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Abstract

This paper presents an algorithm that uses vi-
sual input to perform homing for an autonomous
mobile robot. An image captured at the target
pose (position and orientation) is compared with
the currently viewed image to determine the pa-
rameters of the next move of the robot toward
the target (rotation and translation). The visual
data is captured using an omnidirectional camera
and images are compared using the Manhattan
distance function to determine both the transla-
tion and rotation angle. Results, limitations and
successes are presented and discussed.

1 Introduction

Homing, or the process of returning to a specified place,
is an important task in mobile robotics and many
methods have already been proposed. All methods
explicitly extract features from the data gathered
from the environment, such as analysing chromatic
and geometric characteristics (Vassallo et al., 2000,
Cassinis et al., 2002, Regini et al., 2002), im-
age motion (Santos-Victor and Sandini, 1997,
Crétual and Chaumette, 2001) or salient parts of
images (Gaspar et al., 2000). The problem with
feature-based approaches is that one needs to know
in advance the kind of features the environment will
have to be able to extract them. This makes these
approaches not robust to environment changes and vari-
ability. Appearance-based methods have the advantage
that no knowledge about the environment is needed
and/or that no environmental changes are necessary to
enable a robot to navigate in that environment.

There is now some evidence that insects perform
homing only using retino-centric representations (im-
ages) of their environment and that they do not per-
form any feature extraction but rather use the raw
images (Judd and Collett, 1998). The homing method
proposed in this paper uses an appearance-based ap-
proach. Images are compared without performing any
explicit feature extraction. This is similar to the work

in (Rizzi et al., 1998) but our work presents some no-
table differences. First, it does not restrict camera mo-
tion to forward translation but also uses rotation. Sec-
ond, we do not attempt to find a single displacement
of the robot that would lead to the target. We rather
progressively moves toward it, as has been done in the
end in (Rizzi et al., 1998) because their algorithm fails
to find the right displacement in one iteration. Finally,
we use an omnidirectional camera as such a camera con-
tains more information about the environment in a sin-
gle frame, a property that helps visual navigation and
related applications. We compare the performance of
our method with the method in (Rizzi et al., 1998) in
Section 4.

The use of the term “homing” here indicates the pro-
cess by which an autonomous mobile robot drives toward
a specified location within an environment. It does not
necessarily imply that a “docking station” is required;
the proposed algorithm performs equally well when hom-
ing toward an open space as docking with a physical ob-
ject. However, it needs a visually salient feature of the
environment that will allow the robot to turn toward the
target (see Section 4 for a discussion). It is assumed that
another process will take the robot in the vicinity of the
target.

The algorithm involves comparing an image captured
at the target pose (position plus orientation) with the
currently perceived image. Homing is performed using
only this visual data. Pixel colour values in the images
are used to compute the next motion of the robot (a ro-
tation and a translation). Homing is achieved by making
a series of moves toward the target, stopping to readjust
the course based on the new current image.

Section 2 describes the homing algorithm. Section 3
describes the processing performed to convert raw im-
ages into a robot motion. Section 4 presents results of
the homing algorithm and discusses limitations of the
method. Finally, Section 5 concludes and proposes fu-
ture enhancements.
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Figure 1: Flow chart of the homing algorithm

2 The homing algorithm

Figure 1 shows the steps taken in performing the hom-
ing. Our algorithm is inspired by the process used in
(Cassinis et al., 2002).

A target image is specified at the beginning of the pro-
cess. The section shown in the dotted line is the process-
ing of the target image that is captured at the location
to which homing should occur. This is performed only
once for each target image and is performed separately
to the homing process.

At its current location, the robot grabs a new image,
the current image, and processes it in the same way as
the target image at the beginning, Section 3.1. The pro-
cessing of the images takes place on-line, immediately
after capture.

The processed target and current images are com-
pared. If the two images match, then homing occurred.
Otherwise, a motion for the robot is computed based on
the difference between the images, Section 3.2, the robot
moves following instructions and the process is repeated.

3 Image processing

In this section, we describe the processing performed on
the images, both target and current, needed for the hom-
ing algorithm, Section 2. We also describe how images
are compared and how the difference between the images
is converted into robot motion.

3.1 Image unwrapping

Image capture was performed using an omnidirectional
camera and a real-time frame grabber. The image grab-
ber was implemented as a server running on the robot
that transmitted images to a client image receiver using
sockets.

Figure 2: The omnidirectional camera

The omnidirectional camera is made of a “normal”
camera pointed upward and looking at a hyperbolic mir-
ror, thus providing an omnidirectional view of the robot’s
surroundings. Figure 2 shows the camera, bottom of the
perspex tube, and the mirror, top.

An image captured by the omnidirectional camera ap-
pears as a wrapped omnidirectional image, as can be seen
in Figure 3(a). To make the process of extracting the
robot motion parameters easier, Section 3.3, these circu-
lar images were transformed into unwrapped panoramic
images, Figure 3(b). The unwrapping is performed by
scanning a line emanating from the centre of the omni-
directional image and rotating around the image by in-
crements of 1◦. Pixels of the panoramic image are taken
along the line using the nearest pixel of the omnidirec-
tional image1, Figure 4. The omnidirectional image size
was 200 × 200 pixels and the panoramic image size was
of 360 × 60 pixels, one column per degree of angle and
one row per usable distance away from the centre in the
omnidirectional images.

1We have also used bi-linear interpolation, but this is more
expensive to compute and did not change the performance of the
system.



(a) An image captured using the omnidirectional cam-
era

(b) The corresponding unwrapped image

Figure 3: Typical images of the test environment
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Figure 4: The unwrapping process. The grey areas corre-

spond to unusable parts of the image (projection of the robot

or outside of the mirror). x and y are the coordinates of pixels

in the panoramic image.

This conversion does not produce a completely accu-
rate representation of the environment, as the geometry
of the mirror used in the omnidirectional camera was not
taken into account in the above transformation and no
calibration of the system has been done. In particular,
the perspex tube used to link the camera and the mir-
ror is not perfect and introduces many local distortions.
Moreover, the process assumes that the optical axis of
the camera projects at the centre of the image, which is

Figure 5: Manhattan distances between a target image and

images taken from positions around the target position

very probably wrong. However, as long as the distortions
do not change with time, calibration was not needed as
we only use differences between images, Section 3.2.

3.2 Image comparison

The image comparison technique used relies on the fact
that an image can be mapped as a single point in a
multi-dimensional space, the image space. The image
space has one dimension per pixel per colour coordinate.
For example, a 360× 60 pixels image using 3 colours per
pixel can be plotted as a point in 64, 800 (360 × 60 ×
3) dimensional space. This allows us to measure the
distance between images as a way of comparing them.

The distance function chosen for the comparison was
the Manhattan distance:

d(C, T ) =
∑

i

∑

j

∑

k

|C(i,j)k − T(i,j)k|, (1)

where d(C, T ) is the distance between the current im-
age and the target image, and (i, j)k denotes the kth

colour component for pixel (i, j) (we have used R, G
and B from the RGB colour space and a∗ and b∗ from
the CIE L∗a∗b∗ colour space, Section 3.4).

To test the behaviour of the Manhattan distance func-
tion, a grid was marked out on the floor of the envi-
ronment used for homing. Each grid square is approx-
imately 50cm by 50cm. A target image was captured
at grid position (0, 0) (in Figure 5, this is in the centre
of the grid, in Figure 7 this is at the centre of the near
side) and images were also captured at each grid posi-
tion. Each image was then compared against the target
image and the Manhattan distance plotted. Figure 5
shows the result. As can be seen, there is a clear mini-



Figure 6: Euclidean distances between a target image and

images taken from positions around the target position

mum in the function at the target position as well as a
well defined “bowl” around the minimum. This indicates
that the Manhattan distance in image space is indeed a
good measure of how close the robot is from its target,
at least in the range of spatial distances concerned in the
homing process.

We have also tried the Euclidean distance to measure
differences between images in the image space. Figure 6
shows that qualitatively, the function is very similar.
However, perhaps surprisingly, the graph is flatter when
away from the target position, which, we expect, does
not help the convergence. Because of this and because
computing Euclidean distances is more expensive than
computing Manhattan distances, we decided to use the
latter.

3.3 Mapping distances in the image space to

robot motion

Image comparison is used to calculate a rotation angle
for the robot as well as a displacement after the rotation.
To achieve this, the current image is shifted by one pixel
at a time to the right and the Manhattan distance is
calculated for each shift (Section 3.2). As the unwrapped
images are 360 pixels wide, a one-pixel shift corresponds
to a rotation of 1◦. The best angle of rotation for the
robot is given by the angle with the lowest Manhattan
distance value after comparison with the target image.
In early experiments, this angle was used to rotate the
robot toward the target.

Experiments quickly showed that using this angle
tended to make the robot home with a wrong orientation

as it was heading straight at the target, ending wrongly
aligned with it, instead of having a “round” path that
would lead it in front of the target. Instead of using
the best un-rotation angle, we used some proportion of
it, in other words under-steering, 50% in all the exper-
iments reported. This has some implications, discussed
in Section 4.

Following the rotation, the robot moves forward2 by
an amount dependent on the distance between the un-
rotated current image and the target image. The length
of the step is proportional to the difference between the
distance and a set point empirically determined. As long
as the distance between current image and target image
decreases, the robot moves forward. If the distance in-
creases, then the robot reverses as this corresponds to
the robot over-shooting the target.

When the distance in image space between the current
image and the target image becomes lower than some set
threshold, the robot decides that it has docked with the
target.

3.4 Colour space considerations

An important consideration is the colour space used for
the distance computation. As can be seen from the im-
age on Figure 3, the environment in which the experi-
ments were performed is a large (4m by 4m) area free
from obstacles delimited by a low fence in the middle
of a cluttered area. This translates into images made
of a large homogeneously grey area (bottom of the un-
wrapped images) and an almost random multi-coloured
area (top of the unwrapped image). A “docking station”
was materialised by a red box. Note that the red box
is not explicitly extracted by the algorithm, it was only
used to introduce some features in the random back-
ground of the room.

To improve the differences between colours, we de-
cided to use the CIE L∗a∗b∗ colour space because of
its perceptual linearity (Fairchild, 1998). Colours in this
colour space are represented using 3 coordinates. The
coordinate L∗ represents the luminance, the coordinate
a∗ represents colour between green and red and the co-
ordinate b∗ represents colour between blue and yellow.
The chrominance information is thus only conveyed by
the two coordinates a∗ and b∗. To make the system
more robust to illumination changes, we do not use the
coordinate L∗.

We performed experiments as in Section 3.2 to com-
pare the distance function in the RGB and CIE L∗a∗b∗

colour spaces. Figure 7 show the graphs of the two func-
tions with the same images. This result seems disap-
pointing as the Manhattan function seems to behave the
same way in the two colour spaces.

2This actually happens at the same time as the robot is rotat-
ing. However, the rotation is faster than the translation, which
thus mostly happens after the rotation.



(a) RGB

(b) CIE L∗a∗b∗

Figure 7: Manhattan distances in two colour spaces

However, investigating the effect of the colour space on
the rotation angle extracted from the images to rotate
the robot, Section 3.3, was more conclusive. Using the
same images as for Figure 7, we computed the angle by
which the robot needs to be rotated to face the target.
The absolute value of the angle is plotted on Figure 8.
The graphs show that, apart from noise when far away
from the target, the robot does not rotate when comput-
ing the distances in the RGB space. However, distances
computed in the CIE L∗a∗b∗ colour space more accu-
rately separate colours and provide the right rotation
angles (no rotation when far away from the target and
increasing angle when off the front of the target). We
however believe this is an artifact of the presence of the

(a) RGB

(b) CIE L∗a∗b∗

Figure 8: Rotation angles in two colour spaces

red box near the target position. We discuss this further
in Section 5.

We thus decided to use the CIE L∗a∗b∗ colour space
as the distance function produced better rotation angles.

4 Results

We tested our system in our research laboratory, a typ-
ical image of which is shown on Figure 3. To assess the
performance of the algorithm, we ran several trials from
different initial positions with different (random) initial
orientations. The robot was tracked using the Vicon mo-



Figure 9: Paths taken by the robot as tracked using the Vicon

system

Figure 10: Different cases. The grey circle corresponds to

the target, the white circles correspond to places from where

homing will be successful and the black circles correspond to

places from where the homing will not be as successful.

tion tracking system. The grabbed paths are shown on
Figure 9 as lines, only representing the position of the
robot (the orientation can roughly be inferred by the
change in position).

As can be seen, all but one paths end within ±50cm
around the target. The one path that does not was ac-
tually successful but not tracked because the reflective
marker used by the Vicon system was momentarily hid-
den by somebody moving in the room.

In one case, the right-most path on Figure 9, the robot
did over-shoot its target by about 1m and did oscillate
only making very slow progress3. In this case however,
the robot started from a point sideways to the target,
configuration for which the un-rotation of the images
provides a not too good orientation for the robot. This
shows a fundamental limitation of the algorithm: the
robot cannot be too far off on either side of the target
for it to successfully home onto it, Figure 10. As long
as the robot is sufficiently in front of the target (white
circles on Figure 10), then the alignment provided by

3We thus stopped it before it had reached convergence.

Figure 11: Good and bad position/orientation relative to the

target (grey circle). The white circle on the right corresponds

to a right position/orientation while the circle on the left

corresponds to a wrong position/orientation.

the un-rotation of the current image to match the target
image will be such that, with under-steering, the robot
will successfully home onto the target. This is because
the red box materialising the “docking station” creates
a strong feature in the images, especially when working
in the CIE L∗a∗b∗ colour space. We remind the reader
that the features are however not explicitly extracted.
This is why the angle as displayed on Figure 8(b) are
better. In the RGB colour space, Figure 8(a), the red
box does not stand out as strongly when compared to
the other parts of the images and the best un-rotation of
the images then gives an angle that will align the robot
with the target orientation, preventing the robot from
going toward the target4.

Another influencing factor is the under-steering, Sec-
tion 3.3. Two problems occur. The first is again ex-
plained on Figure 10. When starting from the position
corresponding to the black circles, under-steering pre-
vents the robot from reaching its target, as can clearly
be seen on Figure 9. Figure 11 is used to explain the
second problem. It shows two positions/orientations rel-
ative to the target that are good or bad as a starting
point for the algorithm, because of the under-steering.
Under-steering will make sure that the good starting con-
figuration will succeed while making the other starting
configuration even worse. Note that some over-steering
would actually make the wrong starting position better
(and would also solve the oscillations exhibited on the
right-most path of Figure 9). However, there is no ob-
vious way of deciding when to over-steer and when to
under-steer if we do not assume anything about the cur-
rent pose of the robot with respect to its target. We
decided on under-steering as usually, in homing situa-
tions, the robot is more or less correctly aligned at the
beginning of the process.

As stated in Section 1, the proposed method

4The visual compass described in (Labrosse, 2004) uses that
same property to extract the heading of the robot. In that case,
having the correct alignment is a desirable feature.



bears some resemblance with the method proposed in
(Rizzi et al., 1998) but has some important differences.
We compare here the performance of our method with
the published results (Rizzi et al., 1998, Fig. 7). All our
trials arrived within about ±50cm of the target, sim-
ilar to those of (Rizzi et al., 1998). However, we have
tried from starting positions sideways to the target, un-
like (Rizzi et al., 1998) who only report results starting
from positions in front of the target, admittedly further
away compared to our trials. We haven’t tried such far
away starting positions but we do not expect that they
would pose any problem, as long as the images are vi-
sually not too different from the target. Our results are
thus comparable to their’s with a much simpler match-
ing algorithm and without constraints such as constant
height and no rotation.

5 Conclusion, discussion and future

work

The visual homing method that has been presented im-
plements an algorithm to allow a mobile robot equipped
with an omnidirectional camera to navigate toward a
target position within its environment. The method is
purely appearance-based; in particular, it does not ex-
tract features from the images but only measures the
difference between images. Tests have shown that while
this method has been successful in driving the robot
toward the target, precise positioning was not always
achieved and thus the method may not be suitable for
accurate docking procedures. Moreover, although we
do get good results from a wide range of starting posi-
tions/orientations relative to the target, we have shown
that there are some limitations in terms of initial con-
figuration. Moreover, although no explicit feature ex-
traction is performed, the algorithm does need a visu-
ally standing out feature in the environment to materi-
alise the “docking” station. We have characterised what
constitute good starting positions/orientation to ensure
success of the algorithm.

The use of the Manhattan distance function in the
image space to calculate a distance and rotation angle
for the robot was successful. Graphs presented show that
when in the CIE L∗a∗b∗ colour space, useful output was
obtained.

It is to be noted that all the experiments were taking
place in a research lab with people walking about during
the experiments. Moreover, we also tried, although we
did not record any formal results, to modify the environ-
ment by introducing objects in the free area in which the
robot was moving, after the target image was grabbed.
The robot still successfully homed.

One of the remaining problems that need to be ad-
dressed is when to decide that the robot has docked. At
the moment, Section 3.3, the robot stops when the dis-
tance in image space between the current image and the

target image is below a set threshold. This threshold
however depends on the environment and the lighting
conditions. The latter can be partially solved by not
using the luminance information (the L∗ component in
the CIE L∗a∗b∗ colour space), which we did. The for-
mer could be solved by looking at the derivative of the
distance function. However, as can be seen on Figure 5,
the minimum of the function is very sharp, making the
computation of the derivative unreliable. Further inves-
tigations are needed.

The method provides a good basis from which to con-
tinue research on this type of visual navigation. In par-
ticular, we want to investigate better ways of computing
the turning angle of the robot at each step of the algo-
rithm. This could for example use the gradient of the
distance function, Figure 5, around the current position.
Another approach could be to control the speed (rotation
and translation) of the robot instead of relative moves.

We also want to apply this work to navigation in an en-
vironment represented using a topological map by hom-
ing in on a succession of targets selected from the map
(Neal and Labrosse, 2004). In such a situation, most
problems we noted in this work become irrelevant as
“homing” does not need to be accurate when navigat-
ing from place to place.
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