens in figure 11b for the cube in the flat orientation. The effect is weaker for a cube in

the diagonal orientation in which it has a vertical face close to the wall, and the film moves

steadily along this face as the cube falls. This is also the case for the cube in the rotated

orientation (see figure 10f), where the attraction towards the wall is of a similar nature to

that experienced by a cube in the diagonal orientation considered in figure 10d. This again

demonstrates that the soap film navigates the surface of the cube in the rotated orientation

without deforming as much, especially leading up to detachment, where the forces are at

their largest.

IV. CONCLUSIONS

We have presented results of 3D quasi-static simulations in which a light solid object

defined by a super-quadric equation falls under gravity through a horizontal soap film of a

bamboo foam. We discussed in detail how the soap film deforms as it attaches to the object

and prior to when it detaches from the object. The influence the soap film has over the final

position and orientation of the solid object has also been discussed in detail. In particular,

we investigated how the forces a soap film exerts on the object vary when we change the

radius of the cylinder container, and the shape, orientation and initial position of the object.

Varying the radius of the cylinder does not change the magnitude of the network force

exerted by the soap film on a sphere. However the pressure contribution to the drag force

increases considerably with decreasing tube radius. For example, the pressure contribution

to the drag force on a sphere with radius rs = 1 is around half the network contribution

when the radius of the cylinder is rc = 1.5. When the radius of the tube is rc = 4, the

pressure force is an order of magnitude smaller than the network force. Thus, the downward

motion of an object is slower in a foam contained in a thinner tube, meaning that the soap

film can manipulate the position and orientation of the object for longer before detachment

occurs.

It is clear that the shape of the object is pivotal in how the soap film deforms and the

resulting forces that it exerts on the object. We found that both the network and pressure
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drag force exerted on the object by the film increase with the shape parameter λ. This

implies that a cube causes the soap film to deform much more than a sphere. This is

particularly true in the build up to when the soap film detaches from the object, where

it becomes much more stretched for a cube than it does around a sphere. In general, it

takes the soap film more time to navigate surfaces with very high curvature such as the

rounded edges of our cubes, especially when those edges are adjacent to flat surfaces that

are perpendicular to the direction of the motion of the object. In these instances, the shape

of the descending object acts to keep the neck of the catenoidal shape of the soap film wide

enough to remain stable for longer.

Another important factor that determines how a film interacts with a solid object is the

orientation of the object as it comes into contact with it. We considered many orientations

of the cube and investigated the deformation to the soap film and the forces it exerts on

the object. For a cube dropped centrally through the film, the flat orientation was the only

stable orientation found, while the diagonal and rotated orientations were meta-stable. In

all three cases, the deformation to the soap film remains symmetric around the centre-line

of the cylindrical container, meaning that the network and pressure torques exerted by the

foam remain negligible throughout. The deformation of the soap film is clearly different

for these three orientations, in particular during attachment and detachment and this has

been explained using geometrical arguments. For other initial orientations, the symmetry

of the soap film deformation is broken, and therefore a non-zero torque is exerted by the

foam. This is such that a cube not initially in one of the three aforementioned orientations

is likely to be realigned by the horizontal soap film towards the flat orientation. The major

contribution to this realignment occurs when the forces are at their greatest, that is as the

soap film reaches the upper half of the object and before detachment.

Finally we investigated the effect of positioning the descending object off-centre in the

cylindrical container. This also broke the symmetry of the soap film’s deformation, resulting

in the object being pulled towards the nearest wall of the cylinder by the soap film. This

wall effect was seen to be strongest for a cube in the flat orientation, for which the soap

film is perturbed the most, and weakest for a sphere or a cube in the rotated orientation for

which a soap film is perturbed the least.

We propose that our results can be generalised to predict what happens when a solid

object falls through a bamboo foam with many bubbles. Our results apply as long as the
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bubbles are large enough so that the object is in contact with (at most) one film at any

given time. Assuming that an object free falls when it is not in contact with a soap film,

we predict that a cube in the flat orientation will descend through a bamboo foam slower

than a sphere, or a cube in the diagonal and rotated orientations. We also predict that if a

cube falls down the centre of a bamboo foam, then it will emerge at the bottom in the flat

orientation, provided that it was not initially in the diagonal or rotated orientations. This

may not be the case if bubbles are small enough so that an object can be in contact with

more than one soap film at a time. We predict that a second film contacting the object

may resist its re-orientation as it falls down the centre of a bamboo foam, as the two films

would apply torques in opposite directions when contacting the object from above and below

respectively.

We conclude that a bamboo foam may provide a good tool for precisely reorienting an

object that falls through it from a central position in the cylindrical container. However,

a bamboo foam does not provide good control over the motion of objects when they are

positioned off-centre in the cylinder as the objects fall towards the wall of the container.

So to improve the control a foam has over the motion of non-spherical objects, we would

need to consider more complicated ordered foams such as the staircase, twisted staircase or

double staircase foams [15].

Future work may include an investigation of how the interaction between a soap film and

a solid object varies for other shapes such as ellipsoids, as well as the surface properties of

the object and the wetting film covering it. For the latter, the contact angle between the

soap film and the descending object would need to be varied, introducing the possibility of

including frictional forces into our model. It would also be interesting to investigate how the

interaction between foams and solid objects varies with the choice of ordered or disordered

foams, of different foam wetness and polydispersity.

Data Access

A full set of raw data and source code for a simulation file is included in the electronic sup-

plementary material that is available from Aberystwyth University’s open access repository

at https://doi.org/10.20391/d47a5e1b-583f-4261-ae87-46d1ce021075 [34].
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