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Abstract
Many computer vision and graphics related techniques rely upon illuminationinvariance of images to derive
meaning from images of an object under varying lighting conditions. This is all the appearance-based methods. In
practice however this assumption does not hold if one is not careful with either controlling the illumination of the
object when capturing its appearance or with some post-processing of the images. This paper presents results of
experiments designed to analyse the usefulness for illumination invariance oftwo colour models, CIE L∗a∗b∗ and
YUV, that have been designed to provide separation of the luminance information from the colour information,
and compare them with more traditional colour models, RGB and HSV. This isdone by evaluating the variations
in each of the components of the different colour spaces in real images taken in variable illumination conditions.
We also present a simple application example.

Categories and Subject Descriptors(according to ACM CCS): I.4.7 [Image processing and computer vision]: Invari-
ants

Please note: most images should really be viewed in colour
and are available in the electronic version or should be avail-
able athttp://users.aber.ac.uk/ffl/.

1. Introduction

Images are generally captured in theRGB colour space,
mainly because of hardware constraints. Note that we refer
in this paper tothe RGBcolour space as being the one usu-
ally used in computer graphics systems: components range
from 0.0 to 1.0 (or 0 to 255), 1.0 being the maximum amount
of the corresponding colour, the “colours” black and white
being respectively(0.0,0.0,0.0) and(1.0,1.0,1.0). This has
implied that most vision and graphics algorithms have been
usingRGB, a colour model that has many drawbacks. One
of these is that the colour and the luminance information are
not separated from each other. Although this might be fine
for most algorithms, it does pose problems in some cases.
For example, Swain and Ballard [SB91] proposed a method
of recognising objects based upon the object’s colour alone.
Further work [FF95] done on this stated that “Swain’s algo-
rithm is very sensitive to the lighting. Simple changes in the
illumination’s intensity, let alone it’s colour, radically alter
the algorithm’s results”.

With the emergence of appearance-based methods, both
in vision (e.g. [ML04, NL04]) and in graphics (e.g.
[SWCT02]), it is important to have models that will indeed
offer the separation between colour and luminance, espe-
cially in applications involving the recognition and/or fusion
of images taken under different illumination conditions.

Colour constancy is part of the problem (e.g. [FDF93]).
This refers to methods of transforming colours such that
objects imaged under different lighting conditions look the
same. In this case, the differences in lighting conditions that
are addressed correspond to differences in colour, usually
produced by different types of lighting such as natural light-
ing, possibly at different times of the day [JMW64], and dif-
ferent types of artificial lights. This paper is not about colour
constancy but about illumination independence.

Some work towards illumination independence has been
done, often involving complex methods and/or constrain-
ing assumptions. This includes explicit illumination evalua-
tion by analysing the lighting gradient [Hor74], but assumes
Mondrian-like images. More recently, implicit illumination
invariance (in the context of recognition) has been achieved
by learning probabilistic illumination gradient distributions
using a large training set [CBJ00].
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Researchers and practitioners have used colour spaces
that separate luminance from colour information. The colour
model known asHSV (Hue, Saturation, Value) is such a
model and is mainly used by graphics designers for its ease
of colour specification. A less known colour model having a
similar property is CIEL∗a∗b∗ [Fai98]. This colour model
has another important property, although not of use in this
work: it is perceptually linear. The luminance separation of-
fered by CIEL∗a∗b∗ has been used in segmentation tasks
(e.g. [Hen98]). Another widely used colour model isYUV.
This model is used in television (and more generally video)
broadcasting in Europe with the PAL format. This model has
been designed such that theY component carries the lumi-
nance information (and is being attributed more bandwidth
given that the human eye is more sensitive to luminance vari-
ation), the colour information being contained in theU andV
components. However, we are not aware of any experimental
study of the effectiveness of such colour models to separate
luminance information from colour information. This paper
describes experiments we performed in an attempt at char-
acterising this effectiveness.

The paper is organised as follows. Section2 describes the
transformations used to convert fromRGB to HSV, YUV
and CIEL∗a∗b∗. Section3 describes the experimental setup
while Section4gives the results we obtained. Section5gives
a simple example of a possible application of the results. Fi-
nally, Section6 concludes and proposes future experiments.

2. Transformations

TheRGBto HSV andYUV transformations are fairly stan-
dard. TheRGBto HSVtransformation is as follows:

min = min(R,G,B),

max = max(R,G,B),

H = 60×
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where 0.0≤ R,G,B≤ 1.0, H is in degrees (0.0≤ H < 360)
and 0.0≤ S,V ≤ 1.0. TheRGBtoYUV transformation is as
follows (PAL version):

Y = 0.299R+0.587G+0.114B,

U = 0.492(B−Y),

V = 0.877(R−Y),

where 0.0 ≤ R,G,B ≤ 1.0, 0.0 ≤ Y ≤ 1.0, −0.492≤ U ≤

0.492 and−0.877≤V ≤ 0.877.

TheRGBto CIE L∗a∗b∗ transformation is less common,
and in fact involves two transformations. FirstRGBcolours
are transformed into CIEXYZ:
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Note that this transformation is theoretically a function of
the viewing conditions (intensity and colour of the lighting)
[MG87]. The given transformation is one that is often used
(e.g. [Hen98, LW01]).

The CIEXYZ to CIE L∗a∗b∗ transformation is given be-
low, and covered in depth by Fairchild [Fai98]:
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whereXn, Yn, Zn are theX, Y, andZ values of the reference
white, R= G = B = 1.0. It is to be noted that this transfor-
mation is simplified in that it strictly should not be applied
to low luminance levels. The complete transformation can
be found in [MG87, Fai98]. The componentL∗ gives the
luminance and we have−16.0 ≤ L∗ ≤ 100.0, from black
to white. The componentsa∗ and b∗ roughly corresponds
to the axes respectively from green to red and from blue
to yellow. A graphical depiction of the mapping fromRGB
to CIE L∗a∗b∗ can be found in [Fai98]. These components
have no theoretical limits (see Section4 for a discussion).

3. Experimental setup

The setup used to capture images consisted of a statically
mounted camera overlooking areas with a variety of inter-
esting sub-areas to consider. The camera was used to take
images at semi-regular intervals over a period of time long
enough for there to be a noticeable change in illumina-
tion across the whole image set, but nothing else, in par-
ticular no significant changes in illumination colour. We
largely avoided sun-rise and sun-set times as these do change
significantly the illumination colour. Individual sets where
captured during single days to avoid illumination colour
changes as much as possible. These changes however were
not totally removed, which is a cause for the observed varia-
tions in colour information, see Section4.

We used a Picasso 104-2SQ framegrabber from Arvoo
and a WAT-202B camera from Watec. The camera provides
three different modes of white balance: 3200K, 6300K and
automatic. The precise nature of the white balance functions
of the camera are undocumented, and for this reason the sub-
areas shown in Figure2 actually has two sets of images, the
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Figure 1: The first set of images

Figure 2: The second set of images. The sub-areas corre-
sponding to the first letter of each pair are with automatic
white balance, the others are fixed to “natural light”.

first (E, F, G, H) with automatic white balance and the sec-
ond set (I, J, K, L) with the "natural light" white balance set-
ting. This enabled us to consider the effects of white balanc-
ing upon the transformations discussed previously. More-
over, the automatic lighting adjustment was turned off but
the aperture of the lens was adjusted between image sets to
ensure that the images would not be saturated (some days
were much brighter than others). Despite this, a few sub-
areas of a few images were saturated, as discussed later.

The sub-areas selected for consideration are shown in Fig-
ures1 and2. These were selected primarily because they are
less subjected to changes for reasons other than illumination.
None of the sub-areas selected include for instance any sky,
since the colour of sky is liable to change with the weather
and in particular passing clouds. Another element of the sets
largely avoided corresponded to the trees owing to the po-
tential for movement between images caused by wind.

With any image capture process a certain amount of noise
within the image is inevitable. This unavoidable problem

Table 1: Propeties of the different sub-areas: number of im-
ages and size (in pixel)

Sub-area A B C D E F
Number 11 11 11 11 24 24

Size 1650 1600 1548 1980 9100 6572

Sub-area G H I J K L
Number 23 24 34 34 34 32

Size 5088 3950 9100 6572 5088 3950

Table 2: Some correspondances between RGB and
CIE L∗a∗b∗

RGB CIE L∗a∗b∗ colour

(1.0 0.0 0.0) (49.126 113.48 112.29) red
(0.0 1.0 0.0) (92.238 -128.15 143.53) green
(1.0 1.0 0.0) (99.587 -34.057 156.20) yellow
(0.0 0.0 1.0) (9.5101 182.43 -155.35) blue

makes performing direct pixel by pixel comparisons of any
sub-area difficult and unreliable. There are however ways of
mitigating the effects of this noise. Assuming that the noise
function is likely to be approximately Gaussian, it is possi-
ble to use the fact that the mean noise of a large enough set
of pixels should be 0 to our advantage. To this end the mean
values of each channel of each sub-area have been used in
analysis of the captured images, thus the pixels in each sub-
area produce one triplet for each input image.

Having carefully selected suitable sub-areas as described
above it was still necessary to discard several frames from
the sets due to pedestrians and cars. These images were iden-
tified and removed manually.

Figure3 shows some of the sub-areas of some of the im-
age sets. They are indicative of the range of illumination con-
ditions present across the image sets. The nature of the se-
lected areas results in the sub-areas passing through patches
of shade, and the time period of capture resulted in signifi-
cant perceivable changes across the image sets. Table1 gives
the number of images for each sub-area as well as their size.

4. Results

In order to facilitate the comparison, each axis in each colour
space was normalised to the interval[0;1]. In the case of
the a∗ and b∗ components of CIEL∗a∗b∗, which can in
theory range from−∞ to +∞, the lowest and highest
CIE L∗a∗b∗ values that could be produced by transform-
ing valid RGB colours were used as the range, Table2.
However, impossible colours in CIEL∗a∗b∗ can be trans-
formed intoRGBcolours and provide a much wider range
for the a∗ and b∗ components. For example black-red in
CIE L∗a∗b∗ (−16.0,375.0,0.0) can be transformed into
(0.996,0.0,0.004) in RGB. This means that the performed
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(a) Sub-area A

(b) Sub-area G

Figure 3: Typical sub-areas of the different image sets

normalisation is conservative and could have reduced even
more the obtained variances (see later).

Tables3, 4, 5 and 6 give the mean and variance over
all images of the corresponding sets for the different sub-
areas and colour spaces. Direct comparison of the variance
of components of the CIEL∗a∗b∗ and RGB colour mod-
els are not statistically valid comparisons because the trans-
formation from RGB to CIE L∗a∗b∗ is not linear, which
means they have different distributions. However, for our
purposes, simple comparison, such as the order of magni-
tude, do present meaningful evidence.

From these tables, it is clear that the different colour
spaces provide different degrees of separation of luminance
from colour.R, G andB variances are all similar for given
sub-areas, showing that the illumination being the only vary-
ing factor, colour and luminance are not separated. InHSV,
the variance of the hue is often,but not always, lower than
the variance of the saturation and value (which are supposed
to convey most of the luminance information). Some of these
unexpected results are discussed below. In both theYUV and
CIE L∗a∗b∗ colour spaces, the variance of the luminance
component (respectivelyY andL∗) is always at least one (if
not two or three) orders of magnitude higher than the vari-
ance of the colour components (respectivelyUV anda∗b∗).
This shows that in both models the colour components carry
significantly less luminance information than the luminance
component. Moreover, the two models perform similarly.

It is important to remember that some of the variation
in the colour components is due to changes in the lighting
colour which is unavoidable in outdoors images over long
periods of time.

Some details do require closer analysis. Figures4 and5
show the graphs of the components inRGB, HSV, YUV
and CIEL∗a∗b∗ for two of the sub-areas. Sub-area F shows
points within the hue component ofHSV that are slightly out
of range. Figure6 shows the sub-area F in different images:
2 and 3 are the anomalous images, 4 and 5 are the subse-
quent “normal” images. At first sight the cause of the reason
for images 2 and 3 might appear obvious (cast shadows),
however closer inspection of the whole set revealed that im-
ages 8, 9, 10 and 11 (Figure6 (bottom)), which appear to fit
the straight line trend, have visual characteristics similar to

Table 7: Mean hue values for sub-area F for some of the
images of the set

Image 2 3 4 5
MeanH value 66.86 65.86 84.72 80.81

Image 8 9 10 11
MeanH value 77.26 75.50 74.48 73.92

Figure 7: Two extremes of sub-area K (images 0 and 14),
one showing saturation

the points which don’t fit in. Table7 shows the actual hue
values of the images on Figure6. Visually the two out-of-
line images have a more yellow tint, which is confirmed by
the slightly higher values of the componentb∗ and the hue
value close to yellow (60) for these images. These points are
however not very out-of-line, especially considering the very
different appearances of the different images due to shadowy
and non-shadowy images.

The graph of theHSV values of sub-area K (Figure5(b))
however do show out-of-line values. This is evident when
comparing the variance in that sub-area with other sub-areas:
it is an order of magnitude higher (this also happens to a
lesser extent for sub-areas H and I, although for the former
the reason is probably due to changes of the scene — motion
in the bushes). Upon inspection of the image set we discov-
ered that the five points which seem completely anomalous
are around midday on a sunny day. Figure7 shows images 0
and 14 showing two extremes of luminance. TheRGBvalues
of the image are close to 1.0, showing saturation of the cam-
era, which caused problems determining the hue accurately.
It is interesting to note however that theU andV components
of YUV anda∗ andb∗ components of the CIEL∗a∗b∗ im-
ages (Figures5(c) and5(d)) at the same time fit the straight
line we would expect to see if they were invariant.

Also of interest with sub-area K is its comparison with the
same sub-area with automatic white balance enabled (sub-
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Table 3: Comparison of channels of RGB images

R G B
Sub-area mean var mean var mean var

A 0.621406 0.00939583 0.449919 0.00499542 0.531759 0.013032
B 0.465028 0.0270994 0.582289 0.0303846 0.310973 0.0343862
C 0.355393 0.00972204 0.333366 0.00816249 0.303951 0.00781691
D 0.74851 0.00671774 0.814118 0.00353575 0.859049 0.0015707
E 0.582263 0.0026201 0.580631 0.00251443 0.616985 0.00488161
F 0.524702 0.0137953 0.598824 0.0172351 0.310418 0.00203099
G 0.557145 0.0234549 0.556644 0.0186704 0.632994 0.0157839
H 0.307693 0.00222363 0.303001 0.001782 0.312923 0.00185453
I 0.571447 0.00568363 0.537771 0.00424631 0.514765 0.0041639
J 0.466192 0.0122142 0.503468 0.0116693 0.264127 0.00141135

K 0.576415 0.0293905 0.543128 0.0222896 0.559224 0.0175174
L 0.305581 0.00133488 0.290489 0.000986616 0.267991 0.00106279

Table 4: Comparison of channels of HSV images

H S V
Sub-area mean var mean var mean var

A 0.923205 0.000716362 0.275952 0.000210198 0.621449 0.00941345
B 0.244905 0.000365237 0.477069 0.0153586 0.582307 0.0303785
C 0.170476 0.00147369 0.150291 0.00204692 0.356686 0.00966549
D 0.540148 0.0013136 0.14216 0.00295646 0.86559 0.00162167
E 0.624378 0.00350893 0.0749948 0.0010004 0.62101 0.00448823
F 0.213306 0.000195616 0.466489 0.00404809 0.598971 0.0172324
G 0.672254 0.00166297 0.147646 0.00310416 0.635455 0.0165073
H 0.543851 0.0107882 0.0851954 0.000257043 0.323045 0.00207663
I 0.224351 0.0209946 0.102828 0.00248228 0.572856 0.00553873
J 0.200177 0.000766661 0.462375 0.0100005 0.504041 0.0116285

K 0.581517 0.0373274 0.0889594 0.000405788 0.590098 0.0264975
L 0.226809 0.00781674 0.134189 0.00184084 0.308348 0.00115915

area G). Although not immediately comparable, the images
having been grabbed at different times, the means and vari-
ances inRGB for the sub-areas E and I (and similarly for
F-J, G-K and H-L) are very similar. Given that the auto-
matic white balance is performed in theRGB space, this
tends to show that the sub-areas are comparable. Looking
at theYUV and CIEL∗a∗b∗ values, again the means and
variances are also similar for the three components. How-
ever, the means and variances of the hue and saturation in
theHSVcolour space are very different (up to several orders
in magnitude for the variance and a factor of 2 for the mean).
The value however is comparable. This shows that the prop-
erties of the automatic white balance, performed in theRGB
colour space, are preserved by the transformations toYUV
and CIEL∗a∗b∗ but not by the transformation toHSV, at
least the colour part of it.

These results show that theYUV and CIEL∗a∗b∗ colour
spaces do separate efficiently luminance from colour, even in
presence of saturation. In the next section, we briefly present
an application for this result.

5. Application: appearance-based matching

In this section, we outline a typical use of the results. Many
appearance-based methods (e.g. [NL04]) involve computing
the Euclidean distance between images in the image space
(the (n×m)-dimensional space of alln by mpixels images).
As mentioned in Section1, the main problem behind this is
that if one is not careful, two views of the same object under
different illumination situations might appear very different.

We show here that computing the Euclidean distance be-
tween images inRGB, YUV (just considering components
U and V) and CIEL∗a∗b∗ (just considering components
a∗ and b∗) can lead to very different outcomes. Figure8
shows the Euclidean distance between the first image of
sets 2 (with natural light white balance) and 1 in the full
RGB space and theYUV and CIEL∗a∗b∗ spaces without
considering the luminance information (and normalising the
components). This shows that recognition inRGBwould fail
while it would succeed even with a simple threshold-based
method: the distance between the first image of sets 1 and 2
are respectively 339.169, 51.8382 and 75.6715 inRGB, UV
and a∗b∗, which makes the former less discriminant than
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Table 5: Comparison of channels of YUV images

Y U V
Sub-area mean var mean var mean var

A 0.510524 0.00693963 0.510618 0.000259126 0.555441 5.45659e-05
B 0.516298 0.0288678 0.397338 0.00135369 0.474365 7.0001e-05
C 0.336599 0.00853715 0.483676 5.57209e-05 0.509397 1.90681e-05
D 0.799623 0.00405117 0.529713 0.000197122 0.474443 9.11961e-05
E 0.585263 0.00270849 0.515861 0.000158297 0.4985 2.51616e-05
F 0.543783 0.0134644 0.383317 0.00167873 0.49046 6.69464e-05
G 0.565498 0.0196081 0.533748 0.000177854 0.495824 6.01723e-05
H 0.305535 0.00188744 0.503694 4.16806e-05 0.501079 1.20192e-05
I 0.545217 0.00454084 0.484774 0.000110528 0.513115 5.57189e-05
J 0.465038 0.0098817 0.399545 0.00144044 0.500577 4.80288e-05

K 0.554915 0.0236337 0.502154 0.000190761 0.51075 0.000106009
L 0.292437 0.0010653 0.487777 3.31153e-05 0.506572 1.37353e-05

Table 6: Comparison of channels of CIE L∗a∗b∗ images

L∗ a∗ b∗

Sub-area mean var mean var mean var

A 0.781374 0.00160439 0.469862 6.19425e-05 0.483003 0.000103588
B 0.813247 0.00628527 0.337735 0.000378381 0.59613 0.000808511
C 0.689234 0.00335536 0.414029 6.66229e-06 0.513768 4.00805e-05
D 0.925527 0.000631121 0.404477 8.10288e-06 0.485153 4.56153e-05
E 0.833681 0.000558209 0.418187 7.89346e-06 0.488326 5.54222e-05
F 0.829317 0.00371697 0.350987 0.000115615 0.596781 0.000571085
G 0.817236 0.00426067 0.424017 6.298e-06 0.475042 8.572e-05
H 0.669865 0.000936666 0.416159 2.6361e-06 0.494474 3.71124e-05
I 0.814373 0.0011698 0.417491 5.70455e-06 0.507978 4.52581e-05
J 0.786547 0.00298242 0.362291 0.000129361 0.591734 0.000689276

K 0.811956 0.00493214 0.423138 1.19296e-05 0.494532 7.0182e-05
L 0.662119 0.000593182 0.412932 6.54945e-06 0.51105 3.39147e-05
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Figure 8: The Euclidean distance in RGB and CIE L∗a∗b∗

(without luminance information) between the first image of
sets 2 (with natural light balance) and 1 and the remaining
images of the same set

the others. The graph of the distance ina∗b∗ for set 1 shows
two points that are out-of-line. They correspond to two im-

ages showing extreme saturation or a passer-by (and were
not included in the previous statistical analysis) and thus are
different from the test image. The two final images of set 2
also show anomalies: the images were taken late in the after-
noon and thus were becoming significantly darker (and the
last but one contained a passing car). These anomalies do not
appear in theYUV colour space.

6. Conclusion

We have shown that overall thea∗ andb∗ [resp.U andV]
components of the CIEL∗a∗b∗ [resp.YUV] colour space
have a variance at least one order of magnitude smaller than
the correspondingL∗ [resp.Y] component, even in the case
of saturated images. (Remember that the normalising ranges
we used were conservative and that possibly more realis-
tic ranges would have lead to even lower variations ina∗

andb∗.) In other words, bothYUV and CIEL∗a∗b∗ colour
models are good at separating luminance information from
colour information.

This independence from luminance obviously does not
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Figure 4: Results of sub-area F, Figure2

hold in theRGBcolour space. More surprisingly, this also
does not hold in theHSV colour space (the variance in the
hue is not consistently lower than that of the saturation and
value). Moreover, we have seen that theHSV transformation
destroys the effect of automatic white balance.

The relative simplicity of the transformation fromRGBto
CIE L∗a∗b∗ and even more so toYUV makes it worthwhile
considering these models in applications needing luminance
invariance. In particular, we have shown that appearance-
based matching would work better if only considering the
a∗ andb∗ components compared to usingRGB.

Future work will include a study of the performance of
appearance-based methods in robot mapping and navigation
under varying lighting conditions.
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