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Abstract

Many computer vision and graphics related techniques rely upon illuminaticeriance of images to derive
meaning from images of an object under varying lighting conditions. Thistisesaappearance-based methods. In
practice however this assumption does not hold if one is not careful witbreitmtrolling the illumination of the
object when capturing its appearance or with some post-processing afntiges. This paper presents results of
experiments designed to analyse the usefulness for illumination invariahee oblour models, CIE 1a*b* and
YUV, that have been designed to provide separation of the luminancenation from the colour information,
and compare them with more traditional colour models, RGB and HSV . Ttis by evaluating the variations
in each of the components of the different colour spaces in real images ta variable illumination conditions.
We also present a simple application example.

Categories and Subject Descript¢ascording to ACM CCS) |.4.7 [Image processing and computer vision]: Invari-
ants

Please note: most images should really be viewed in colour With the emergence of appearance-based methods, both

and are available in the electronic version or should be avail- in vision (e.g. MLO4,NLO4]) and in graphics (e.g.

able atht t p: / / users. aber. ac. uk/ffl/. [SWCTO03), it is important to have models that will indeed
offer the separation between colour and luminance, espe-
cially in applications involving the recognition and/or fusion

1. Introduction of images taken under different illumination conditions.

Images are generally captured in tR&B colour space,
mainly because of hardware constraints. Note that we refer
in this paper tahe RGBcolour space as being the one usu-
ally used in computer graphics systems: components range

g?mg'gcfg;—so EJOr:(;)irt\O ii?ghiot%(zqg;::)eu?;?)gglcjlinain;?;ﬁitte are addressed correspond to differences in colour, usually
being respecﬁvelf{O(g) 0.0.0 6) and(1.0.1.0,1.0). This has _produced_ by diffe_rent typ_es of lighting such as natural_light-
implied that most vi-si7oﬁ élﬁd graphic's7al-gc-‘Jri.thr.ns have been 9" possibly at different times of the dajIW64, and dif-

; ferent types of artificial lights. This paper is not about colour
using RG.B a colour model that has many dr_awbacks_. One constancy but about illumination independence.
of these is that the colour and the luminance information are
not separated from each other. Although this might be fine ~ Some work towards illumination independence has been
for most algorithms, it does pose problems in some cases. done, often involving complex methods and/or constrain-
For example, Swain and Ballar8B91 proposed a method ing assumptions. This includes explicit illumination evalua-
of recognising objects based upon the object’s colour alone. tion by analysing the lighting gradiertdpr74], but assumes
Further work FF995 done on this stated that “Swain’s algo-  Mondrian-like images. More recently, implicit illumination
rithm is very sensitive to the lighting. Simple changes in the invariance (in the context of recognition) has been achieved
illumination’s intensity, let alone it's colour, radically alter by learning probabilistic illumination gradient distributions
the algorithm’s results”. using a large training se€BJOQ.

Colour constancy is part of the problem (e.DF93).
This refers to methods of transforming colours such that
objects imaged under different lighting conditions look the
same. In this case, the differences in lighting conditions that
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Researchers and practitioners have used colour spacesvhere 00 < R,G,B<1.0,00<Y <10,-0492<U <

that separate luminance from colour information. The colour
model known asHSV (Hue, Saturation, Value) is such a
model and is mainly used by graphics designers for its ease
of colour specification. A less known colour model having a
similar property is CIEL*a*b* [Fai9§. This colour model

has another important property, although not of use in this
work: it is perceptually linear. The luminance separation of-
fered by CIEL*a*b* has been used in segmentation tasks
(e.g. Hen98). Another widely used colour model MUV.

This model is used in television (and more generally video)
broadcasting in Europe with the PAL format. This model has
been designed such that tilecomponent carries the lumi-
nance information (and is being attributed more bandwidth
given that the human eye is more sensitive to luminance vari-
ation), the colour information being contained in thandV
components. However, we are not aware of any experimental
study of the effectiveness of such colour models to separate
luminance information from colour information. This paper
describes experiments we performed in an attempt at char-
acterising this effectiveness.

The paper is organised as follows. Sectdaescribes the
transformations used to convert froRGBto HSV, YUV
and CIEL*a*b*. Section3 describes the experimental setup
while Sectiord gives the results we obtained. Sectgives
a simple example of a possible application of the results. Fi-
nally, Sectior6 concludes and proposes future experiments.

2. Transformations

The RGBto HSV andY UV transformations are fairly stan-
dard. TheRGBto HSMtransformation is as follows:

min = min(R,G,B),
max = maxR,G,B),
undefined if max=0;
G;B. if R=max;
H = 60x max—min
2.0+ i if G=max;
max— min
4.0+ i if B= max
max—min
0.0 ifmax=0;
S = max— min .
——— otherwise
max
V = max

where 00 < R,G,B< 1.0,H is in degrees (@ < H < 360)
and 00 < SV < 1.0. TheRGBto YUV transformation is as
follows (PAL version):

Y = 0.299R+0.587G+0.114B,
U = 0.492B-Y),
V = 0877(R-Y),

0.492 and—0.877<V < 0.877.

TheRGBto CIE L*a*b* transformation is less common,
and in fact involves two transformations. FiRGBcolours
are transformed into CIKY Z

X 27690 17518 11300 R
Y | =1 1.0000 45907 00601 G
z 0.0000 00565 55943 B

Note that this transformation is theoretically a function of
the viewing conditions (intensity and colour of the lighting)
[MG87]. The given transformation is one that is often used
(e.g. Hen98 LWO01]).

The CIEXY Zto CIEL*a*b* transformation is given be-
low, and covered in depth by FairchilB4i9§:

L* = 116(%)%—16,
= sof(%)’ (%)),
o = 200l(¥) - (2)'].

whereXn, Yn, Zn are theX, Y, andZ values of the reference
white, R=G = B = 1.0. Itis to be noted that this transfor-
mation is simplified in that it strictly should not be applied
to low luminance levels. The complete transformation can
be found in MG87, Fai9g. The component.* gives the
luminance and we have 16.0 < L* < 1000, from black

to white. The componenta® andb* roughly corresponds
to the axes respectively from green to red and from blue
to yellow. A graphical depiction of the mapping froRGB

to CIEL*a*b* can be found inffai9g. These components
have no theoretical limits (see Sectidifor a discussion).

3. Experimental setup

The setup used to capture images consisted of a statically
mounted camera overlooking areas with a variety of inter-
esting sub-areas to consider. The camera was used to take
images at semi-regular intervals over a period of time long
enough for there to be a noticeable change in illumina-
tion across the whole image set, but nothing else, in par-
ticular no significant changes in illumination colour. We
largely avoided sun-rise and sun-set times as these do change
significantly the illumination colour. Individual sets where
captured during single days to avoid illumination colour
changes as much as possible. These changes however were
not totally removed, which is a cause for the observed varia-
tions in colour information, see Sectidn

We used a Picasso 104-2SQ framegrabber from Arvoo
and a WAT-202B camera from Watec. The camera provides
three different modes of white balance: 3200K, 6300K and
automatic. The precise nature of the white balance functions
of the camera are undocumented, and for this reason the sub-
areas shown in Figur2actually has two sets of images, the
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Table 1: Propeties of the different sub-areas: number of im-
ages and size (in pixel)

Sub-area A B C D E F
Number 11 11 11 11 24 24
Size 1650 1600 1548 1980 9100 6572

Sub-area G H | J K L
Number 23 24 34 34 34 32
Size 5088 3950 9100 6572 5088 3950

Table 2: Some correspondances between RGB and
CIE L*a*b*

RGB CIE L*a*b* colour

(1.0 0.0 0.0) (49.126 113.48 112.29) red
(0.0 1.0 0.0) (92.238 -128.15 143.53) green
(1.0 1.0 0.0) (99.587 -34.057 156.20) yellow
(0.0 0.0 1.0) (9.5101 182.43 -155.35) blue

makes performing direct pixel by pixel comparisons of any
sub-area difficult and unreliable. There are however ways of
mitigating the effects of this noise. Assuming that the noise
function is likely to be approximately Gaussian, it is possi-
ble to use the fact that the mean noise of a large enough set
of pixels should be 0 to our advantage. To this end the mean
values of each channel of each sub-area have been used in
analysis of the captured images, thus the pixels in each sub-
area produce one triplet for each input image.

Having carefully selected suitable sub-areas as described
above it was still necessary to discard several frames from
the sets due to pedestrians and cars. These images were iden-
Figure 2: The second set of images. The sub-areas corre- tified and removed manually.
sponding to the first letter of each pair are with automatic
white balance, the others are fixed to “natural light”.

Figure3 shows some of the sub-areas of some of the im-
age sets. They are indicative of the range of illumination con-
first (E, F, G, H) with automatic white balance and the sec- ditions present acro_ss the image sets. Th_e nature of the se-
ond set (1, J, K, L) with the "natural light" white balance set- lected areas results in the sub-areas passing through patches
ting. This enabled us to consider the effects of white balanc- ©f shade, and the time period of capture resulted in signifi-
ing upon the transformations discussed previously. More- cantperceivable changes across the image sets. Tghles
over, the automatic lighting adjustment was turned off but the number of images for each sub-area as well as their size.
the aperture of the lens was adjusted between image sets to
ensure that the images would not be saturated (some days
were much brighter than others). Despite this, a few sub-
areas of a few images were saturated, as discussed later. 4. Results

The sub-areas selected for consideration are shown in Fig- In order to facilitate the comparison, each axis in each colour
uresland2. These were selected primarily because they are space was normalised to the intery@l1]. In the case of
less subjected to changes for reasons other than illumination. the & and b* components of CIEL*a"b*, which can in
None of the sub-areas selected include for instance any sky, theory range from—oo to +oo, the lowest and highest
since the colour of sky is liable to change with the weather CIE L*a"b" values that could be produced by transform-
and in particular passing clouds. Another element of the sets ing valid RGB colours were used as the range, TaBle
largely avoided corresponded to the trees owing to the po- However, impossible colours in CIE*a*b” can be trans-

tential for movement between images caused by wind. formed intoRGB colours and provide a much wider range
for the a* and b* components. For example black-red in

With any image capture process a certain amount of noise CIE L*a*b* (—16.0,3750,0.0) can be transformed into
within the image is inevitable. This unavoidable problem (0.996 0.0,0.004) in RGB This means that the performed
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(a) Sub-area A

| —

(b) Sub-area G
Figure 3: Typical sub-areas of the different image sets

normalisation is conservative and could have reduced even t5p1e 7- Mean hue values for sub-area F for some of the
more the obtained variances (see later). images of the set

Tables3, 4, 5 and 6 give the mean and variance over
all images of the corresponding sets for the different sub-
areas and colour spaces. Direct comparison of the variance
of components of the CIE*a*b* and RGB colour mod- Image 8 9 10 11
els are not statistically valid comparisons because the trans- MeanH value 77.26 75.50 74.48 73.92
formation fromRGB to CIE L*a*b* is not linear, which
means they have different distributions. However, for our
purposes, simple comparison, such as the order of magni-
tude, do present meaningful evidence.

Image 2 3 4 5
MeanH value 66.86 65.86 84.72 80.81

From these tables, it is clear that the different colour
spaces provide different degrees of separation of luminance
from colour.R, G andB variances are all similar for given  Figure 7: Two extremes of sub-area K (images 0 and 14),
sub-areas, showing that the illumination being the only vary- one showing saturation
ing factor, colour and luminance are not separatedi 8V,
the variance of the hue is oftebyt not always, lower than the points which don't fit in. Tabl& shows the actual hue
the variance of the saturation and value (which are supposedvalues of the images on Figue Visually the two out-of-
to convey most of the luminance information). Some of these line images have a more yellow tint, which is confirmed by
unexpected results are discussed below. In both the and the slightly higher values of the compondsit and the hue
CIE L*a*b* colour spaces, the variance of the luminance value close to yellow (60) for these images. These points are
component (respectively andL*) is always at least one (if however not very out-of-line, especially considering the very
not two or three) orders of magnitude higher than the vari- different appearances of the differentimages due to shadowy
ance of the colour components (respectivgly anda*b*). and non-shadowy images.

This shows that in both models the colour components carry The graph of thadSV values of sub-area K (Figug(b))
significantly less luminance information than the luminance howevegr dF()) show out-of-line values. This is ev?dent when

component. Moreover, the two models perform similarly. . . : . )
comparing the variance in that sub-area with other sub-areas:
It is important to remember that some of the variation it is an order of magnitude higher (this also happens to a
in the colour components is due to changes in the lighting lesser extent for sub-areas H and I, although for the former
colour which is unavoidable in outdoors images over long the reason is probably due to changes of the scene — motion
periods of time. in the bushes). Upon inspection of the image set we discov-
ered that the five points which seem completely anomalous
are around midday on a sunny day. Figédighows images 0
and 14 showing two extremes of luminance. R@Bvalues
of the image are close to 1.0, showing saturation of the cam-
era, which caused problems determining the hue accurately.
Itis interesting to note however that theandV components
‘of YUV anda* andb* components of the CIE*a*b* im-
ages (Figure§(c) and5(d)) at the same time fit the straight
line we would expect to see if they were invariant.

Some details do require closer analysis. Fig@tesd5
show the graphs of the componentsRGB HSV, YUV
and CIEL*a*b* for two of the sub-areas. Sub-area F shows
points within the hue component BfSV that are slightly out
of range. Figuré shows the sub-area F in different images:
2 and 3 are the anomalous images, 4 and 5 are the subse
quent “normal” images. At first sight the cause of the reason
for images 2 and 3 might appear obvious (cast shadows),
however closer inspection of the whole set revealed that im-
ages 8, 9, 10 and 11 (Figuégbottom)), which appear to fit Also of interest with sub-area K is its comparison with the
the straight line trend, have visual characteristics similar to same sub-area with automatic white balance enabled (sub-
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Table 3: Comparison of channels of RGB images

R G B
Sub-area mean var mean var mean var
A 0.621406 0.00939583 0.449919 0.00499542  0.531759 032130
B 0.465028 0.0270994 0.582289  0.0303846  0.310973 0.024386
C 0.355393 0.00972204 0.333366 0.00816249 0.303951 (16918
D 0.74851 0.00671774 0.814118 0.00353575 0.859049 0.00157
E 0.582263 0.0026201 0.580631 0.00251443 0.616985 0.06488
F 0524702 0.0137953 0.598824  0.0172351  0.310418 0.002030
G 0.557145 0.0234549 0.556644  0.0186704  0.632994 0.095783
H 0.307693 0.00222363 0.303001 0.001782 0.312923 0.06B354
| 0.571447 0.00568363 0.537771 0.00424631 0.514765 0631
J 0466192 0.0122142 0.503468 0.0116693 0.264127 0.06%411
K 0.576415 0.0293905 0.543128  0.0222896  0.559224  0.047517
L 0.305581 0.00133488 0.290489 0.000986616 0.267991 062D
Table 4: Comparison of channels of HSV images
H S v
Sub-area mean var mean var mean var

A 0.923205 0.000716362 0.275952  0.000210198 0.621449 901325
0.244905 0.000365237  0.477069 0.0153586 0.582307 078303
0.170476  0.00147369  0.150291  0.00204692 0.356686 (066896
0.540148 0.0013136 0.14216 0.00295646  0.86559  0.0076216
0.624378  0.00350893  0.0749948 0.0010004 0.62101 0.82848
0.213306 0.000195616  0.466489 0.00404809 0.598971  ZBQ#7
0.672254  0.00166297 0.147646 0.00310416  0.635455  (OUB6S
0.543851 0.0107882 0.0851954 0.000257043 0.323045 07663
0.224351 0.0209946 0.102828  0.00248228 0.572856 0.@1=H3
0.200177 0.000766661  0.462375 0.0100005  0.504041 (@B6%16
0.581517 0.0373274  0.0889594 0.000405788 0.590098 0IT%%
0.226809 0.00781674  0.134189  0.00184084 0.308348 033ABL

area G). Although not immediately comparable, the images 5. Application: appearance-based matching
having been grabbed at different times, the means and vari-
ances inRGB for the sub-areas E and | (and similarly for
F-J, G-K and H-L) are very similar. Given that the auto-
matic white balance is performed in tfGB space, this
tends to show that the sub-areas are comparable. Looking
at theYUV and CIEL*a*b* values, again the means and
variances are also similar for the three components. How-
ever, the means and variances of the hue and saturation in
theHSV colour space are very different (up to several orders ~ We show here that computing the Euclidean distance be-
in magnitude for the variance and a factor of 2 for the mean). tween images irRGB YUV (just considering components
The value however is comparable. This shows that the prop- U andV) and CIEL*a*b* (just considering components

rxXoe—IOTmmmOOw

In this section, we outline a typical use of the results. Many
appearance-based methods (e\f.Q4]) involve computing

the Euclidean distance between images in the image space
(the ( x m)-dimensional space of allby m pixels images).

As mentioned in Sectiofh, the main problem behind this is
that if one is not careful, two views of the same object under
different illumination situations might appear very different.

erties of the automatic white balance, performed inRIGB a" and b*) can lead to very different outcomes. Figu8e
colour space, are preserved by the transformatioduy/ shows the Euclidean distance between the first image of
and CIEL*a*b* but not by the transformation td SV, at sets 2 (with natural light white balance) and 1 in the full
least the colour part of it. RGB space and th¥ UV and CIEL*a*b* spaces without

considering the luminance information (and normalising the
components). This shows that recognitiorRi&Bwould fail
These results show that theJV and CIEL*a*b* colour while it would succeed even with a simple threshold-based
spaces do separate efficiently luminance from colour, even in method: the distance between the first image of sets 1 and 2
presence of saturation. In the next section, we briefly present are respectively 339.169, 51.8382 and 75.6718GB UV
an application for this result. and a*b*, which makes the former less discriminant than
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Table 5: Comparison of channels of YUV images

Y U \%
Sub-area mean var mean var mean var
A 0.510524 0.00693963 0.510618 0.000259126 0.555441 594565
B 0.516298 0.0288678 0.397338 0.00135369 0.474365 7.0001le
C 0.336599 0.00853715 0.483676 5.57209e-05 0.509397 818065
D 0.799623 0.00405117 0.529713 0.000197122 0.474443 @©1¥105
E 0.585263 0.00270849 0.515861 0.000158297 0.4985 2.81636
F 0.543783 0.0134644 0.383317 0.00167873 0.49046  6.69¥B4e
G 0.565498 0.0196081 0.533748 0.000177854 0.495824 63102
H 0.305535 0.00188744 0.503694 4.16806e-05 0.501079 922005
I 0.545217 0.00454084 0.484774 0.000110528 0.513115 89705
J 0.465038 0.0098817 0.399545 0.00144044 0.500577 4.802B8
K 0.554915 0.0236337 0.502154 0.000190761 0.51075 O.GIWEO
L 0.292437 0.0010653 0.487777 3.31153e-05 0.506572 13%#35
Table 6: Comparison of channels of CIE'&*b* images
L* a* b*

Sub-area mean var mean var mean var
A 0.781374 0.00160439 0.469862 6.19425e-05 0.483003 DUBHB8
B 0.813247 0.00628527 0.337735 0.000378381 0.59613  00@304
C 0.689234 0.00335536 0.414029 6.66229e-06 0.513768 @b@OB5
D 0.925527 0.000631121 0.404477 8.10288e-06 0.485153 1338605
E 0.833681 0.000558209 0.418187 7.89346e-06 0.488326 2228405
F 0.829317 0.00371697 0.350987 0.000115615 0.596781 /0085
G 0.817236 0.00426067  0.424017 6.298e-06 0.475042 8069 2e-
H 0.669865 0.000936666 0.416159  2.6361e-06  0.494474 24£1Q5

I 0.814373 0.0011698 0.417491 5.70455e-06 0.507978 41%268
J 0.786547 0.00298242 0.362291 0.000129361 0.591734 @BOQW6
K 0.811956 0.00493214 0.423138 1.19296e-05 0.494532 7008

L 0.662119 0.000593182 0.412932 6.54945e-06 0.51105 872905

300 ‘

o—o RGB (set 2
=—a UV (set 2)

+— a*b* (set 2)|
+—4 RGB (set 1,
UV (set 1)
»—» a*b* (set 1),

2501~

N

o

S
T

1501— —

Euclidean distance

=
o
S
I
|

50—

Image

Figure 8: The Euclidean distance in RGB and CIEd*b*
(without luminance information) between the first image of
sets 2 (with natural light balance) and 1 and the remaining
images of the same set

the others. The graph of the distancai™ for set 1 shows
two points that are out-of-line. They correspond to two im-

ages showing extreme saturation or a passer-by (and were
not included in the previous statistical analysis) and thus are
different from the test image. The two final images of set 2
also show anomalies: the images were taken late in the after-
noon and thus were becoming significantly darker (and the
last but one contained a passing car). These anomalies do not
appear in th&' UV colour space.

6. Conclusion

We have shown that overall tted andb* [resp.U andV]
components of the CIE*a*b* [resp.YUV] colour space
have a variance at least one order of magnitude smaller than
the corresponding™ [resp.Y] component, even in the case

of saturated images. (Remember that the normalising ranges
we used were conservative and that possibly more realis-
tic ranges would have lead to even lower variationgin
andb*.) In other words, botty UV and CIEL*a*b* colour
models are good at separating luminance information from
colour information.

This independence from luminance obviously does not
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Figure 4: Results of sub-area F, Figu

hold in theRGB colour space. More surprisingly, this also  [Fai98] FaIRCHILD M. D.: Color Appearance Models
does not hold in thédSV colour space (the variance in the Addison-Wesley, 1998.

hue is not consistently lower than that of the saturation and
value). Moreover, we have seen that th8V transformation
destroys the effect of automatic white balance.

[FDF93] HNLAYSON G. D., DREwW M. S., FUNT B. V.:
Diagonal transforms suffice for color constancy.Piroc.
of the Int. Conf. on Comp. Vi§1993), pp. 164-171.
The relative simplicity of the transformation froRGBto

CIE L*a*b* and even more so 86UV makes it worthwhile ~ [FF95] FUNT B. V., FINLAYSON G. D.: Color constant

considering these models in applications needing luminance color indexing. IEEE Trans. on Pat. Anal. and Machine

invariance. In particular, we have shown that appearance- Intel. 17, 5 (1995), 522-529.

based matching would work better if only considering the [Hen98] HenrICSSONO.: The role of color attributes and

a" andb™ components compared to usiR§B similarity grouping in 3-D building reconstructio€VIU

Future work will include a study of the performance of 72,2 (1998), 163-184.
appearance-based methods in robot mapping and navigationjHor74] Horn B. K. P.: Determining lightness from an
under varying lighting conditions. image.CVIP 3(1974), 277-299.

[JMW64] Jubb D., MACADAM D., Wyszeckl G.:
References Spectral distribution of typical daylight as a function of
correlated color temperaturd. of the Optical Society of

[CBJOO] CHEN H. F., BELHUMEUR P. N., ACOBS America A 541964), 1031-1040.

D. W.: In search of illumination invariants. Proc. of the
IEEE Conf. on Comp. Vis. and Pat. R¢2000), pp. 254— [LWO1] LABROSSEF., WiLLIS P.: Towards continuous
261. image representations. Rroc. of the Int. Conf. in Central
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Figure6: Images 2, 3, 4 and 5 (top) and 8, 9, 10 and 11 (bottom) from sub-area F
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